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SHARP WEAK TYPE ESTIMATES FOR MAXIMAL OPERATORS
ASSOCIATED TO RARE BASES

PAUL HAGELSTEIN, GIORGI ONIANI, AND ALEX STOKOLOS

Dedicated to Dmitriy Dmitrishin on the occasion of his fifty-fifth birthday

Abstract. Let B denote a nonempty translation invariant collection of intervals in R
n

(which we regard as a rare basis), and define the associated geometric maximal operator MB

by

MBf(x) = sup
x∈R∈B

1

|R|

ˆ

R

|f |.

We provide a sufficient condition on B so that the estimate

|{x ∈ R
n : MBf(x) > α}| ≤ Cn

ˆ

Rn

|f |

α

(

1 + log+ |f |

α

)n−1

is sharp. As a corollary we obtain sharp weak type estimates for maximal operators associated
to several classes of rare bases including Córdoba, Soria and Zygmund bases.

1. Introduction

Let B be a basis in R
n, which we can treat as a collection of sets of positive finite measure

covering R
n. We may associate to B a geometric maximal operator MB defined on measurable

functions f on R
n by

MBf(x) = sup
x∈R∈B

1

|R|

ˆ

R

|f | .

Two well-known examples of geometric maximal operators include the Hardy-Littlewood
maximal operator MHL and the strong maximal operator MS. For the Hardy-Littlewood
maximal operator, the basis B consists of all cubic intervals in R

n; for the strong maximal
operator, the basis consists of all intervals in R

n. (For clarity, in this paper an interval in R
n

is a rectangular parallelepiped whose sides are parallel to the coordinate axes.)
The Hardy-Littlewood maximal operator satisfies the weak type (1, 1) estimate

|{x ∈ R
n : MHLf(x) > α}| ≤ Cn

ˆ

Rn

|f |

α
.
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The strong maximal operator satisfies the weaker estimate

(1) |{x ∈ R
n : MSf(x) > α}| ≤ Cn

ˆ

Rn

|f |

α

(

1 + log+ |f |

α

)n−1

and moreover this inequality is sharp in the sense that, if φ : [0,∞) → [0,∞) is a convex

increasing function with limu→∞
φ(u)

u(1+log u)n−1 = 0, then there is no finite constant Cn,φ such

that the estimate

|{x ∈ R
n : MSf(x) > α}| ≤ Cn,φ

ˆ

Rn

φ

(

|f |

α

)

holds for all measurable functions f and α > 0.

Geometric maximal operators associated to rare bases occupy a fascinating middle ground
between the Hardy-Littlewood and strong maximal operators. Significant mathematical work
on the topic on rare bases has been done by, among others, Zygmund [14], Córdoba [1],
Soria [9], and Rey [8]. For the purposes of this paper, a rare basis is a translation invariant
collection of some (but not all) intervals in R

n. The problem of finding a sharp weak type
φ(L) estimate for the maximal operator MB associated to a rare basis B is of central impor-
tence in the area. A natural conjecture (see, e.g., [5]) is MB must satisfy a sharp weak type
L(1+log+ L)k estimate for some k ∈ {0, 1, . . . , n−1}. This conjecture in the two-dimensional
case was proven by Stokolos [10] (see also [13]). Note that for any rare basis B, the associ-
ated geometric maximal operator MB is dominated by the strong maximal operator MS and
hence MB automatically satisfies the weak type L(1 + log+ L)n−1 estimate (1). Results of
Stokolos [10,11]; Dmitrishin, Hagelstein, and Stokolos [3,5,6] and D’Aniello and Moonens [2]
have provided examples of a variety of multi-dimensional rare bases in which this worst-case
estimate is sharp. The purpose of this paper is to present a generalization of results in these
papers that provides a set of conditions on a rare basis B that will guarantee the sharpness
of the weak type L(1 + log+ L)n−1 estimate on MB.

In Section 2 we will state the main theorem of this paper and provide the associated
requisite terminology. Section 3 will be devoted to a proof of the theorem. In Section 4 we will
provide a useful generalization of our main theorem and subsequently provide applications of
our results, in particular showing how they imply that Córdoba, Soria and Zygmund bases in
R

n generate geometric maximal operators for which the weak type L(1 + log+ L)n−1 estimate
is sharp.

