
Applied Aspects of Information Technology 2019; Vol.2 No.4: 283–294

 Designing Information Technologies and Systems

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

DOI:10.15276/aait.04.2019.3 283

UDC 004.4

Christian Herta1, Doctor Rerum Naturalium, Professor, Faculty 4 – Computer Science,

E-mail: christian.herta@htw-berlin.de, ORCID: 0000-0003-2519-6794

Klaus Strohmenger1, Master of Science, Scientific Research Assistant, Faculty 4 – Computer Science,

E-mail: klaus.strohmenger@htw-berlin.de, ORCID: 0000-0002-4534-1306

Oliver Fischer1, Master of Science, Scientific Research Assistant, Faculty 4 - Computer Science,

E-mail: oliver.fischer@htw-berlin.de, ORCID: 0000-0002-1871-9350

Diyar Oktay1, Student, Faculty 4 – Computer Science, E-mail: diyar.oktay99@gmail.com,

ORCID: 0000-0003-1483-5837
1HTW Berlin – University of Applied Sciences, Wilhelminenhofstr, 75a, Berlin, Germany, 12459

DP: A LIGHTWEIGHT LIBRARY FOR TEACHING DIFFERENTIABLE

PROGRAMMING

Abstract. Deep Learning has recently gained a lot of interest, as nowadays, many practical applications rely on it.

Typically, these applications are implemented with the help of special deep learning libraries, which inner implementations are

hard to understand. We developed such a library in a lightweight way with a focus on teaching. Our library DP (differentiable

programming) has the following properties which fit particular requirements for education: small code base, simple concepts,

and stable Application Programming Interface (API). Its core use case is to teach how deep learning libraries work in principle.

The library is divided into two layers. The low-level part allows programmatically building a computational graph based on

elementary operations. In machine learning, the computational graph is typically the cost function including a machine learning

model, e.g. a neural network. Built-in reverse mode automatic differentiation on the computational graph allows the training of

machine learning models. This is done by optimization algorithms, such as stochastic gradient descent. These algorithms use the

derivatives to minimize the cost by adapting the parameters of the model. In the case of neural networks, the parameters are the

neuron weights. The higher-level part of the library eases the implementation of neural networks by providing larger building

blocks, such as neuron layers and helper functions, e.g., implementation of the optimization algorithms (optimizers) for training

neural networks. Accompanied to the library, we provide exercises to learn the underlying principles of deep learning libraries

and fundamentals of neural networks. An additional benefit of the library is that the exercises and corresponding programming

assignments based on it do not need to be permanently refactored because of its stable API.

Keywords: Differentiable Programming; Deep Learning; Teaching; Automatic Differentiation

Introduction

Modern deep learning libraries ease the

implementation of neural networks for applications

and research. In the last few years, different types of

such libraries were developed by academic groups

and commercial companies. Examples are Theano

[1], TensorFlow [2] or PyTorch [3]. Recently, the

term “differentiable programming” emerged (see

e.g., [5]) which expresses that e.g. (Deep) Neural

Networks can be implemented by such libraries by

composing building blocks provided by the library.

The term differentiable programming also reflects

the fact that a much wider spectrum of models is

possible by using additional (differentiable)

structures (e.g. memory, stacks, queues) [12; 13] as

building blocks and control flow statements.

With the DP library, we provide a minimalistic

version of such a library for teaching purposes. The

library is designed light-weighted, focusing on the

principles of differentiable programming: How to

build a computational graph and how automatic

differentiation can be implemented.

© Herta, Christian, Strohmenger, Klaus,

 Fischer, Oliver, Oktay, Diyar, 2019

We also developed a high-level neural network

API which allows for more convenient

implementation of neural network models by

providing predefined functional blocks, typically

used in neural networks.

The library is accompanied by many Jupyter

[25] notebooks, a de facto standard in data science

research and education [27], to demonstrate and

teach the underlying principles of a deep learning

library. We also provide many exercises that allow

students to deepen their understanding. The

exercises also include concepts of modern neural

networks, e.g., activation functions, layer

initialization, versions of stochastic gradient descent,

dropout, and batch normalization (see e.g. [5]).

Types of deep learning libraries
Different deep learning libraries follow

different concepts, and they distinguish further from

each other in various aspects. In some libraries, the

neural networks must be defined by configuration

(e.g. Caffe [4]). Other libraries provide APIs for

programming languages, e.g. for Python or R. Some

of the APIs resemble languages that are embedded

Applied Aspects of Information Technology 2019; Vol.2 No.4: 283–294

 Designing Information Technologies and Systems

284 ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

in a host language. Typically, with these domain-

specific languages, the computational graphs are

defined symbolically. In the next step, the

computational graphs (and the corresponding graphs

for the derivatives) are translated into code for

another programming language, typically C++ or

CUDA [12]. Subsequently, the program is compiled

and can be executed. Sometimes the term static

computation graph is used here which reflects the

fact that the graph is defined once declaratively and

cannot be changed dynamically.

Contrary to this symbolic approach is the

imperative approach. Here, the computation graph is

built up implicitly by executing the program line by

line. The forward computation is done directly, and

the computation of the derivatives can be done at the

end, e.g., by recursion. With each execution of the

program, control structures in the program can

change the structure of the computation graph. In

this case the term dynamic computation graph is

used.

Another aspect is the granularity of the

computational operations in a deep learning library.

With some libraries, the computational graph can be

constructed with elementary tensor operations, e.g.

matrix multiplication. In other libraries, the

operations may correspond to whole layers of a

neural network.

