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ABSTRACT

The transition of more and more companies from their own computing infrastructure to the clouds is due to a decrease in the
cost of maintaining it, the broadest scalability, and the presence of a large number of tools for automating activities. Accordingly,
cloud providers provide an increasing number of different computing resources and tools for working in the clouds. In turn, this gives
rise to the problem of the rational choice of the types of cloud services in accordance with the peculiarities of the tasks to be solved.
One of the most popular areas of effort for cloud consumers is to reduce rental costs. The main base of this direction is the use of spot
resources. The article proposes a method for reducing the cost of renting computing resources in the cloud by dynamically managing
the placement of computational tasks, which takes into account the possible underutilization of planned resources, the forecast of the
appearance of spot resources and their cost. For each task, a state vector is generated that takes into account the duration of the task
and the required deadline. Accordingly, for a suitable set of computing resources, an availability forecast vectors are formed at a
given time interval, counting from the current moment in time. The technique proposes to calculate at each discrete moment of time
the most rational option for placing the task on one of the resources and the delay in starting the task on it. The placement option and
launch delays are determined by minimizing the rental cost function over the time interval using a genetic algorithm. One of the fea-
tures of using spot resources is the auction mechanism for their provision by a cloud provider. This means that if there are more pref-
erable rental prices from any consumer, then the provider can warn you about the disconnection of the resource and make this dis-
connection after the announced time. To minimize the consequences of such a shutdown, the technique involves preliminary prepara-
tion of tasks by dividing them into substages with the ability to quickly save the current results in memory and then restart from the
point of stop. In addition, to increase the likelihood that the task will not be interrupted, a price forecast for the types of resources
used is used and a slightly higher price is offered for the auction of the cloud provider, compared to the forecast. Using the example
of using the Elastic Cloud Computing (EC2) environment of the cloud provider AWS, the effectiveness of the proposed method is
shown.
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1. INTRODUCTION difference between them. The largest share of the
cloud services market is taken by AWS due to the
widest variety of services and tools for developers.
Microsoft Azure has a long-standing relationship
with a large number of industrial companies that
prefer to meet their enterprise computing needs with
a familiar vendor. Google differentiates itself from
other cloud service providers with its advanced ma-
chine learning technology. However, for all provid-
ers, the flip side of a wide variety of possible archi-
tectural computing solutions and tools for working
with them, given that customers have an equally
wide range of tasks, is that the task of minimizing
the cost of renting resources by providing matching
resources and tasks. At the moment, there are no

The transition to the use of cloud services al-
lows you to get significant savings in finance, com-
pared to using your own computing facilities. There-
fore, more and more companies are increasingly us-
ing the services of cloud service providers. This, in
turn, encourages cloud providers to expand the range
and variety of their services. The most famous cloud
providers are AWS, Azure and Google Cloud [1],
which has their own data centers around the world.
Competition for customers leads to the fact that
these providers provide similar services at similar
prices; however, due to historical reasons and the
presence of accumulated experience, there are some

© Galchonkov O., Babych M., Plachynda A. ready-made solutions that allow you to do this au-
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General advice is usually given [2]:

— formulate your requirements;

— choose the right computing resources for your
needs;

— check data transfer and storage restrictions;

— check if your tasks are ready for execution on
spot resources (idle computational resources of the
provider put up for auction [3]);

— use mixed instances
heterogeneous resources;

— rent resources simultaneously in multiple
availability zones.

Automated tools such as CAST Al and Google
Anthos make it somewhat easier to follow these tips
[4]. They allow you to instantly specify the most
suitable cloud provider and its specific services in
response to your requirements. Moreover, the
developers of these tools ensured that the current
prices for services are taken into account, which
providers are constantly changing depending on the
market situation. However, these tools allow only
static optimization when starting tasks for execution.
The efficiency of your tasks, the dynamic
appearance and disappearance of more advantageous
computing resources is not provided.