2. Terminology and Statement of Main Theorem

Let B be a rare basis in R
n. The spectrum of B will be defined as the set of all n-tuples of

the type

(⌈log |R1|⌉, . . . , ⌈log |Rn|⌉)

where R1 × · · · × Rn ∈ B, ⌈x⌉ denotes the least integer greater than or equal to x and here
and below log stands for log2. The spectrum will be denoted by WB.



SHARP WEAK TYPE ESTIMATES FOR MAXIMAL OPERATORS ASSOCIATED TO RARE BASES 3

Let us call a set W ⊂ Z a net for a set S ⊂ Z if there exists a number N ∈ N such that
for every s ∈ S there exists w ∈W with |s− w| ≤ N .

Given a set W ⊂ Z
n and t ∈ Z

n−1, we let Wt denote the set {τ ∈ Z : (t, τ) ∈W}.
Let us call a set W ⊂ Z

n a net for a set S ⊂ Z
n if Wt is a net for St for every t ∈ Z

n−1.
If k ∈ {1, 2, . . . , n}, we let πk : Rn → R

k denote the projection defined by πk(x1, . . . , xn) =
(x1, . . . , xk) .

If S1, . . . , Sn ⊂ Z, we say that the set W ⊂ Z
n is dense in the set S1 × · · · × Sn provided

the sets
π1(W ), π2(W ), . . . , πn(W ) = W

are nets for the sets
S1, π1(W )× S2, ..., πn−1(W )× Sn,

respectively.

Our main theorem is the following.

Theorem 1. If for a rare basis B in R
n there exist infinite sets S1, . . . , Sn ⊂ Z for which

the spectrum of B is dense in S1 × · · · × Sn, then the maximal operator MB satisfies a sharp
weak type L(1 + log+ L)n−1 estimate. Moreover, for every α ∈ (0, 1) there exists a bounded
set Eα ⊂ R

n with positive measure such that

|{x ∈ R
n : MB(χEα

)(x) > α}| ≥ cn
1

α

(

1 + log
1

α

)n−1

|Eα|.

3. Proof of Theorem 1

Lemma 1. Let B be a rare basis and suppose each of the intervals from B has dyadic
side lengths. Suppose S1, . . . , Sn ⊂ Z are infinite sets and the spectrum of B is dense in
S1 × · · · × Sn. Then for every k ∈ N there exist increasing sequences (s1,m)k

m=0, . . . , (sn,m)k
m=0

with members from S1, . . . , Sn respectively such that for every n-tuple (m1, . . . , mn) belonging
to {1, . . . , k}n there exists an interval R1 × · · · × Rn from the basis B for which |R1| ∈
(2s1,m1−1, 2s1,m1 ], . . . , |Rn| ∈ (2sn,mn−1 , 2sn,mn ].

Proof. Since π1(WB) is a net for S1, there exists a number N such that for every s ∈ S1 there
exists τ ∈ π1(WB) with |s − τ | ≤ N . Let α1,0 < · · · < α1,2k be numbers from S1 such that
α1,m − α1,m−1 > N for every m ∈ {1, . . . , 2k}. Set s1,m = α1,2m (m ∈ {0, . . . , k}). Then it is
easy to see that

(2) π1(WB) ∩ (s1,m−1, s1,m] 6= ∅

for every m ∈ {1, . . . , k}.
Suppose that for some j < n increasing sequences (s1,m)k

m=0, . . . , (sj,m)k
m=0 with members

from S1, . . . , Sj respectively are constructed.
Let us consider an arbitrary (t1, . . . , tj) ∈ πj(WB) such that t1 ∈ [s1,0, s1,k], . . . , tj ∈ [sj,0, sj,k].

Let
WB,t1,...,tj

= {τ ∈ Z : (t1, . . . , tj , τ) ∈ πj+1(WB)}.
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Since WB is dense in S1 × · · · × Sn we have WB,t1,...,tj
is a net for Sj+1. Let Nt1,...,tj

be the
number such that for every s ∈ Sj+1 there exists τ ∈WB,t1,...,tj

for which |s− τ | ≤ Nt1,...,tj
.

