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Abstract. Cutting of natural and artificial building materials is most often carried out with 

diamond cutting wheels on a metal base at cutting speeds of about 50-80 m/s. The intensity of 

the cutting process causes a significant heat release, as a result of which the wheel temperature 

rises to unacceptable values. The value of these unacceptable temperatures is about 600 - 

6500С. 

At these temperatures, graphitization of diamond grains occurs, i.e. loss of diamond layer 

and loss of cutting properties. In addition, a thin diamond wheel (thickness 1 - 3 mm) is 

deformed, which leads to jamming and its tensile strength at these temperatures is reduced by 

half, which creates the risk of rupture by centrifugal forces. In this work, it is taken into 

account that during the rotation of the wheel, a boundary layer of air is created around it, which 

is stationary relative to the wheel. Consequently, contact heat transfer occurs between the 

wheel and the boundary layer, and then convective heat transfer occurs between the boundary 

layer and the surrounding air. This scheme allows you to more accurately determine the time of 

safe operation of the diamond wheel. Contact heat transfer between the wheel and the 

boundary layer is not effective enough to lower the temperature. When air with a negative 

temperature is introduced into the boundary layer by means of a Rank-Hillsch tube, the wheel 

temperature decreases by about 10%.  

When a sprayed coolant (fog cooling) is introduced into the boundary layer by means of an 

ejector tube, the wheel temperature decreases by 25%, which ensures an increase in the time of 

continuous operation. 

1. Introduction 

Cutting of natural and artificial building materials is most often carried out with diamond cutting 

wheels on a metal base at cutting speeds of about 50-80 m/s. The intensity of the cutting process 

causes a significant heat release, as a result of which the wheel temperature rises to unacceptable 

values. The value of these unacceptable temperatures is about 600 - 650 oС. 

At these temperatures, graphitization of diamond grains occurs, i.e. loss of diamond layer and loss 

of cutting properties. In addition, a thin diamond wheel (thickness 1 – 3 mm) is deformed, which 

leads to jamming and its tensile strength at these temperatures is reduced by half, which creates the 

risk of rupture by centrifugal forces. 

Thus, the heating temperature of the wheel should not exceed 600 oС. Therefore, the operating 

time of a diamond cutting disc is the time during which it is heated during continuous operation to a 

temperature of 600 ºС. The longer this time, the higher the resistance of the diamond blade. In the 

present work, mathematical modeling is performed taking into account contact heat transfer between 

a rotating wheel and a boundary layer 

The simulation of the process of interaction of the wheel with the environment is carried out 

according to the results of which it is possible to determine the time of wheel performance. However, 

in this paper, convective heat transfer between the wheel and the surrounding air is considered at a 
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time when the heat transfer process is more complex. When the wheel rotates around it, a boundary 

layer of air is created that is stationary relative to the wheel. Consequently, contact heat transfer 

occurs between the wheel and the boundary layer, and then convective heat transfer occurs between 

the boundary layer and the surrounding air. This scheme allows you to more accurately determine the 

time of safe operation of the diamond wheel. 

2. References review 

A significant number of research works devoted to this subject firstly consider convective heat 

transfer between the wheel and air, moreover, at high Reynolds numbers, which does not correspond 

to our case. Works [1-12] precisely consider precisely such cases, therefore, the data presented in 

these works cannot be used in our studies. 

2.1. Research Methodology 

The purpose of this work is to investigate the contact heat transfer process between a wheel and a 

boundary layer of air, based on which to determine the possibilities of cooling a rotating wheel by 

changing the thermophysical characteristics of the boundary layer. 

The tasks to be solved in this article are as follows. 

1. Mathematical modeling of the heat transfer process to determine the intensity of the latter. 

2. Mathematical modeling of the wheel cooling process when changing the thermophysical 

characteristics of the boundary layer. 

Calculations are carried out in accordance with the scheme presented in Figure1. 

Here is a solution for a thin rotating wheel heated at the end in the contact area and cooled from 

the side surfaces as a result of contact heat exchange with the boundary layer. Figure 1 [13, 14]. 

 

Figure 1. Design scheme for cooling of a rotating wheel. 

A thick wheel with thickness h rotates in a plane XOY with angular velocity. At the end of the 

circle, within the limits of the contact arc, a heat source of intensity q(, t) is defined, depending on 

the cutting conditions. On the lateral surfaces of the wheel and outside the contact arc, heat transfer 

occurs at the end according to the Newton-Richmann law, and on the lateral surfaces of the wheel 

heat transfer is considered not with the environment, but with the boundary layer, the temperature of 

which can be varied over a wide range up to -50 °C. 