Our library DP is a finely granular, imperative

deep learning library for Python, based on NumPy

[16]. The focus of the library lies in teaching the

principles of a deep learning library and the

implementation of neural network models and

algorithms. Therefore, we designed the library as

simple as possible, and we restrict the tensor order to

two, i.e. matrices. So, the code base of DP is

significantly smaller and easier to understand as of

libraries with much more functionality like

autograd [8].

Another problem is that most common deep

learning libraries are still subject to frequent changes

in their API, which is a big drawback when used for

exercises. We are developing exercises for advanced

deep learning, e.g., Bayesian neural networks [9] or

variational autoencoders [10]. For educational

reasons (didactic reduction), we provide all

boilerplate code so that the students can focus on the

learning objective. The boilerplate code includes

implementation against a deep learning library. If

then a new version of the used library is released and

its usage changes, exercises have to be adjusted

accordingly to work correctly. Typically,

universities do not have the personal resources to

keep the teaching materials and exercises

permanently up-to-date. The minimalistic approach

of our library and the strict focus on teaching allows

us to keep its API stable and therefore eliminates the

need for permanent maintenance of the exercises.

Overview on the principles
In deep learning libraries, a machine learning

model is built up as a computational graph. A

computational graph is a directed graph. The

structure of the graph encodes the order of the

computation steps. At each inner node, an

elementary computation is executed. The inner

nodes of the graph are elementary mathematical

operations (including elementary functions).

Examples of elementary operators are +, - or dot-

product and elementary functions are e.g., ,

 or . A computational graph corresponds

to a mathematical expression. The input nodes are

the parameters of the model or data values. In

machine learning, the output nodes of the graph

usually correspond to the prediction values or cost

values. Typically, the computational graph is built

up in a computer program which allows different

programming techniques such as looping, branching,

and recursion.

Computational graphs enable automatic

differentiation. For each computational node the

derivative of the operation must be known. Local

derivative computations are combined by the chain

rule of calculus to get a numerical value for the

derivatives of the whole computational graph for

given input values. In deep learning libraries this is

typically implemented as reverse-mode automatic

differentiation [6].

With reverse-mode automatic differentiation,

all partial derivatives of the output w.r.t. to all inputs

can be calculated efficiently. This feature is very

important for machine learning. In the training

process of a machine learning model, all partial

derivatives of the cost function w.r.t. all parameters

of the model must be computed. In neural networks,

these parameters are the neuron weights.

The computational graph for the training of a

model corresponds to the cost function which should

be minimized in the training procedure [19]. The

cost is a function of the parameters of the

model. During the optimization, the parameters are

adapted to minimize the cost value. This

optimization is typically realized by variants of

stochastic gradient descent (SGD) [11]. In each step

of SGD all partial derivatives of the cost w.r.t. the

parameters must be computed.

Before the appearance of deep learning

libraries, a symbolic expression for the partial

derivatives for new models was done by the

Applied Aspects of Information Technology 2019; Vol.2 No.4: 283–294

 Designing Information Technologies and Systems

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

 285

researcher in a pen-and-paper solution. For an

example see e.g. [13]. This manual procedure is

error-prone, time consuming and nearly impossible

for large complex models.

By building up the model in a deep learning

library the build-in feature reverse automatic

differentiation deliberates the researcher or

developer from this work.

Theoretical background of automatic

differentiation

In the following we describe the theoretical

background of reverse mode automatic

differentiation in a semi-formal way. For a more

rigorous formal explanation, see e.g. [15].

Notation

In the theoretical description, we use the

following mathematical notation. Lower-case Latin

letters, e.g. , denote scalars or vectors. Upper-case

Latin letters, e.g. , denote matrices or more

structured objects like graphs. Python variables

corresponding to a mathematical object are denoted

as lower-case letter in a sans-serif fond, e.g. a,

independent of the type.

From the context, it should be clear which

objects are referenced by the corresponding letters.

Definition of a computational graph

A computational graph is a directed acyclic

graph. A directed acyclic graph is a set of nodes

(with a node in) and a set of edges , i.e. pairs

of nodes . i respectively j is the index

of the node. Further we assume that the

computational graph is topologically ordered, i.e.

for each edge holds .
We define the leaves of the graph as the nodes

with no incoming edges. Each node
has a

corresponding variable . The dimensionality of

variable
 is . Leaf nodes correspond directly

to inputs for the computation and the value of the

variable
 is directly the input value. Non-leaf

nodes have a corresponding operator . The

operator
 takes as input the variables

 of all

nodes with an outgoing edge to the node . For

the concatenation of all variables with an edge

to
 we write . The concatenation is done in

topological order.

For a consistent definition we can define the

operator for leaf nodes as the identity which takes as

input the (external) input to the (leaf) node.

In summary, a computational graph is a

directed acyclic graph where each node has an

internal structure. The nodes consists of a

variable and an operator . The input to the

operator is determined by the edge structure of the

graph.

Forward propagation algorithm

The forward propagation algorithm computes

the values of all non-leaf nodes. The values of the

leaf nodes are the input to the algorithm. In

topological order all non-leaf nodes are

computed by the corresponding operator and the

variables of the nodes which have an edge to the

node
. Note that the variable values of all

 are

already known. Either because they are leaf nodes or

they have a lower order index and are already

computed by the algorithm.

Reverse mode automatic differentiation

Reverse-mode automatic differentiation is a

two-step procedure. In the first step, the variable

values of each inner node of the computational

graph are computed by the forward algorithm. The

computed values of all variables are stored in an

appropriate data structure.

The second step is based on the chain rule of

calculus. Here we assume that we have only one

node with no outgoing edges. This node has the

highest order index m. We call the node the output

node. In machine learning, the value of the node is

typically the cost value and the computational graph

computes the cost function. The cost value is a

scalar, i.e. the dimensionality of the output variable

 is .