Denote by N the largest of the numbers Nt1,...,tj
where (t1, . . . , tj) ∈ πj(WB) and t1 ∈

[s1,0, s1,k], . . . , tj ∈ [sj,0, sj,k]. Let αj+1,0 < · · · < αj+1,2k be numbers from Sj+1 such that
αj+1,m − αj+1,m−1 > N for every m ∈ {1, . . . , 2k}. Set sj+1,m = αj+1,2m (m ∈ {0, . . . , k}).
Then for every (t1, . . . , tj) ∈ πj(WB) with t1 ∈ [s1,0, s1,k], . . . , tj ∈ [sj,0, sj,k] we have that

(3) WB,t1,...,tj
∩ (sj+1,m−1, sj+1,m] 6= ∅

for every m ∈ {1, . . . , k}.
Taking into account (2) and (3), it is easy to check that the sequences (s1,m)k

m=0, . . . ,
(sn,m)k

m=0 constructed in such a way have the needed property. The lemma is proved. �

Suppose E ⊂ R is a measurable set, Ω is a collection of disjoint closed one-dimensional
intervals, H =

⋃

I∈Ω I and 0 ≤ α ≤ 1. We will say that E α-saturates H (notation: E ←α H)
if |I ∩ E|/|I| = α for every I ∈ Ω. For the case α = 1/2 we will write simply E ← H .

Note that:
a) If E ←α H then |H ∩ E|/|H| = α;
b) If E ⊂ H , E ←α H and H ←β T then E ←αβ T .
Let I and J be closed one-dimensional intervals with lengths 2p and 2q where p, q ∈ Z and

p < q. Let us consider the partition of J into non-overlapping closed subintervals J1, . . . , J2p−q

having the same length as I and such that min J1 < · · · < min J2p−q . By 〈I, J〉 denote the
union of the intervals Jk with odd indices. Obviously, 〈I, J〉 ⊂ J and 〈I, J〉 ← J .

Let I be a closed one-dimensional interval with a length 2p where p ∈ Z, Ω be a collection
of disjoint closed one-dimensional intervals having a length 2q with q ∈ Z and p < q, and
H =

⋃

J∈Ω J . By 〈I, H〉 we denote the union
⋃

J∈Ω〈I, J〉. Obviously, 〈I, H〉 ⊂ H and
〈I, H〉 ← H .

It is easy to check the validity of the following statement.

Lemma 2. Suppose s0 < s1 < · · · < sk are some integers, I0 = [0, 2s0], . . . , Ik = [0, 2sk] and

I∗

k = Ik, I∗

k−1 = 〈Ik−1, I∗

k〉, I∗

k−2 = 〈Ik−2, I∗

k−1〉, . . . , I∗

0 = 〈I0, I∗

1 〉.

Then the sets I∗
0 , I∗

1 , . . . , I∗
k have the following properties:

1) I∗
0 ⊂ I∗

1 ⊂ · · · ⊂ I∗
k ;

2) I∗
0 ← I∗

1 ← · · · ← I∗
k and, moreover, I∗

m−1 ← J for every m ∈ {1, . . . , k} and every
dyadic interval J contained in I∗

m whose length belongs to (2sm−1, 2sm];
3) I∗

0 ←
1/2m

I∗
m for every m ∈ {1, . . . , k} and, moreover, I∗

0 ←
1/2m

J for every
m ∈ {1, . . . , k} and every dyadic interval J contained in I∗

m whose length belongs to (2sm−1 , 2sm].

Remark 1. It is important to recognize that the interval J in 3) above may have not only
length 2sm but also the “intermediate” lengths 2sm−1+1, . . . , 2sm−1 as well.

Remark 2. The idea of using the sets I∗
0 , I∗

1 , . . . , I∗
k in Lemma 2 for the study of weak type

estimates for maximal operators associated to rare bases goes back to Stokolos [11].
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For every k ≥ n, by Ωn,k we denote the set of all n-tuples (m1, . . . , mn) ∈ N
n for which

m1 + · · ·+ mn = k. Clearly, card(Ωn,k) ≤ kn−1. On the other hand, it is easy to see that
card(Ωn,k) ≥ cnkn−1.

