Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://dspace.opu.ua/jspui/handle/123456789/15354
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorVychuzhanin, Volodymyr-
dc.contributor.authorRudnichenko, Mykola-
dc.contributor.authorVychuzhanin, Oleksii-
dc.contributor.authorRychlik, Andrzej-
dc.date.accessioned2025-06-03T03:20:42Z-
dc.date.available2025-06-03T03:20:42Z-
dc.date.issued2023-
dc.identifier.citationVychuzhanin, V., Rudnichenko, M., Vychuzhanin, O., Rychlik, A. (2023). Diagnosis intellectualization of complex technical systems. CEUR Workshop Proceedings, Volume 3513, P. 352-362.en
dc.identifier.issn16130073-
dc.identifier.urihttp://dspace.opu.ua/jspui/handle/123456789/15354-
dc.description.abstractThe article presents the results of developing a model for diagnosing a ship complex technical system with incomplete data and its implementation in an intelligent system for assessing the risk of failures of subsystems, components, intercomponent links, which allows obtaining a priori information about the technical condition of a complex system. Types of technical condition of subsystems, components, intercomponent connections are determined on the basis of diagnostic features of a complex system using the example of a ship power plant to assess the risk of their failures. Predicting the type of technical state of a complex technical system was carried out using a posteriori inference in Bayesian belief networks. The studies presented in the article assessed the risk of failures as a result of the use of an intelligent system for diagnosing and predicting the risk of failures of a ship complex technical system. The model for diagnosing and predicting the risk of failures of subsystems, components, interconnections can be considered as a conceptual model of an intelligent system for diagnosing and predicting the risk of failures of complex technical systems on network infrastructures, which has a relative insensitivity to incomplete technological data.en
dc.language.isoenen
dc.publisherCEUR-WSen
dc.subjecttechnical conditionen
dc.subjectcomplex technical systemen
dc.subjectrisk of failureen
dc.subjectdiagnosticsen
dc.subjectforecastingen
dc.subjectintelligent systemen
dc.subjectBayesian belief networken
dc.subjectinsensitivity to incomplete dataen
dc.titleDiagnosis intellectualization of complex technical systemsen
dc.typeArticle in Scopusen
opu.citation.journalCEUR Workshop Proceedingsen
opu.citation.firstpage352en
opu.citation.lastpage362en
Располагается в коллекциях:2023

Файлы этого ресурса:
Файл Описание РазмерФормат 
paper29.pdf731.16 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.