At the same time, resources “on-demand” (on-
demand instances) can be rented at any time and
abandoned immediately, as soon as they are no
longer needed, but these are the most expensive
resources per unit of time [1]. Reserved Instances
and Savings Plans are about 40 % cheaper than on-
demand resources. However, you rent them for an
extended period, during which your requirements
may change significantly and it may turn out that the
rented computing facilities will not be fully used or
even be idle. Spot resources (Spot Instances) allow
you to save up to 90 % of the cost of rent, compared
to resources “on demand”. However, they can
appear and be canceled very dynamically. The task
performed on the spot resource must be prepared for
the fact that after the operator's warning there will be
a limited time to save intermediate results and
complete the work. It should be added to this that the
scope of tasks and the requirements for their
fulfillment for clients of cloud providers are also
usually not constant and vary significantly over
time. Therefore, the development of automatic tools
that allow dynamically in time to manage the
execution of tasks on the most profitable cloud
resources is relevant.

It should be noted that the services provided by
cloud providers fall into the following categories [5]:

— software as a service (SaaS);

— platform as a service (PaaS);

— infrastructure as a service (laaS);
— other.

that  include

The highest dynamics in time is inherent in
laaS, so it is here that you can get the greatest effect
from the introduction of automatic tools for dynamic
management of tasks and rented resources.

2. LITERATURE REVIEW AND STATEMENT
OF THE PROBLEM

Both resource consumers and providers are
interested in dynamically managing cloud resources.
The efforts of providers are aimed at managing
resources to reduce their electricity consumption and
dynamically managing pricing policies in order to
increase revenues while ensuring the high quality of
services provided. In this regard, resource
consumers should take into account in their
algorithms not only the time-varying flow of
requests for resources, but also fluctuations in the
amount of free resources and their cost due to the
activities of providers. Moreover, the target
parameters of resource consumers may also differ:

— minimization of rent, subject to restrictions on
the deadline for completing each of the tasks,

— minimization of rent and time for completing
tasks, combined into a single quality function with
its own coefficients.

In [6], the concept of “asymmetry” was
introduced to measure the uneven load of servers.
Eliminating the skew in server loading and using the
resource use model made it possible to build a
distribution system for computing with fewer servers
in use. Universal algorithms for minimizing the
power consumed by servers while simultaneously
controlling the cost of renting computing resources
are considered in [7, 9]. In [10], a swarm algorithm
is proposed for optimizing resource allocation in
order to save energy, taking into account not only
the energy consumption of servers directly, but also
of air conditioning equipment. The construction of a
resource allocation system that takes into account
the efficiency of air conditioners, based on various
heuristic algorithms and machine learning methods,
is considered in [11]. It should be noted that these
works propose optimization of resource allocation
based on the current situation. In [12], it is shown
that a higher efficiency of a cloud provider can be
achieved by building a model for the dynamic
provision of computing resources in the time
domain, compared with optimization at an isolated
time point. In [13], a similar model in the time
domain is built on the basis of the concept of
guaranteeing fairness for users of cloud resources
and the maximum allowable delay. It should be
noted that such a construction of the model leads to
some deterioration in the services provided, since
the task execution may occur with a delay. This
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conflicts with the target function of users who
minimize not only rental costs, but also the time it
takes to complete tasks. Although for users who only
minimize their rental costs, this is perfectly
acceptable.

Good results can be obtained by taking into
account the specifics of tasks solved in the cloud.
[14] describes the Cloud Assisted Mobile Edge
(CAME) computing environment designed to serve
dynamic mobile requests with different quality of
service requirements. For such a model, optimal
resource allocation (ORP) algorithms are proposed
with  different instances to optimize the
computational power of the edge hosts while
dynamically adjusting the cloud lease strategy. The
modeling carried out in [14] for the Google cluster
showed that the proposed ORP algorithms are
superior in efficiency to the universal algorithms for
organizing cloud computing in terms of the
flexibility and profitability of the system. To plan
the execution of scientific tasks in the cloud,
characterized by indefinite deadlines and random
arrival times, the NOSF structure is proposed in
[15]. It includes task preprocessing, virtual machine
allocation, and a feedback process. The simulation
results given in [15] show that the proposed
algorithm is significantly superior to the known
algorithms in terms of reducing rental costs and the
likelihood of timing violations for this type of
problem.