In general, the node variables in the

computational graph can be tensors of any order.

However, for compact indexing we assume that they

are flattened to vectors for this theoretical analysis.

So, there is only one index for each variable and the

variables of the nodes are dimensional vectors.

We are interested in partial derivatives of the

output node variable
with respect to the leaf

node variables , i.e.

 .

On the right side of the equation each summand

is a dot-product of Jacobians. is the index of all

nodes which have an edge to node , i.e.

 .

The Jacobian which corresponds to an edge in

the computational graph (here from to) is

called a local Jacobian (matrix).

For each variable with index the chain rule can

be applied again:

Applied Aspects of Information Technology 2019; Vol.2 No.4: 283–294

 Designing Information Technologies and Systems

286 ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

k is the index of all nodes which have an edge to

node ,, i.e. .

Note, that for different nodes the sum is over

different nodes with indices depending on the

graph structure. Repeated application of the chain

rule by respecting the graph structure shows that we

can compose a global Jacobian from local Jacobians.

It can be shown [23] that the dot products of all local

Jacobians on all paths from the leaf node to the

output node ()
 must be summed up to get the

global Jacobian.

As already stated, we want to compute (nearly)

all global Jacobians, i.e. all global Jacobians w.r.t.

(nearly) all leaf variables . The principle idea for

an efficient computation is to reuse the partial

results

 for all non-leaf variables . Note

that

 is again the sum of the dot products of

all local Jacobians on all paths from the node
()

 to

the node . So, regrouping of the nested sums is

equivalent to send backward signals. A backward

signal at a current node is the sum of dot products of

the local Jacobians of all paths from the current node

to the output node. To compute the backward signal

of a new node it is sufficient to sum up all dot

products of the backward signals

 of all

nearby upstream nodes with the local Jacobians

 :

p is the index of all nodes with an edge from

node to , i.e. .

The algorithm starts at the output node .

The initial backward signal is

 , i.e. an

identity matrix with dimension Then,

the backward signals at the nodes which have an

edge to are computed as described above. This

procedure is repeated until all wanted global

Jacobians are computed.

In the context of neural networks, reverse mode

automatic differentiation is also called

backpropagation.

Implementation
For the implementation in a computer program

we chose as programming language Python, because

(scientific) Python is the most common

programming language for machine learning. Our

library is based mainly on the tensor library NumPy.

Basic (low-level) part

With the basic low-level part of the library the

user can build the computational graph (implicitly)

imperatively. On such a computational graph the

global Jacobians of the output node can be computed

efficiently by reverse mode automatic differentiation

with the help of the library.

The low-level part consists mainly of the Node

class. Each instantiation of the Node class

corresponds to the creation a node for the

computational graph. To keep the implementation

small and clear, the node variables are restricted to

tensors of order 2 and the output node variable

must be a scalar, i.e. In machine learning,

the value of the output node is typically the cost

value. So, that is not a severe restriction.

Fig. 1. Example of a computational graph. The

leaf nodes are A and B. The output node is the

rightmost node (sum over all elements). We denote

in topological order, the non-leaf variables C

(element-wise product), D (exponentiation) and E

(sum of all elements)

In the following, we show how the

computational graph of figure1can be build up in the

DP-library. Leaf nodes can be instantiated directly

by calling the constructor of the Node class, e.g. by

a = Node(np.array([[1,1,1], [2,2,2]]), "A")
b = Node(np.array([[1,2,3]]), "B").

Here, two leaf nodes a (with name A) and b

(with name B) are generated. Both nodes have got

an explicit name given by the optional second

argument of the constructor. For all nodes with

names the Jacobians (also called gradients) are

computed by reverse mode automatic differentiation,

see below.

The first node is a, i.e. and the second

 . The node variable is 2x3 matrix.

However, note that the node variables described in

the theoretical part are formulated as vectors and

that the Jacobian indices refer to such vector indices.

Applied Aspects of Information Technology 2019; Vol.2 No.4: 283–294

 Designing Information Technologies and Systems

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

 287

As an example, for the correspondence to the matrix

 note that the element is equivalent to

, and

the total number of elements of the variable
 is

 . For the flattened / vector version of we

write .

Non-leaf nodes are generated by methods (or

overwritten python operators) of the Node class. The

methods correspond to the mathematical operator,

e.g., the element-wise multiplication in figure 1 can

be done with the API by

c = a * b.

Here, a Node instance of a non-leaf node is

generated by the binary operator “element-wise

multiplication” and the instance is assigned to the

Python variable c (mathematical notation: .

Note, that the shape of (2x3 matrix) and

 (1x3 matrix) respectively (vector of dimension

3) are different. The DP-library supports

broadcasting [20] for such element-wise operations.

As result of broadcasted element-wise

multiplication, c has the same shape as a.

The completion of the computational graph of

Fig. 1 is done by the following code,

d = c.exp()
e = d.sum() # output e is a scalar.

For the variable d each element of c is

exponentiated. For the variable e all elements of the

variable d are summed up to a scalar. e is the output

variable of the computational graph.

By reverse mode automatic differentiation, the

Jacobians of the node e w.r.t. node a and b can be

computed. This is done by the method grad(.) with

argument 1 on the output node,

grads = e.grad (1).

The return value is a Python dictionary with an

entry for each leaf-variable with a name, here

{'A': array([[2.7, 14.78, 60.26],
 [7.39, 109.20, 1210.29]]),
 'B': array([[17.50, 116.59, 826.94]])}.