Lemma 3. For every k ≥ n and increasing sequences of integers

(s1,m)k
m=0, . . . , (sn,m)k

m=0

there exists a bounded set E ⊂ R
n of positive measure with the following property: if B is a

rare basis in R
n and Ω is the set of all n-tuples (m1, . . . , mn) ∈ Ωn,k for which there exists

an interval R1 × · · · ×Rn ∈ B with dyadic side lengths such that

|R1| ∈ (2s1,m1−1, 2s1,m1 ], . . . , |Rn| ∈ (2sn,mn−1, 2sn,mn ],

then

|{x ∈ R
n : MB(χE)(x) ≥ 1/2k}| ≥ cn card(Ω) 2k|E|.

Proof. For every j ∈ {1, . . . , n} denote by Ij,0, . . . , Ij,k and I∗
j,0, . . . , I∗

j,k the sets corresponding
to the sequence sj,0, . . . , sj,k according to Lemma 2. We define the set E ⊂ R

n by

E = I∗

1,0 × · · · × I∗

n,0 .

We now show that

(4) {x ∈ R
n : MB(χE)(x) ≥ 1/2k} ⊃

⋃

(m1,...,mn)∈Ω

I∗

1,m1
× · · · × I∗

n,mn
.

Let us consider an arbitrary (m1, . . . , mn) ∈ Ω. Let R1×· · ·×Rn be an interval from B such
that |R1|, . . . , |Rn| are dyadic numbers and |Rj | ∈ (2sj,mj−1 , 2sj,mj ] for every j ∈ {1, . . . , n}.
Then for every j ∈ {1, . . . , n} each component interval of I∗

j,mj
can be decomposed into

pairwise non-overlapping subintervals ∆ each of whose lengths is equal to |Rj |. By Lemma 2
(see statement 3)) each ∆ will be 1/2mj -saturated by the set I∗

j,0. Hence, we can decompose
the set I∗

1,m1
×· · ·× I∗

n,mn
into pairwise non-overlapping intervals ∆1×· · ·×∆n each of which

is a translate of R1 × · · · × Rn and

|(∆1 × · · · ×∆n) ∩ E|

|∆1 × · · · ×∆n|
=
|(∆1 × · · · ×∆n) ∩ (I∗

1,0 × · · · × I∗
n,0)|

|∆1 × · · · ×∆n|
=

|∆1 ∩ I∗
1,0|

|∆1|
. . .
|∆n ∩ I∗

n,0|

|∆n|
=

1

2m1

. . .
1

2mn
=

1

2k
.

Hence, {x ∈ R
n : MB(χE)(x) ≥ 1/2k} ⊃ I∗

1,m1
× · · · × I∗

n,mn
. Consequently, taking into

account that (m1, . . . , mn) is arbitrary in Ω, we conclude (4) holds.

For any j ∈ {1, . . . , n} we denote Hj,0 = I∗
j,0 and Hj,m = I∗

j,m \ I∗
j,m−1 for m ∈ {1, . . . , k}.

By virtue of Lemma 2 it is easy to see that:
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i) The sets H1,m1
× · · · ×Hn,mn

((m1, . . . , mn) ∈ Ωn,k) are pairwise disjoint;

ii) For every j ∈ {1, . . . , n} and m ∈ {1, . . . , k} we have that |Hj,m| = |I
∗
j,m|/2. Consequently,

for every (m1, . . . , mn) ∈ Ωn,k,

|H1,m1
× · · · ×Hn,mn

| =
1

2n
|I∗

1,m1
× · · · × I∗

n,mn
|;

iii) For every (m1, . . . , mn) ∈ Ωn,k,

|I∗

1,m1
× · · · × I∗

n,mn
| = 2k|I∗

1,0 × · · · × I∗

n,0|.