Consumers of cloud services in their strategies
to minimize the rental cost of resources should take
into account algorithms that use cloud providers to
maximize their revenue. Providers seek to maintain
a dynamic balance between the use of inadequate
and increasing workload of their resources. [16]
proposed an algorithm management class of virtual
machines based on using the model to maximize
income over a time interval from a current time to an
interval forward. The model involves the use of
Markov processes to predict resource utilization, the
effects of maneuvering by spot resources and
decision-making for dynamic pricing. Experimental
results presented in [16] confirm the high efficiency
of such dynamic pricing for cloud providers. An
alternative game approach was proposed in [17].
Load balancing is achieved through a strategy of
migrating requests between servers in a distributed,
non-cooperative, and competitive environment. To
achieve and maintain an equilibrium solution in
time, an iterative proximal algorithm (IPA) is
proposed using the calculus of variations. The same
authors propose in [18] based on the game approach,
a joint strategy of the provider and user of cloud
services. The provider uses a server provisioning

and request distribution strategy to reduce energy
costs while meeting the needs of its users. And each
user tries to maximize the utility function, taking
into account the profit and efficiency of the time
spent. However, this approach requires further
research to compare strategies when the provider has
information about the plans for service requests, and
when not, since the possession of additional
information allows the provider to charge higher
prices for resource rent. Gaming-based cloud
resource management strategies have shown positive
effects in the provision of GPU-accelerated media
processing services [19]. The pricing method
proposed in this paper has the potential to generate
higher margins for both the cloud service provider
and users than the original GPU cloud services
pricing strategy.

Another factor used by cloud providers is the
clock speed of the rented processors. The lower the
frequency, the lower the power consumption. In
[20], it is proposed to use a nonlinear model of
power dissipated by multicore processors in the
pricing algorithm. Energy savings are estimated at
over 14 percent.

Thus, an analysis of the literature shows that the
conditions in the cloud resources market are
dynamically changing; complex pricing algorithms
are used, aimed at increasing providers' profits.
Moreover, users can get the greatest rental cost
savings when using spot resources. However,
providers also pay maximum attention to operations
with spot resources. In addition to the above factors,
cloud providers use the auction mechanism [21, 22].
Moreover, the provision of a spot resource can be
interrupted if some other consumer offers a higher
price for the resource. In this case, Azure and
Google Cloud warn the user 30 seconds before the
resource is disconnected, AWS — 2 minutes.

In this regard, for the consumer of cloud
resources, who sets as his goal to reduce rental costs,
there are three tasks:

— forecasting the appearance of spot resources with
the required characteristics in a time interval;

— predicting prices for these spot resources at the
same time interval in order to put up for auction
prices that, on the one hand, are most beneficial to
the consumer, on the other hand, they allow using
the rented spot resource without interruption with a
high probability;

— using an effective strategy for leasing resources
and launching tasks on them, taking into account
forecasts of the appearance of resources and prices
for them.

A number of works are devoted to forecasting
prices for spot resources, which provide very
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effective ready-made algorithms. For example, [21]
proposed a regression random forest (RRF) model
for predicting spot prices one week and one day
ahead. In [23] a regression model of k-nearest
neighbors (kNN) is proposed, which is adapted to
predicting the price of spot resources. In [24], for
these purposes, it is proposed to use neural
networks, and in [25], machine learning models.

In [26], a multipurpose genetic algorithm was
implemented for dynamic forecasting of the use of
cloud resources. In [27], a forecast-based resource
planning method is proposed. The forecasting model
is trained on a dataset created by simultaneously
deploying scientific application tasks in the cloud.
The resources are then scheduled using a trained
forecasting model.

As a strategy for leasing resources and
launching tasks on them, heuristic algorithms are
usually used. So in [28], a task scheduling algorithm
is proposed, which perceives the available resources
as a constraint, under which it is necessary to adjust
the performance of tasks, up to the crowding out of
resource-intensive tasks. For most practical tasks,
this approach is not suitable, since all tasks must be
completed on time. In [29], a mathematical model
for scheduling two-level data processing was
combined with a genetic algorithm, for which
special mutation and crossover operations were
designed. The main focus of this algorithm is on
speeding up the learning of the genetic algorithm.
However, in comparison with a large volume of
tasks performed, the complexity of training a genetic
algorithm is many orders of magnitude less. At the
same time, this algorithm does not take into account
the dynamic situation, taking into account the
forecast of the appearance of spot cloud resources.