Exemplarily, we describe the implementation of the

element-wise multiplication operation. The internal

implementation is given by the following code:

def __mul__(self, other):
 if isinstance(other, numbers.Number) or
 isinstance(other, np.ndarray):
 other = Node(other)
 ret = Node(self.value * other.value)

 def grad(g):
 g_total_self = g * other.value
 g_total_other = g * self.value

 x = Node._set_grad(self, g_total_self,
 other, g_total_other)
 return x

 ret.grad = grad
 return ret.

The method generates and returns a new node

ret for the element wise multiplication operator.

The node instance ret has no name. The inner

function definition grad implements how the

backpropagated signal g is combined with the local

Jacobians for both operands, i.e. in our

computational graph a and b. How this

implementation is related to the theory (see above) is

not obvious. In the implementation, there is no

(explicit) dot-product of Jacobians. In the following

this relation is explained for the variable a. We

assume in the analysis, that the variable b was

internally broadcasted, so that a and b resp. and

 have the same dimension :

Here, the output node is e, i.e. and the

backpropagated signal is at the node c

(given to the inner function grad as argument g. To

get the global Jacobian w.r.t. the node a the dot

product with the local gradient

 must be

calculated and combined with the backpropagated

signal:

or explicitly (with Jacobian) indices:

 .

Note, that the first index of

resp.

is

always a because of the scalar output of the

computational graph. The local Jacobian for the

element-wise multiplication is

 is the Kronecker-Delta, i.e.

for and for . So, we have

Therefore, the combination of the Jacobians by

the dot-product is here equivalent to an element-wise

multiplication of the Jacobians. The dimension of

the Jacobians (indexed by) need not to be

considered in the shape of the Jacobian variables in

the implementation.

Applied Aspects of Information Technology 2019; Vol.2 No.4: 283–294

 Designing Information Technologies and Systems

288 ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Neural network library (high-level) part

Additionally, to the low-level part, the library

includes different building blocks and helper

functions which ease the implementation of neural

networks.

For teaching purposes, we restrict the provided

building blocks to simple fully connected layers (see

Fig. 2). With these layers fully connected feed-

forward networks can be implemented.

A hidden or output layer consists of an affine

transformation given by a weight matrix and a

bias vector and a (non-linear) activation

function act(). Typical activation functions for

hidden layers are, e.g. element-wise or .

For classification tasks, the activation function of the

output (last) layer is typically the logistic (two

classes only) or the softmax function.

A layer can be described mathematically by

Here, the superscript is the layer index. The

input to the network is therefore .

For training of a neural network, a set of training

examples must be provided,

Each pair is a training example with

an input and a label (target value) . The

superscript is the index of the example. is the total

number of training examples.

On the training data set, the learning

corresponds to minimizing a cost function. Here, we

neglect for simplification generalization [7] which is

very important in practice. The cost (and the

prediction) is computed typically on (mini) batches.

The inputs of many examples are concatenated in a

design matrix , i.e. each row of the matrix

corresponds to an input vector . Each layer of the

neural network outputs a matrix with a hidden

representation h for each example as row vectors of

the matrix.

The neural network layer building blocks are

internally composed from Node class objects. In

Fig. 2 such a building-block, internally structured by

Node objects, is shown.

Fig. 2. One neural network layer represented as

computational graph with activation function, here

 . Note, that such a layer is only a part of the

full computational graph

Fig. 3. A complete neural network composed of

multiple layers. Each layer is internally composed of

Nodes objects as shown in Fig. 2

A complete feed forward network is composed

of stacked layers, see Fig. 3.

For training, the computational graph of the

neural network is augmented with a cost function

and an additional node for the provided labels of

the mini batch. An example of a building block for

the cross-entropy cost is show in Fig. 4.

In the next few sections we show how each layer is

implemented with our library.

The input layer consists only of input data, also

called features, and is represented as a leaf node in

the computational graph. In Python, the input data

are typically given as NumPy arrays, so we just need

to convert this input array into a node object to

enable backpropagation. With the DP-Library the

conversation is done via

input = Node(X) # X is a NumPy 2d-array.

Note, that the optional name argument is

omitted as the Jacobian w.r.t. X is not needed for the

optimization. After converting the data into a Node

object, we can use all operators and functions

implemented in the Node class, including automatic

differentiation.

For the hidden layers, our library contains a

class called NeuralNode, which initializes a weight

matrix and a bias vector . Both are leaf-

nodes (see Fig. 2) with unique names given to the

Node constructor. Since the most common used

activation function is we implemented also a

 layer besides a pure linear layer. The pure

linear layer can be used together with any activation

functions specified by the user with the Node class,

e.g. , , etc.

Applied Aspects of Information Technology 2019; Vol.2 No.4: 283–294

 Designing Information Technologies and Systems

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

 289

Stacking many of these layers results in a fully

connected neural network, see Fig. 3. We call the

output of the last layer . is automatically

produced by sending the input forward through

the network (forward propagation).

The training of the neural network is done by

minimization of the cost. The cost is a function of

the parameters of the neural network. The

parameters are the weight matrices and bias

vectors:

 is the number of layers in the network.

The cost function is implemented as part of the

computational graph. Therefore, is consists of

structured Node objects, see Fig. 4.

Fig. 4. Calculation of the loss value using a cost

function, here cross entropy represented as

computational graph. The labels must be provided

in one-hot encoding. is the output of the neural

network (last Node object of the last layer)

The final output from the cost (sub-)graph will

be a scalar . So, the gradient of the cost (loss) with

respect to all model parameters can be calculated

by the DP-library. This gradient is then used to train

the network via an update rule, to tune the network

parameters to lower the loss . The full calculation

pipeline of is shown in Fig. 5.