Hence,
∣

∣

∣

∣

∣

⋃

(m1,...,mn)∈Ω

I∗

1,m1
× · · · × I∗

n,mn

∣

∣

∣

∣

∣

≥

∣

∣

∣

∣

∣

⋃

(m1,...,mn)∈Ω

H1,m1
× · · · ×Hn,mn

∣

∣

∣

∣

∣

=
∑

(m1,...,mn)∈Ω

|H1,m1
× · · · ×Hn,mn

|

= card (Ω)
1

2n
|I∗

1,0 × · · · × I∗

n,0|

=
1

2n
card (Ω)2k|E|.(5)

From (4) and (5) we conclude the lemma holds. �

For an interval R we denote by Rd the smallest interval concentric to R which contains R
and has dyadic side lengths.

Let B be a rare basis in R
n. To B we can associate its dyadic skeleton Bd = {Rd : R ∈

B}. Note that the maximal operators associated with the bases B and Bd possess similar
properties. Namely, MBf ≤ 2nMBd

f and on the other hand (see, e.g., [7], Lemma 2.12),

(6) |{x ∈ R
n : MBd

f(x) > α}| ≤ Cn|{x ∈ R
n : MBf(x) > α/4n}|.

Theorem 1 follows from Lemmas 1 and 3 and estimate (6).

4. A Generalization of Theorem 1 and Applications

Let k ≥ n and Ω ⊂ Ωn,k. We will say that a rare basis B in R
n is Ω-complete if

there exist increasing sequences of integers (s1,m)k
m=0, . . . , (sn,m)k

m=0 such that for every
n-tuple (m1, . . . , mn) belonging to Ω there exists an interval R1 × · · · × Rn ∈ Bd with
|R1| ∈ (2s1,m1−1, 2s1,m1 ], . . . , |Rn| ∈ (2sn,mn−1, 2sn,mn ].

From Lemma 3 and estimate (6) we obtain the following result.
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Theorem 2. Let B be a rare basis in R
n. Suppose there exist an increasing sequence of

natural numbers kj ≥ n and a sequence of sets Ωj ⊂ Ωn,kj
with the properties: B is Ωj-

complete for every j ∈ N and infj∈N card(Ωj)/kn−1
j > 0. Then MB satisfies the sharp weak

type L(1+log+ L)n−1 estimate. Moreover, for every j ∈ N there exists a bounded set Ej ⊂ R
n

with positive measure such that

|{x ∈ R
n : MB(χEj

)(x) ≥ 1/2kj}| ≥ cBkn−1
j 2kj |Ej|,

where cB is a constant of the form cn infj∈N card(Ωj)/kn−1
j .

Theorem 2 is an extension of Theorem 1 since by Lemma 1 the density of the spectrum
WB in the Cartesian product of infinite sets S1, . . . , Sn ⊂ Z implies Ωn,k-completeness of the
basis B for every k ≥ n.

We now indicate eight applications of Theorems 1 and 2 to rare bases.

I. Let S1, . . . , Sn ⊂ Z be infinite sets and B be the basis consisting of all n-dimensional in-
tervals with side lengths of the form 2s1, . . . , 2sn where s1, . . . , sn belong to the sets S1, . . . , Sn

respectively. Taking into account that the spectrum of B is the product S1 × · · · × Sn and
applying Theorem 1 for B and S1, . . . , Sn we obtain the result proved in [11].

II (Soria Bases). Let Γ ⊂ Z be an infinite set and let B be the basis of all 3-dimensional
intervals R1 × R2 × R3 such that |R1|, |R2| ∈ D and |R3| = 2γ/|R2| for some γ ∈ Γ, where
here and in later applications we denote the set of dyadic numbers {2s : s ∈ Z} by D. It is
easy to see that the spectrum WB is the set

{(w1, w2, w3) : w1, w2 ∈ Z, w3 ∈ Γ− w2}

and WB is dense in Z × Z × Γ. Hence taking S1 = S2 = Z and S3 = Γ by Theorem 1 we
obtain the sharp weak type L(1 + log+ L)2 estimate for the maximal operator MB associated
to the basis B which was proved in [3].