Thus, the analysis of literature data shows that
for forecasting the prices of computing resources
there are a large number of different algorithms that
can be taken off-the-shelf. To predict the appearance
of spot resources on time intervals, modifications of
the same algorithms can be used. To create full-
featured algorithms for minimizing rent by
consumers, there are not enough effective algorithms
for managing tasks that dynamically take into
account forecasts for the appearance of various spot
resources and forecasts of prices for renting these
resources.

3. THE AIM OF THE STUDY

The purpose of this work is to develop a
methodology for reducing the cost of cloud
infrastructure through dynamic scheduling of tasks,
taking into account, in addition to the characteristics
of the tasks themselves, forecasts for the emergence

of spot resources and the rental price of these
resources.

Minimization of rent is subject to deadline
restrictions for each task.

4. DEVELOPMENT OF COST REDUCTION
METHOD

Despite the fact that the proposed methodology
is universal in nature and can be used when working
with any cloud provider, for the specific presentation
and verification of efficiency, further presentation
will be carried out for AWS. Moreover, the mini-
mum warning time for a spot resource disconnection
for AWS is 2 minutes, as opposed to 30 seconds for
Google and Azure. This is a significant AWS ad-
vantage when users prepare tasks for execution on
spot resources.

AWS currently offers over 400 different com-
puting resources on EC2 that differ in processor per-
formance, RAM size, and more. To reduce the
amount of calculations to reduce costs, it is advisa-
ble to choose a small number of L types of resources
that will be leased. These types of resources should
be selected based on the types of tasks that need to
be addressed. We believe that the smaller the num-
ber of the resource type, the less its computational
capabilities and the lower its rental cost, and also, if
the problem can be efficiently solved on the i-th re-
source, then it cannot be done badly on resources
with more high numbers.

As a rule, any company working with EC2
AWS has:

— Reserved Instances - for persistent loads;

— Scheduled Reserved Instances — for loads
constantly occurring at well-defined times.

The company pays for these resources on a
permanent basis, so they cannot be diminished dy-
namically. However, if, for some reason, the planned
tasks do not fully load these resources, then the im-
plementation of additional tasks on them is obtained,
as it were, for free. Therefore, from the point of view
of reducing the cost of renting resources, the under-
loading of these two resources is considered equiva-
lent to the resource with the maximum priorities (01,
02, ..., OL — the second digit denotes the type of re-
source).

The next in priority are spot resources with the
minimum resource interruption warning time (on
AWS it is 2 minutes), which are subdivided into
sub-resources with types 1, ..., L. Responsibly their
priorities are 11,12, ..., 1L. The cost of renting these
resources is an order of magnitude lower than when
the same types of resources are rented “on demand”.
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We assign even lower priorities for spot re-
sources with long interruption warning times: 211,
221, ...,2L1,212,...,2L2, ..., 2L6. Here the
second digit denotes the type of resource, the third
denotes the time of the warning about the interrup-
tion of the resource provision in hours.

We assign the lowest priority to resources “on
demand”, since they have the highest rental cost:
31,..., 3L, where the second digit denotes the type of
resource.

In order for the execution of tasks to be dynam-
ically controlled, for each task must be specified:

— the duration of execution in time intervals
corresponding to the time interval of the warning
about the interruption of the lease, for simplicity we
will assume this time equal to 2 minutes, for the
warning times 1 hour, 2 hours, etc. everything will
be similar;

— the minimum type of computational resource
that suits this task;

— the deadline for completing this task.

In accordance with these parameters, each task
at startup is associated with a state vector shown in
Fig. 1. Here n denotes the current moment in time,
(k+1) — duration of the task, (n+m+1) — task comple-
tion deadline. The task must be prepared in such a
way that it can be interrupted with the preservation
of intermediate results after receiving a warning
from AWS about the termination of the provision of
this computational resource. In other words, the task
must be divided into k + 1 sequentially executed
stages, each of which can be reloaded for execution
on another resource [30, 31].