Fig. 5. Neural network with corresponding cost

function. The X input is mapped to the output via the

neural network (see Fig. 3). The output of the neural

network and the labels Y are mapped to the cost

value via cost block

To ease the implementation of a neural

network, we provide a Model class. The user has to

derive from the Model class a concrete model. The

layers must be defined as instance variables.

Additionally, the user has to define a loss method

and a forward pass method.

The following code shows an example of a

neural network for MNIST classification:

class Network(Model):
 def __init__(self):
 super(Net, self).__init__()
 self.h1 = self.ReLu_Layer(784,500,"h1")
 self.h2 = self.ReLu_Layer(500,200,"h2")
 self.h3 = self
 .Linear_Layer(200,10,"h3")

 def loss(self, x, y):
 if not type(y) == Node:
 y = Node(y)
 out = self.forward(x)
 loss = -1 * (y * out.log())
 return loss.sum()

 def forward(self, x):
 if not type(x) == Node:
 x = Node(x)
 out= self.h3(self.h2(self.h1(x)))
 .softmax()
 return out

In the constructor code two layers and a

linear layer are defined as instance variables. The

linear layer is later complemented with a softmax

activation function, since this network deals with

multiclass classification (10 disjunct classes).

The constructor signature of a layer

instantiation is:

def ReLu_Layer(number_of_inputs,
 number_of_outputs, name_of_layer").

The forward pass to generate the output is

defined in def forward(self, x) simply by

stacking all defined layers plus an additional

softmax() as explained above.

The loss function which outputs is defined in

def loss(self, x, y) where self.forward(x)

is used to calculate the network output .

represents our target values, here fixed class labels

(one hot encoded) for classification. Notice, that

each time we start a calculation it is checked

whether the input is a Node object or not, and if not,

the data is converted into one.

After that, the user-defined network can be

instantiated by calling the constructor:

net = Network().

For training, we also provide different

optimizers which inherit from the basic (abstract)

Optimizer class. The optimizer updates the model

Applied Aspects of Information Technology 2019; Vol.2 No.4: 283–294

 Designing Information Technologies and Systems

290 ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

parameter according to special update rules. The

optimizer we provide are SGD, SGD Momentum,

RMSProp and Adam [22]. An instance of an

optimizer can be initialized, e.g. by

optimizer = SGD(net,x_train,y_train).

The first parameter, net, is the network (see

above). x_train and y_train are the training data,

equivalent to X and Y. Training can be started with

loss = optimizer.train(steps=1000,

print_each=100),

steps is the number of total training loops to adjust

the model parameters. print_each is the number of

steps after which we want to receive a feedback

about the current training error, basically the loss

value, which should decrease if training succeeds.

Per default the train function will return the final

loss value which we saved into loss in our example

above. For a more detailed analysis of the training it

is also possible to call

loss, loss_hist, para_hist = optimizer
 .train(steps=1000, print_each=100,
 err_hist=True).

With the parameter err_hist=True a complete

history of the loss value the model parameters will

be returned. These can be used for further analytics,

e.g. to visualize the training process.

After the network is trained, it is quite common

to test how well the network learned its task by

testing its prediction using a set x_test. Using the

network prediction from the forward pass

y_pred = net.forward(x_test),

the test accuracy of the network can be calculated.

For classification for example this means how many

labels the network predicted correctly.

For a deeper understanding on neural networks

and optimizers or for special purposes it is possible

to implement the training process from scratch. The

Model class provides the functions get_grad(),

get_param() and set_param(). These are also

used internally called by the Optimizer class. A

manually implemented training loop, using basic

gradient descent, could look like the following

net= Network()
for epoch in range(100):
 # compute the loss and gradients
 grad,loss = net.get_grad(x,y)

 # get the current parameters
 param_current = net.get_param()

 # calc new parameters, actual learning
 param_new = { name : param_current[name]
 - 0.001 * grad[name]

 for name in param_current.keys()}

 # set new parameters
 net.set_param(param_new).

Accompanying exercises

To make the entry into the topic of

differentiable programming as easy as possible, the

DP library is part of a differentiable programming

course and can be found, together with

accompanying exercises, on the deep-teaching

website [187] or directly at the GitLab repository

[18]. The exercises are divided into three groups.

The first group of exercises teaches the

principles of reverse mode automatic differentiation.

It is explained how the DP library itself is

implemented, i.e. how to implement the operator

methods for instantiation of a computational graph,

consisting of scalars, matrices, elementary operators

(+, -, dot-product) and functions (, , etc.)

and how to implement automatic differentiation.

Finally, everything is combined in an object-oriented

architecture forming the DP library and therefore

enabling easy use of the low level and high-level

functionalities mentioned.

The second group of exercises is about using

the DP library to build neural networks, train them

and using them for inference. At the same time each

of these exercises is about best practices and

findings of neural network research of the last

couple of years, including batch-norm [21], dropout

[1422], optimizers (improvements of SGD, e.g.

Adam [22]), weight-initialization methods (e.g.

Xavier [24]) and activation functions.

The last-mentioned exercise, at which we will

have a look at for illustration purposes, teaches

about different activation functions and the so-called

vanishing gradient problem [26].

We consider a simple deep neural network, i.e.

one that consists of many layers, e.g. 10 linear

layers. The output of the first linear layer is

computed with ,

with the input, the first weight

matrix, the corresponding bias vector and

 the activation function. The output of the

second linear layer then is computed with

 and so on, until the last

layer . Training

the network, we first calculate the loss , i.e. the

difference of the output of our last layer (our

predictions) and the true labels . This is a binary

classification tasks, i.e. there are two possible labels

(and). The output for an example input is

Applied Aspects of Information Technology 2019; Vol.2 No.4: 283–294

 Designing Information Technologies and Systems

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

 291

the predicted probability for the positive class, i.e.