III (Zygmund Bases). Let Γ ⊂ Z be an infinite set and let B be the basis of all 3-
dimensional intervals R1 × R2 × R3 such that |R1|, |R2| ∈ D and |R3| = 2γ|R2| for some
γ ∈ Γ. It is easy to see that the spectrum WB is the set

{(w1, w2, w3) : w1, w2 ∈ Z, w3 ∈ Γ + w2}

and WB is dense in Z × Z × Γ. Hence taking S1 = S2 = Z and S3 = Γ by Theorem 1 we
obtain the sharp weak type L(1 + log+ L)2 estimate for the maximal operator MB associated
to the basis B which was proved in [5].

IV (Córdoba Bases). Let Γ ⊂ Z be an infinite set and let B be the basis of all 3-
dimensional intervals R1 × R2 × R3 such that |R1|, |R2| ∈ D and |R3| = 2γ|R1||R2| for some
γ ∈ Γ. It is easy to see that the spectrum WB is the set

{(w1, w2, w3) : w1, w2 ∈ Z, w3 ∈ Γ + w1 + w2}.
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and WB is dense in Z × Z × Γ. Hence, taking S1 = S2 = Z and S3 = Γ by Theorem 1 we
obtain the sharp weak type L(1 + log+ L)2 estimate for the maximal operator MB associated
to the basis B which was proved in [6].

V. Suppose T1, . . . , Tn−1 are infinite subsets of D, Γ is an infinite subset of Z, 1 ≤ p ≤ n−1,
and 1 ≤ j1 < · · · < jp ≤ n−1. Let B be the basis of all n-dimensional intervals R1×· · ·×Rn

such that |R1| ∈ T1, . . . , |Rn−1| ∈ Tn−1 and |Rn| = 2γ/(|Rj1
| . . . |Rjp

|) for some γ ∈ Γ.
Let Sj = {log k : k ∈ Tj} (j ∈ {1, . . . , n− 1}) and Sn = Γ.
It is easy to see that the spectrum WB is the set

{(w1, . . . , wn−1, wn) : w1 ∈ S1, . . . , wn−1 ∈ Sn−1, wn ∈ Γ− (wj1
+ · · ·+ wjp

)}

and WB is dense in S1 × · · · × Sn.
Applying Theorem 1 for B and S1, . . . , Sn we obtain the sharp weak type L(1 + log+ L)n−1

estimate for the maximal operator MB associated to the basis B.
Under the same conditions we can obtain the sharp weak type L(1 + log+ L)n−1 estimate

for the maximal operator MB associated to the basis B of all intervals R1 × · · · × Rn such
that |R1| ∈ T1, . . . , |Rn−1| ∈ Tn−1 and |Rn| = 2γ|Rj1

| . . . |Rjp
| for some γ ∈ Γ.

Note that the bases considered in this application are multi-dimensional versions of ones
from applications II-IV.

VI. The conditions of Theorem 1 are satisfied by more general bases than ones considered
in the applications II-V. In particular, let θk : Dn−1 → D (k ∈ N) be functions satisfying the
following conditions:

1) inf
k∈N

θk(1, . . . , 1) = 0 or sup
k∈N

θk(1, . . . , 1) =∞;

2) for every (t1, . . . , tn−1) ∈ D
n−1

inf
k∈N

θk(t1, . . . , tn−1)

θk(1, . . . , 1)
> 0 and sup

k∈N

θk(t1, . . . , tn−1)

θk(1, . . . , 1)
<∞.

Suppose T1, . . . , Tn−1 are infinite subsets of D. Let B be the basis of all n-dimensional intervals
R1×· · ·×Rn such that |R1| ∈ T1, . . . , |Rn−1| ∈ Tn−1 and |Rn| = θk(|R1|, . . . , |Rn−1|) for some
k ∈ N.

Let Sj = {log k : k ∈ Tj} (j ∈ {1, . . . , n− 1}) and Sn = {log θk(1, . . . , 1) : k ∈ N}.
It is easy to see that the spectrum WB is the following set

{(w1, . . . , wn−1, log θk(2w1, . . . , 2wn−1)) : w1 ∈ S1, . . . , wn−1 ∈ Sn−1, k ∈ N}

and WB is dense in S1 × · · · × Sn.
Applying Theorem 1 for B and S1, . . . , Sn we obtain the sharp weak type L(1 + log+ L)n−1

estimate for the maximal operator MB associated to the basis B.