The leftmost unit in the state vector corresponds
to the task stage that is the first to be executed. If in
a discrete time n this stage was performed, then this
unit is removed and the vector is shortened by one
element. If this stage is not performed in a discrete
time n, then all units are shifted to the right and the
vector is shortened by one element from the left.

If at time n the prediction unit has issued a fore-
cast for the appearance of a corresponding resource
for this task, providing reduced rental costs, then all
units are shifted to the right by time intervals when
the execution of the corresponding stages on profita-
ble resources is predicted. The cells on the left are
filled with zeros, which means that the task is put on
hold for the corresponding number of time intervals.
When the forecast is canceled, the units return to
their original places.

The forecast for the task execution on any com-
puting resource is formed by analogy with the task
state vector. An example of a forecast is shown in
Fig. 2.An example of a forecast vector shows that
for the problem under consideration there is a fore-
cast of the appearance of a profitable resource and it
is desirable to put the problem on hold for t time in-
tervals.

If there are only units left in the task state vec-
tor and there are currently no free profitable re-
sources, then the corresponding resource “on de-
mand” is leased for the task.

When renting spot resources, an essential point
is the level of the price offered by the lessee for this
type of computing resource. To reduce the likeli-
hood of interrupting the task, it is recommended to
use the price forecasting module [21, 23], [26, 27]
for renting a resource and offer a slightly increased
price compared to the forecast. This will avoid inter-
ruptions and save on the cost of traffic for reloading
the task to another computing resource.

As an objective function to be minimized, we
will use the total cost of renting resources from the
current moment of time to V forward discrete. V is
chosen large enough so that all problem vectors end

before this point in time,
F[n] = Fy[n]+ Fi[n] + Fy[n]+ F3[n], (1)

where: F[n] — total possible rental cost from the cur-
rent time n to the time n + V; Fy[n] — total possible

n n+ln+2 n+k n+m
1111 1]10l0]o0 0
Fig. 1. Task state vector
Source: compiled by the authors
n n+t-1  n+t n+t+k n+t+k+1 n+m
0 0 1 1 0 0

Fig. 2. Example of a forecast vector
Source: compiled by the authors
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cost of additional loading of planned resources in the
time interval from the current moment of time n to
the moment of time n + V; F;[n] - total possible
cost of renting spot resources with a possible inter-
ruption time of 2 minutes in the time interval from
the current time n to the time n + V; F,[n] — total
possible rental cost of spot resources with possible
interruption time lhour, ..., 6 hours in the time inter-
val from the current time n to the time n + V;
F5[n] — the total possible cost of renting resources
“on demand” in the time interval from the current
time n to the time n + V.

Each of the components of the total rental cost
is determined as follows:

Foln] = ¥iq Z§=1 Sjp [n]a?j[n]tioj [n], (2)

where: sj" [n] = 0 — cost of additional loading of the
j-th type of planned computing resource; a?j [n] —
the coefficient of placement of the i-th task on the j-
th planned computing resource; t?j[n] — the
planned delay in the launch of the i-th task at the j-th
scheduled computing resource.

Fin] = ¥1 2=y sf [nlajj[n]ti[n],  (3)

where: s]-l [n] — the cost of renting the j-th type of
spot computing resource with an interruption warn-
ing time of 2 minutes;  aj;[n] — the coefficient of
placing the i-th task on the j-th spot computing re-
source with an interruption warning time of 2
minutes; tilj [n] — the planned delay in starting the
i-th task on the j-th spot computing resource with an
interruption warning time of 2 minutes.

FZ ['fl] = Z?):l Zf‘;l Z?:l szp [’fl] aisz [’fl] tisz [’fl] ' (4)

where: sjzp[n] — the cost of renting the j-th type of
spot computing resource with an interruption warning
time p hours; aisz[n] — the coefficient of placing
the i-th task on the j-th spot computing resource with
an interruption warning time p hours; tisz[n] -
planned delay in starting the i-th task on the j-th spot
computing resource with an interruption warning
time p hours.