 . For such problems the binary cross-

entropy as cost function is typically used:

Second, we adjust the weight matrices for all

layers by the update rule of gradient descent:

Using the chain rule to calculate

 for

example, we get:

 .

For binary classification, the typical activation

function of the output layer is the logistic

function

 which has the range]0,1[.

However, a problem arises, if the logistic function is

further used as activation function to

in intermediate layers, because the absolute value of

its derivative is at most

, which in turn leads to the

partial derivative

 becoming smaller and

smaller the more layers the network has in between,

as

 .

The derivative of the or the

function on the other hand is defined in the range of

 , resp. .

The task of this sample exercise consists of (a)

building the neural network model for the

computational graph using the DP library, (b) train

and validate the network with different activation

functions while (c) visualizing the vanishing

gradient problem by plotting the sum of the absolute

values of the partial derivates

 for all weights

of each layer .
The third group of exercises is on using more

common, but also more complex deep learning

libraries, like PyTorch and TensorFlow. This kind of

exercises is not directly related to our DP library, but

still should be mentioned here because they are the

last step of our educational path for students on

differentiable programming, that is: (1) Learn the

principles of differentiable programming and how to

build a framework for it at the example of our

lightweight DP library, (2) learn how to use this

library to build models, train them, validate them

and use them for inference and (3) make a transition

to using well-known but more complex frameworks.

After that, the students should then have a good

starting point for understanding the inner

implementation and software-architecture of

libraries, like PyTorch and TensorFlow.

Conclusion
The use of machine learning, especially of

artificial neural networks, in practical applications

has increased tremendously over the last years and

most likely will keep increasing in the near and far

future. Yet already today research and industry

suffer from a lack of specialists in this field.

Unfortunately, becoming an AI specialist has a very

flat learning curve and requires knowledge in the

fields of mathematics, computer science, statistics

and ideally in the domain, which you want to

provide with AI driven applications.

With our library for educational purpose,

teaching the fundamentals of differentiable

programming can be improved significantly by

opening the black box of deep learning libraries.

With less than 1.000 lines of code, including

about 400 lines of comments, in contrast to 3.5

million lines for TensorFlow [28], the goal of a

lightweight, clear and easy understandable library

was achieved. Following the concept of didactic

reduction [29], its use and architecture have a lot in

common with TensorFlow and PyTorch, but with a

focus on the core principles of differentiable

programming.

Lastly the stable API does not force teachers to

re-adjust their exercises and educational material

over and over again to keep them up-to-date.

Acknowledgment

The project Deep.Teaching is funded by the

German National Ministry of Education and

Research (BMBF), project number 01IS17056.

References

1. Bergstra, J., Breuleux, O., Bastien, F.,

Lamblin, P., Pascanu, R., Desjardins, G. & Bengio,

Y. (2010). “Theano: a CPU and GPU math

Expression Compiler”. In Proceedings of the Python

for scientific computing conference (SciPy) Vol. 4,

No. 3, рр 3-10.

2. Abadi, M., Agarwal, A., Barham, P.,

Brevdo, E., Chen, Z., Citro, C. & Ghemawat, S.

(2016). “Tensorflow: Large-scale Machine Learning

on Heterogeneous Distributed Systems”. arXiv

preprint arXiv:1603.04467.

Applied Aspects of Information Technology 2019; Vol.2 No.4: 283–294

 Designing Information Technologies and Systems

292 ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

3. Paszke, A., Gross, S., Chintala, S., Chanan,

G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A.,

Antiga, L. & Lerer, A. (2017). “Automatic

Differentiation in PyTorch”. NIPS 2017 Workshop

on Autodiff.

4. Maclaurin, D., Duvenaud, D. & Adams, R.

P. (2015). “Autograd: Effortless Gradients in

numpy. In ICML 2015. AutoML Workshop, Vol.

238.

5. Baydin, A. G., Pearlmutter, B. A., Radul, A.

A. & Siskind, J. M. (2018). “Automatic

Differentiation in Machine Learning: a Survey”. In

Journal of Machine Learning Research, 18(153), pp.

1-43. arXiv preprint arXiv:1502.05767.

6. “Official Caffe Website”. [Electronic

resource]. – Access mode

https://caffe.berkeleyvision.org/ – Active link: –

August 2019.

7. Nickolls, J., Buck, I. & Garland, M. (2008,

August). „Scalable Parallel Programming”. In 2008

IEEE Hot Chips 20 Symposiums (HCS), pp. 40-53.

IEEE.

8. Goodfellow, I., Bengio, Y. & Courville, A.

(2016). “Deep Learning”. MIT press, рр. 271-273.

DOI: 10.1007/s10710-017-9314-z.

9. (2015). Blundell, Charles, et al. “Weight

Uncertainty in Neural Networks”. Proceedings of

the 32nd International Conference on International

Conference on Machine Learning, Vol. 37, рр.

1613-1622, arXiv preprint arXiv: 1505.05424.

10. Kingma, D. P. & Welling, M. (2013).

“Auto-encoding Variational Bayes”. In 2nd

International Conference on Learning

Representations, {ICLR} 2014. arXiv preprint

arXiv:1312.6114.

11. Bottou, L., Curtis, F. E. & Nocedal, J.

(2018). “Optimization Methods for large-scale

Machine Learning”. SIAM Review, Vol. 60(2), pp.

223-311. DOI: 10.1137/16M1080173.

12. Graves, A., Wayne, G., Reynolds, M.,

Harley, T., Danihelka, I., Grabska-Barwińska, A. &

Badia, A. P. (2016). “Hybrid Computing using a

Neural Network with Dynamic External Memory”.