VII. Following [12] let us say that a rare basis B in R
2 satisfies the (is)-property if for every

k ∈ N there exist intervals R0, . . . , Rk ∈ B of the type [0, 2p]× [0, 2q] (p, q ∈ Z) such that:
1) For every i, j ∈ {0, . . . , k} with i 6= j the intervals Ri and Rj are incomparable, i.e.,

there does not exist translation placing one of them inside the other;
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2) For every i, j ∈ {0, . . . , k} the interval Ri ∩ Rj belongs to B.
Let B1 be a basis of two-dimensional intervals with the (is)-property and B2 be a basis

consisting of one-dimensional intervals with lengths belonging to an infinite set of dyadic
numbers. By B1×B2 denote their product, i.e., the basis which consists of three-dimensional
intervals of the type J1 × J2 where J1 ∈ B1 and J2 ∈ B2.

Let k ≥ 3. We can find intervals R0, . . . , Rk ∈ B1 of the type [0, 2p]× [0, 2q] (p, q ∈ Z) with
the properties 1) and 2) from the definition of the (is)-property. We can assume that

R0 = [0, 2p0]× [0, 2qk], . . . , Ri = [0, 2pi]× [0, 2qk−i], . . . , Rk = [0, 2pk]× [0, 2q0],

where p0 < · · · < pk and q0 < · · · < qk. Let t0 < · · · < tk be integers such that
[0, 2t0], . . . , [0, 2tk] ∈ B2. Set s1,0 = p0, . . . , s1,k = pk, s2,0 = q0, . . . , s2,k = qk, and s3,0 =
t0, . . . , s3,k = tk. Then for every triple (m1, m2, m3) belonging to V3,k it is easy to see that

[0, 2s1,m1 ]× [0, 2s2,m2 ]× [0, 2s3,m3 ] = (Rm1
∩Rk−m2

)× [0, 2tm3 ] ∈ B1 × B2.

Hence, B1 × B2 is Ω3,k-complete for every k ≥ 3.
Applying Theorem 2 we obtain the sharp weak type L(1+log+ L)2 estimate for the maximal

operator MB associated to the basis B where B = B1×B2. For the case of B2 being the basis
of all intervals with dyadic lengths the estimate was obtained in [12].

VIII. In Section 4.2 of [2] a certain class Λn of rare bases in R
n is considered such that

every basis B from Λn has the following property (see Remark 9 in [2]): For every k ∈ N

there exist intervals R0, R1, . . . , Rk such that

R0 = [0, 2s1,0]× [0, 2s2,0]× · · · × [0, 2sn,0],

R1 = [0, 2s1,1]× [0, 2s2,1]× · · · × [0, 2sn,1],

...

Rk = [0, 2s1,k]× [0, 2s2,k]× · · · × [0, 2sn,k],

where (s1,m)k
m=0, . . . , (sn,m)k

m=0 are increasing sequences of integers and for every n-tuple of
integers (m1, . . . , mn) with k ≥ m1 ≥ m2 ≥ · · · ≥ mn ≥ 0 the interval

R = [0, 2s1,m1 ]× [0, 2s2,m2 ]× · · · × [0, 2sn,mn ]

belongs to the basis B.
Suppose B1 is a basis from the class Λn and B2 is a basis consisting of one-dimensional

intervals with lengths belonging to an infinite set of dyadic numbers. Taking into account the
above given property of bases from the class Λn we have that the product basis B1×B2 is Ωk-
complete for every k ≥ n + 1 where Ωk is the set of all (n + 1)-tuples (m1, . . . , mn, mn+1) ∈
Ωn+1,k with k ≥ m1 ≥ m2 ≥ · · · ≥ mn ≥ 1. On the other hand, it is easy to see that
card Ωk ≥ cnkn (k ≥ n + 1).

Applying Theorem 2 we obtain the sharp weak type L(1+log+ L)n estimate for the maximal
operator MB associated to the basis B where B = B1 × B2.
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