F3[n]l =X, Z]L'=1 5]'3 [n]a?j[n] ti3j [n], (5

where: sj3 [n] — the cost of renting the j-th type of
computing resource “on demand”; al-3j [n] — alloca-
tion coefficient of the i-th task o the j-th type of
computing resource “on demand”; tfj[n] — planned

delay in starting the i-th task on the j-th type of
computing resource “on demand”.

Minimization of the total possible rental cost
F[n] each current moment n is produced by choos-
ing the corresponding values of the allocation coef-
ficients a;[n], af;[n], af;,[n], a;[n] and planned
delays in launching tasks ti[n], ti[n], tf,[nl,
tl-3j [n] by genetic algorithm [32, 33] with the follow-
ing restrictions:

— each i-th task can be launched or scheduled to
run on only one computing resource, that is, for each
i from the entire set of allocation factors a?j[n],
aj;[n], af;,[n], aj;[n] only one can be equal to 1,
the rest must be equal to zero;

— every i-th task can be scheduled to run on
some resource only if there are delays that lead to the
coincidence of all units in the vector of the i-th task
with units in the forecast vector of this resource, oth-
erwise the corresponding allocation factor is zero;

— planned delays in launching tasks t{[n],
ti;[n], tfp[n], t[n] should not cause the units in
the task vectors to shift beyond the deadline for
completing the corresponding tasks;

— if any task has already been launched on some
resource, then it is not interrupted by the program,
even if a more profitable option for its placement is
predicted, interruption can only be carried out by a
cloud provider within the framework of the auction
mechanism.

The chromosome length for each calculation is
determined by the number of tasks and the number
of suitable resource types. Chromosome contains the
placement coefficient af;[n], aj;[nl, af,[nl,
aj;[n]and planned delays in starting tasks t}[n],
ti;[n], tf,[n], t3;[n]. During the experiments, the
number of chromosomes that underwent mutations
was 20. The coefficient of mutations was 0.35. The
number of iterations of the genetic algorithm to min-
imize the total rental cost each time was constant
and was equal to 20.

At each current moment of time n, the decisive
block for renting resources issues allocation coeffi-
cients for execution af;[n], aj[nl, af,[nl,
aj;[n] and planned delays in launching tasks t}[n],
tl-lj [n], tl-sz [n], tl-3j [n].

A generalized block diagram of a program that
implements the technique is shown in Fig. 3.
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Fig. 3. Generalized block diagram of a program that implements the technique
Source: compiled by the authors

5. EXPERIMENTAL RESULTS OF USING
THE PROPOSED METHOD

Fig. 4 is a screenshot of the lease payment
schedules from January 1 to February 25, 2021, as
captured using the AWS Cost Explorer service. The
beginning of the use of the technique on January
31st is shown by an arrow. The figure shows that the
use of the methodology allowed reducing the costs
of EC2 by about half, while the work of the method-
ology with EC2 resources practically did not affect
the cost of renting S3 storage and the CloudWatch
monitoring service.

The graphs in Fig. 4 were obtained under the
following conditions. During the period under re-
view, about 140 different tasks were launched. Of
these, 70 % were computational tasks with a runtime
of more than 1 hour, the possibility of a startup delay
of up to 1 hour and the ability to interrupt with a dis-
creteness of 2 minutes; 20 % — computational tasks
with a duration of up to 1 hour, the possibility of a
start delay of up to 1 hour and the possibility of in-

terruption with a discreteness of 2 minutes; 10 % —
tasks of all other types. The resource planning hori-
zon and rental prices were 8 hours. The proposed
price for spot resources was set at 5 % higher than
the forecast price. The tasks were performed in the
AWS data-centers in the us-east-1 region (N. Virgin-
ia). The listed tasks were formed by the development
team, which included 1 frontend programmer, 2
backend programmers, 2 QA testers and 1 DevOps.