Nature, 538(7626), pp. 471–476. DOI:

10.1038/nature20101.

13. Grefenstette, E., Hermann, K. M.,

Suleyman, M. & Blunsom, P. (2015). „Learning to

Transducer with Unbounded Memory”. In Advances

in neural information processing systems (NIPS),

pp. 1828-1836. arXiv: 1506.02516.

14. Gers, F. (2001). “Long Short-Term Memory

in Recurrent Neural Networks”, PhD Thesis,

Lausanne, EPF, Switzerland, pp 17-19.

15. M. Collins. (2018). “Computational Graphs,

and Backpropagation”, Lecture Notes, Columbia

University, pp 11-23. [Electronic resource]. –

Access mode http://www.cs.columbia.edu/

~mcollins/ff2.pdf. – Active link: – August 2019.

16. Travis E. Oliphant (2006). “A Guide to

NumPy”, Trelgol Publishing, USA: рр. 13-17.

17. (2016). Thomas Kluyver et al. “Jupyter

Notebooks – a Publishing Format for Reproducible

Computational Workflows”, In Positioning and

Power in Academic Publishing: Players, Agents and

Agendas. IOS Press. pp. 87-90. DOI:10.3233/978-1-

61499-649-1-87.

18. Herta, Christian et al.

“deep.TEACHING.org – Website for Educational

Material on Machine Learning”. [Electronic

resource]. – Access mode https://www.deep-

teaching.org/courses/differential-programming. –

Active link: – August 2019.

19. Herta, Christian et al.

“deep.TEACHING.org – “Repository of

“deep.TEACHING.org”. [Electronic resource]. –

Access mode: –

https://gitlab.com/deep.TEACHING/educational-

materials/blob/master/notebooks/differentiable-

programming/dp.py – Active link: – August 2019.

20. “Array Broadcasting in Numpy”. [Electronic

resource]. – Access mode

https://www.numpy.org/devdocs/user/theory.broadc

asting.html. – Active link – August 2019.

21. Ioffe, S. & Szegedy, C. (2015). “Batch

Normalization: Accelerating deep Network Training

by Reducing Internal Covariate Shift. ICML'15”

Proceedings of the 32nd International Conference

on International Conference on Machine Learning –

Vol. 37, pp. 448-456. arXiv preprint

arXiv:1502.03167.

22. Srivastava, N., Hinton, G., Krizhevsky, A.,

Sutskever, I. & Salakhutdinov, R. (2014). “Dropout:

a Simple way to Prevent Neural Networks from

Overfitting”. The Journal оf Machine Learning

Research, 15(1), pp. 1929-1958.

23. Kingma, D. P. & Ba, J. (2014). “Adam: A

Method for Stochastic Optimization”. 3rd

International Conference on Learning

Representations, ICLR 2015. arXiv preprint

arXiv:1412.6980.

24. Glorot, X. & Bengio, Y. (2010, March).

“Understanding the Difficulty of Training deep feed

Forward Neural Networks”. In Proceedings of the

thirteenth international conference on artificial

intelligence and statistics, pp. 249-256. PMLR

9:249-256, 2010.

Applied Aspects of Information Technology 2019; Vol.2 No.4: 283–294

 Designing Information Technologies and Systems

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

 293

25. Hochreiter, S. (1991). „Untersuchungen zu

Dynamischen Neuronalen Netzen“. Diploma thesis.

TU Munich (in German).

26. Jupyter Homepage. [Electronic resource]. –

Access mode: https://jupyter.org/ – Active link: –

August 2019.

27. Jeffrey M. Perkel. (2018). “Why Jupyter is

data Scientists' Computational Notebook of Choice”.

Nature 563.7729., pp. 145-146. DOI:

10.1038/d41586-018-07196-1.

28. OpenHub – Projects – TensorFlow

[Electronic resource]. – Access mode:

https://www.openhub.net/p/tensorflow/analyses/lates

t/languages_summary – Active link – August 2019.

29. Herta, C., Voigt, B., Baumann, P.,

Strohmenger, K., Jansen, C., Fischer, O. &

Hufnagel, P. (2019). “Deep Teaching: Materials for

Teaching Machine and Deep Learning. In

HEAD'19”. 5th International Conference on Higher

Education Advances, pp. 1153-1131. DOI:

http://dx.doi.org/10.4995/HEAd19.2019.9177.

Received 01.09.2019

Received after revision 20.11.2019

Accepted 23.11.2019

УДК 004.4

1
Херста, Крістіан, доктор природних наук, професор факультету 4 – Комп'ютерні науки

E-mail: christian.herta@htw-berlin.de, ORCID: 0000-0003-2519-6794
1
Штоменгер, Клаус, магістр наук, науковий співробітник факультету 4 – Комп'ютерні науки

E-mail: klaus.strohmenger@htw-berlin.de, ORCID: 0000-0002-4534-1306
1
Фішер, Олівер, магістр наук, науковий співробітник факультету 4 – Комп'ютерні науки

E-mail: oliver.fischer@htw-berlin.de, ORCID: 0000-0002-1871-9350
1
Октай, Діварі, студент факультету 4 – Комп'ютерні науки,

E-mail: diyar.oktay99@gmail.com, ORCID: 0000-0003-1483-5837
1
HTW Берлін – Університет прикладних наук, Вільгельменхофштр, 75а, Берлін, Німеччина,12459

DP: ПОЛЕГШЕНА БІБЛІОТЕКА ДЛЯ НАВЧАННЯ ДІФФЕРЕНЦІЙНОМУ

ПРОГРАМУВАННЮ

Анотація: Технології глибокого навчання викликають великий інтерес, так як в даний час на ньому базується