The boundary-value heat conduction problem for a thin wheel in the presence of heat transfer 

through the side surfaces, taking into account the angular velocity in the polar coordinate system 

(,), has the form: 
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where Tbl boundary layer temperature; T0 initial wheel temperature; *–coefficient  of  convective 

heat transfer between rotating disc and boundary layer; c  – specific heat, (Jkg⋅grad);  - substance 

density (kg/m3) c
 

– (J/m3·deg);  – coefficient of heat output;  – coefficient of thermal 

conductivity; b – wheel thickness; Tcp–  ambient temperature. 
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In order to avoid the application of the Laplace transform and the difficulties with its treatment, we 

proceed as follows. We divide the time interval T into M intervals of length h = TM-1 and replace the 

time derivative by the difference relation 
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where 
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Let us construct a discontinuous solution [15] of the heat equation for an unbounded plane

 0 , | φ | <π containing a circular defect occupying the region  ,,   Rr  upon 
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),( j  and the heat flux ),(  j  with given jumps.) 
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those, a solution that satisfies the heat equation everywhere except for defect points. At these points, 

jumps in temperature and heat flux are set. 

To construct a discontinuous solution of equation (6) with jumps equation (8), we apply the finite 

Fourier transform in the variable φ: 
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where )(zJ n  
– Bessel function. 

As a result, we obtain: 

   ,

, , ,2 22 2
( ) ( ) ( ) ( )

j

nj

n a n j n j n r n

FR
J R R R J R

a a


 

 
      

 
. 

where 
, , ,

0

( ) ( ) , ( ) [ ( , )]j

n j n n j n n jF F J dp F F       


  . 

After reversing the Hankel transform, the required discontinuous solution of the heat equation in 

Fourier transforms can be written as: 
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Using the inverse finite Fourier transform formula, by  , and the addition theorem [16]. 
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We illustrate the technique of using discontinuous solutions to solve the boundary value problem. 

This technique is based on the idea that the boundary of the wheel R  be considered a defect. We 

consider the third boundary value problem: 
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This relation can be written as an integral equation: 
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we apply the finite Fourier transform to this equation, taking into account its properties and the 

convolution theorem: 

 
        


















 


 nm

nmiim

nnnnn

kk

n deehfdhfffinf ,

)(

2

1
,2)()(,)(  

We obtain: 

 

1, 1

, , ,

2
( )

2 2 2 2

0 0

, , ,

[ ], 1 ,
( 2)

[ ( )]
( ) ( ) ,

( ) , ( , ), .

j n n j n j n n n

i m n m
n m m

m

in in

j n j j n j n

R
F f h

J Ra
h J aR J aR e d

a a

f f e d F F R e d






 
 

 

  
 

 


 

   

 

 


 

 

   


 
 

 

  

 

  

 

Inverting the Fourier transform [16], we obtain: 
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We introduce the unknown function ψ(φ), then the boundary conditions equation (7) are written as 

follows: 

 1 2 1 2

1 2 1 2

( 0, ) ( 0, ) ( ) ( ),

( ) 0, ( , ), ( ) ( ), ( , ),

( ) ( ), ( , ), ( ) 0, ( , ).

j jR R g

g g g

     

       
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 

       
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  (15) 
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If we assume that the functions )(g  and )(   are known, then we pass to the third main 

boundary-value problem, the solution of which was obtained above. Using equation (14), we can 

write the following: 
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 
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Now satisfying the first boundary condition from equation (7) and taking into account equation 

(15) we obtain the integral equation: 
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

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 





 

In Figures 2–4 show plots of temperature changes depending on the polar angle φ and radius ρ and 

various values of the temperature of the boundary layer 
blT ; moreover, Figure 2 show plots at an 

angular velocity of smr /50 , and in Figure 3 at smr /80 . The temperature of the boundary 

layer was varied using the Ranque-Hills tube. The temperature was determined at an operating time of 

60 s. 

  

 

Figure 2. a) The temperature of 

the wheel at the temperature of 

the boundary layer + 200 °C; 

b) the temperature of the wheel 

at the temperature of the 

boundary layer –500 °C.  

Vwheel = 50 m/s. 

a b 

  

 

Figure 3. a) The temperature 

of the wheel at the 

temperature of the boundary 

layer + 20° C;  

b) the temperature of the 

wheel at the temperature of 

the boundary layer -50° C. 

Vwheel = 80 m/s. 

a b 

Additional mathematical modeling of the process of introducing the boundary layer of atomized 

coolant (fog) showed that the temperature of the wheel decreases significantly, as shown in Figure 4. 
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Figure 4. a) Circle temperature 

when sprayed coolant is 

introduced into the boundary 

layer (fog). Vwheel = 50 m/s;    

 b) circle temperature when 

sprayed coolant (fog) is 

introduced into the boundary 

layer. Vwheel = 80 m/s. 
a b 

3. Conclusions 

Contact heat transfer between the circle and the boundary layer is not effective enough to reduce the 

temperature of the wheel 

When air with negative temperature is introduced into the boundary layer by means of a Ranque-

Hillsch tube, the wheel temperature decreases by about 10%. 

A slight decrease in temperature during contact heat transfer between the cutting disc and the 

boundary layer is explained by a low coefficient of thermal conductivity of air. When a sprayed 

coolant is introduced into the boundary layer using an ejector tube (fog cooling), the wheel 

temperature decreases by 25%, which ensures an increase in the time of continuous operation. 

4. Results 

As a result of the study, it was found that to increase the time of continuous operation of the wheel, 

cooling of the boundary layer must shall be carried out using an ejector tube. 
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