Fig. 5 shows a screenshot of the rental payment
schedules from January 1 to February 20, 2021 for a
different development group. The beginning of the
use of the technique is January 13th. The reduction
in resource rental costs in EC2 was over 18 percent.
The composition of the group was the same. The
differences consisted in the fact that during the peri-
od under review, more than 500 tasks were
launched. The ratio between the types of tasks was
similar, but the duration of the tasks from the first
group was much more than 1 hour and several times
longer than the tasks of the first group of developers.
The resource planning horizon and rental prices
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Source: compiled by the authors
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were 16 hours. The proposed price for spot resources
was set at 5 % higher than the target price. The tasks
were performed in AWS data centers in the us-east-1
(N. Virginia) region.

The obtained results indicate the efficiency of
using the proposed methodology to save on the cost
of renting computing resources in EC2. Moreover,
efficiency increases when performing shorter tasks.
This is explained by the fact that the decision block
was looking for solutions focused on the continuous
execution of tasks.

6. THE DISCUSSION OF THE RESULTS

Experimental verification of the proposed meth-
od has shown its effectiveness. At the same time,
well-known algorithms for predicting the appearance
of free spot resources and their prices were used, as
well as a typical construction of a genetic algorithm
that minimized the rental cost. Resource rentals were
carried out only in one region us-east-1 (N. Virginia).

It seems promising to develop and study an al-
gorithm that will analyze the feasibility of launching

tasks in different data centers located in different
time zones and with different cloud providers. It
should be noted that the efficiency of using the tech-
nigque can be increased due to preliminary processing
of the tasks being performed — dividing them into
sub-tasks with a shorter execution time. However,
everything is not so simple here, because when di-
viding into subtasks, you will have to increase the
amount of stored intermediate data, which can lead
to an increase in the cost of renting S3 storage.

When using the proposed methodology, the
price for spot resources was set 5% higher than the
forecast price. This made it possible to have practi-
cally no interruptions of running tasks. In the future,
it is planned to conduct an additional study of the
possibility of using a lower constant level of excess,
as well as a dynamic change in this level depending
on the parameters of the launched tasks and the fore-
cast of the volumes of available spot resources.

It is also of interest to modify the methodology
for the case when it is necessary to minimize not
only the rental cost, but also the task execution time.
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7. CONCLUSIONS

The paper proposes a method for reducing the
cost of cloud infrastructure, which assumes, with a
minimum time step, to recalculate the dynamics of
launched tasks and leased resources based on current

tional loading of planned leased resources, predict-
ing the appearance of spot resources and their prices.
Minimization of rent is made subject to restrictions
on the deadline for completing each of the tasks.
Experimental verification of the proposed method

forecasts for the release or the possibility of addi- has confirmed its effectiveness.
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AHOTAIIA