велика кількість прикладних додатків. Як правило, ці програми реалізуються за допомогою спеціальних бібліотек

глибокого навчання, внутрішню реалізацію яких важко зрозуміти. Ми розробили таку бібліотеку в полегшеному вигляді

з упором на викладання відповідних дисциплін. Наша бібліотека має наступні характеристики, які відповідають певним

вимогам з урахуванням специфіки навчального процесу: невелика кодова база, прості концепції і стабільний інтерфейс

прикладного програмування (API). Основне призначення бібліотеки - допомога у володінні принципами роботи з

бібліотеками глибокого навчання. Бібліотека розділена на два шари. Низькорівнева частина дозволяє програмно

побудувати обчислювальний графік на основі елементарних операцій. У машинному навчанні обчислювальний графік

зазвичай є функцією вартості, що включає в себе модель машинного навчання, наприклад, нейронну мережу.

Вбудований зворотний режим автоматичного диференціювання на обчислювальному графіку дозволяє навчати моделі

машинного навчання. Це робиться за допомогою алгоритмів оптимізації, таких як стохастичний градієнтний спуск. Ці

алгоритми використовують похідні, щоб мінімізувати вартість шляхом адаптації параметрів моделі. У разі нейронних

мереж параметри є вагами нейронних мереж. Частина бібліотеки вищого рівня полегшує реалізацію нейронних мереж,

надаючи більші будівельні блоки, такі як нейронні шари і допоміжні функції, наприклад, реалізацію алгоритмів

оптимізації (оптимізаторів) для навчання нейронних мереж. Також до бібліотеки ми додаємо вправи для вивчення

основних принципів роботи бібліотеки глибокого навчання і основ нейронних мереж. Додатковою перевагою бібліотеки

є те, що вправи і відповідні програмні завдання на її основі не потребують постійного рефакторінгу через її

стабільного API.

Ключові слова: диференційоване програмування; глибоке навчання; навчання; автоматичне диференціювання

УДК 004.4

1Херста, Кристиан, доктор естественных наук, профессор факультета 4 – Компьютерные науки

E-mail: christian.herta@htw-berlin.de, ORCID: 0000-0003-2519-6794
1Штоменгер, Клаус, магистр наук, научный сотрудник факультета 4 – Компьютерные науки,
E-mail: klaus.strohmenger@htw-berlin.de, ORCID: 0000-0002-4534-1306
1Фишер, Оливер, магистр наук, научный сотрудник факультета 4 – Компьютерные науки,

E-mail: oliver.fischer@htw-berlin.de, ORCID: 0000-0002-1871-9350

Applied Aspects of Information Technology 2019; Vol.2 No.4: 283–294

 Designing Information Technologies and Systems

294 ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

1Октай, Дивар, студент факультета 4 – Компьютерные науки, E-mail: diyar.oktay99@gmail.com,

ORCID: 0000-0003-1483-5837
1
HTW Берлин – Университет прикладных наук, Вильгельменхофштр, 75а, Берлин, Германия,

12459

DP: ОБЛЕГЧЕННАЯ БИБЛИОТЕКА ДЛЯ ОБУЧЕНИЯ ДИФФЕРЕНЦИРУЕМОМУ

ПРОГРАММИРОВАНИЮ

Аннотация: Технологии Глубокого обучения вызывают большой интерес, так как в настоящее время на нем

базируются многие практические приложения. Как правило, эти приложения реализуются с помощью специальных

библиотек глубокого обучения, внутреннюю реализацию которых трудно понять. Мы разработали библиотеку

глубокого обучения в облегченном виде с упором на преподавание. Наша библиотека имеет следующие

характеристики, которые соответствуют определенным требованиям с учетом специфики учебного процесса:

небольшая кодовая база, простые концепции и стабильный интерфейс прикладного программирования (API). Основное

назначение этой библиотеки - обучение принципам глубокого обучения. Библиотека разделена на два слоя.

Низкоуровневая часть позволяет программно построить вычислительный график на основе элементарных операций. В

машинном обучении вычислительный график обычно является функцией стоимости, включающей в себя модель

машинного обучения, например, нейронную сеть. Встроенный обратный режим автоматического дифференцирования

на вычислительном графике позволяет обучать модели машинного обучения. Это делается с помощью алгоритмов

оптимизации, таких как стохастический градиентный спуск. Эти алгоритмы используют производные, чтобы

минимизировать стоимость путем адаптации параметров модели. В случае нейронных сетей параметры являются

нейронными весами. Часть библиотеки более высокого уровня облегчает реализацию нейронных сетей, предоставляя

более крупные строительные блоки, такие как нейронные слои и вспомогательные функции, например, реализацию

алгоритмов оптимизации (оптимизаторов) для обучения нейронных сетей. В дополнение к библиотеке мы

предоставляем упражнения для изучения основополагающих принципов работы библиотеки глубокого обучения и основ

нейронных сетей. Дополнительным преимуществом библиотеки является то, что упражнения и соответствующие

программные задания на ее основе не нуждаются в постоянном рефакторинге из-за ее стабильного API.

Ключевые слова: дифференцируемое программирование; глубокое обучение; автоматическое дифференцирование

Christian Herta, Dr. rer. nat., Regular Professor at the HTW Berlin

Research field: applications and theoretical aspects of machine learning and deep

learning

Klaus Strohmenger, Scientific Research Assistant at the HTW Berlin

Research field: machine learning, practical applications of neural networks,

computer vision

Oliver Fischer, Scientific Research Assistant at the HTW Berlin

Research field: theoretical background of neural networks, building and explicability

of neural networks

 Diyar Oktay, Student of the HTW Berlin

Research field: image processing, application of AI in urban planning and

education