Tlepexin Bce GinbIIOT KiTBKOCTI MiANPHEMCTB Bifl CBOET OOUYHCITIIOBANBHOI iHQPACTPYKTYpH B XMapu 0OYMOBIICHUI 3MEHILICH-
HSAM BHUTpAT Ha i HIATPUMKY, HAHITHPIIUMHA MOKJIMBOCTSIMHU IO MacIiTaOyBaHHIO, HASBHICTIO BEIHMKOI KiTBKOCTI 3ac00iB aBTOMAaTH-
3amii pisutbHOCTI. BinmoBinHo XmapHi poBaiiepy HaJaloTh Bee OLIBIIY KUTBKICTh Pi3HOMAHITHHX 3ac00iB Ta IHCTPYMEHTIB JUIS pPO-
60TH y XMapax. Y CBOIO 4epry, Iie HOPOJDKYE 3aBAaHHs paliOHAIBFHOT0 BUOOPY THUIIB XMAapPHUX MOCIYT BIATIOBIAHO 0 0COOIMBOCTEN
po3B'si3yBaHMX 3aBAaHb. ORHUM 13 HAHMONMYJIAPHIMINX HANpPSMIB 3yCHJIb CIIOXKHMBAdiB XMapHHX CEpBICIB € 3MEHIIEHHS BHUTpaT Ha
opeHay. OCHOBHOIO 0a3010 IIFOTO HANpPSIMY € BUKOPHUCTaHHS CIOTOBHX pecypciB. Y CTarTTi 3alpONOHOBAHO METOJWKY 3MEHIICHHS
BUTpAT HA OPEHAY OOYHCIIOBATIBHUX PECYPCIB Y XMapi 3a paXyHOK IMHAMIYHOTO YIPABIIHHSA PO3MILICHHAM OOYHMCIIOBAJIBHUX 3a-
BJIaHb, SIKE BPAXOBY€E MOXIIMBE HE03aBaHTAXKCHHS IJIAHOBUX PECYPCIB, MPOrHO3 MOSBH CIIOTOBHX PECypeiB Ta BApTOCTI HA HUX. Jlist
KOXKHOT 3a71a4i OpMY€ETHCS BEKTOP CTaHy, 1[0 BPaXOBY€E TPUBATICTh BUKOHAHHS 3aBJAaHHA Ta HEOOXIAHUHA rpaHMYHUN TEPMiH BHKO-
HaHHA. {715 BiAMOBIZHUX HAOOPiB OOUYNCIIOBATIBLHUAX PECYPCiB (POPMYIOTHCS BEKTOPA MPOTHO3Y JOCTYIHOCTI Ha 3aJaHOMY 4aCOBOMY
iHTepBaJli, paXyl4Hy BiJl IOTOYHOTO MOMEHTY 4acy. MeToauKa IPOIOHYy€ IIPOPaxoBYBaTH B KOXKEH IUCKPETHHH MOMEHT Yacy Haid-
OibII palioHaJbHUN BapiaHT PO3MILIEHHS 3a/adi Ha OZHOMY 3 pecypciB Ta 3aTPHMKY 3allycKy 3afadi Ha HboMy. BapiaHT po3mi-
IIEHHS Ta 3aTPUMKH 3aIlyCKy BH3HAUYAIOThHCS HULIXOM MiHiMizalii GpyHKIIT BAPTOCTI OpEeHIM Ha THMYAaCOBOMY iHTEpBali 3a JJOIIOMO-
rOI0 TeHEeTUYHOT0 anroputMy. OHI€I0 3 0COONIMBOCTEH BUKOPHUCTAHHS CIIOTOBHX PECYPCIB € ayKIIIOHHMH MeXaHi3M IX HaJaHHS XMa-
pHEM mpoBaiinepoM. Lle o3Havae, Mo SKIIO € Kpalli MPONO3UIii iHK OpeHIH Bix OyIb-IKOTO CII0KKBada, TO MPOBaiIep MOXKE I10-
MEpeUTH BacC PO BIIKIIOYCHHS Pecypey 1 3p0OUTH Lie BiIKIIOUCHHS Yepe3 oroyiomenuii yac. s MiHiMi3amii HaCIiAKIB BiJl TAKOTO
BiJKITIOYCHHS METOAMKA mepeadadae MOMEepeaHI0 MiATOTOBKY 3aBIaHb IIIIXOM PO30UTTS 1X Ha MifeTanu 3 MOKJIUBICTIO IIBUAKOTO
30epekeHHS MOTOYHHUX PE3yIbTaTIB Y MaM'sITi Ta HOJANbIIOr0 Mepe3amycKy 3 Micus 3ynuHKA. Kpim mporo, ams 301IbIMeHHs HMOBIp-
HOCTI TOTO, IO 3aBJaHHsA He Oyae IepepBaHO, BUKOPHCTOBYETHCS MPOTHO3 LIHM HAa TUIH PECYPCiB, IO BUKOPHCTOBYIOThCS, 1 Ha
ayKI[IOH XMapHOTo TIpoBaiijiepa MPOIOHYETHCS ENI0 3aBHIIEHA IiHa, IIOPIBHSHO 3 MporHo3oM. Ha nmpukiagi BUKOpUCTaHHS cepero-
Buia Elastic Cloud Computing (EC2) xmapHOTo npoBaiinepa AWS nokazana eheKTHBHICTD 3aIIPOIIOHOBAHOT METOIUKH.

KurouoBi ciioBa: xMapHi 004HCIICHHS; CIIOTOBI pecypcH; nepeadadeHHs pecypeiB; MPOTHO3HU LiHK; AWHAMIYHE yIpPaBIIiHHS 3a-
BIAQHHIMH
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