SHARP WEAK TYPE ESTIMATES FOR MAXIMAL OPERATORS ASSOCIATED TO RARE BASES

PAUL HAGELSTEIN, GIORGI ONIANI, AND ALEX STOKOLOS

Dedicated to Dmitriy Dmitrishin on the occasion of his fifty-fifth birthday

Abstract

Let \mathcal{B} denote a nonempty translation invariant collection of intervals in \mathbb{R}^{n} (which we regard as a rare basis), and define the associated geometric maximal operator $M_{\mathcal{B}}$ by $$
M_{\mathcal{B}} f(x)=\sup _{x \in R \in \mathcal{B}} \frac{1}{|R|} \int_{R}|f| .
$$

We provide a sufficient condition on \mathcal{B} so that the estimate $$
\left|\left\{x \in \mathbb{R}^{n}: M_{\mathcal{B}} f(x)>\alpha\right\}\right| \leq C_{n} \int_{\mathbb{R}^{n}} \frac{|f|}{\alpha}\left(1+\log ^{+} \frac{|f|}{\alpha}\right)^{n-1}
$$ is sharp. As a corollary we obtain sharp weak type estimates for maximal operators associated to several classes of rare bases including Córdoba, Soria and Zygmund bases.

1. Introduction

Let \mathcal{B} be a basis in \mathbb{R}^{n}, which we can treat as a collection of sets of positive finite measure covering \mathbb{R}^{n}. We may associate to \mathcal{B} a geometric maximal operator $M_{\mathcal{B}}$ defined on measurable functions f on \mathbb{R}^{n} by

$$
M_{\mathcal{B}} f(x)=\sup _{x \in R \in \mathcal{B}} \frac{1}{|R|} \int_{R}|f| .
$$

Two well-known examples of geometric maximal operators include the Hardy-Littlewood maximal operator $M_{H L}$ and the strong maximal operator M_{S}. For the Hardy-Littlewood maximal operator, the basis \mathcal{B} consists of all cubic intervals in \mathbb{R}^{n}; for the strong maximal operator, the basis consists of all intervals in \mathbb{R}^{n}. (For clarity, in this paper an interval in \mathbb{R}^{n} is a rectangular parallelepiped whose sides are parallel to the coordinate axes.)

The Hardy-Littlewood maximal operator satisfies the weak type $(1,1)$ estimate

$$
\left|\left\{x \in \mathbb{R}^{n}: M_{H L} f(x)>\alpha\right\}\right| \leq C_{n} \int_{\mathbb{R}^{n}} \frac{|f|}{\alpha} .
$$

The strong maximal operator satisfies the weaker estimate

$$
\begin{equation*}
\left|\left\{x \in \mathbb{R}^{n}: M_{S} f(x)>\alpha\right\}\right| \leq C_{n} \int_{\mathbb{R}^{n}} \frac{|f|}{\alpha}\left(1+\log ^{+} \frac{|f|}{\alpha}\right)^{n-1} \tag{1}
\end{equation*}
$$

and moreover this inequality is sharp in the sense that, if $\phi:[0, \infty) \rightarrow[0, \infty)$ is a convex increasing function with $\lim _{u \rightarrow \infty} \frac{\phi(u)}{u(1+\log u)^{n-1}}=0$, then there is no finite constant $C_{n, \phi}$ such that the estimate

$$
\left|\left\{x \in \mathbb{R}^{n}: M_{S} f(x)>\alpha\right\}\right| \leq C_{n, \phi} \int_{\mathbb{R}^{n}} \phi\left(\frac{|f|}{\alpha}\right)
$$

holds for all measurable functions f and $\alpha>0$.
Geometric maximal operators associated to rare bases occupy a fascinating middle ground between the Hardy-Littlewood and strong maximal operators. Significant mathematical work on the topic on rare bases has been done by, among others, Zygmund [14], Córdoba [1], Soria [9], and Rey [8]. For the purposes of this paper, a rare basis is a translation invariant collection of some (but not all) intervals in \mathbb{R}^{n}. The problem of finding a sharp weak type $\phi(L)$ estimate for the maximal operator $M_{\mathcal{B}}$ associated to a rare basis \mathcal{B} is of central importence in the area. A natural conjecture (see, e.g., [5]) is $M_{\mathcal{B}}$ must satisfy a sharp weak type $L\left(1+\log ^{+} L\right)^{k}$ estimate for some $k \in\{0,1, \ldots, n-1\}$. This conjecture in the two-dimensional case was proven by Stokolos [10] (see also [13]). Note that for any rare basis \mathcal{B}, the associated geometric maximal operator $M_{\mathcal{B}}$ is dominated by the strong maximal operator M_{S} and hence $M_{\mathcal{B}}$ automatically satisfies the weak type $L\left(1+\log ^{+} L\right)^{n-1}$ estimate (1). Results of Stokolos [10,11]; Dmitrishin, Hagelstein, and Stokolos [3, 5, 6] and D'Aniello and Moonens [2] have provided examples of a variety of multi-dimensional rare bases in which this worst-case estimate is sharp. The purpose of this paper is to present a generalization of results in these papers that provides a set of conditions on a rare basis \mathcal{B} that will guarantee the sharpness of the weak type $L\left(1+\log ^{+} L\right)^{n-1}$ estimate on $M_{\mathcal{B}}$.

In Section 2 we will state the main theorem of this paper and provide the associated requisite terminology. Section 3 will be devoted to a proof of the theorem. In Section 4 we will provide a useful generalization of our main theorem and subsequently provide applications of our results, in particular showing how they imply that Córdoba, Soria and Zygmund bases in \mathbb{R}^{n} generate geometric maximal operators for which the weak type $L\left(1+\log ^{+} L\right)^{n-1}$ estimate is sharp.

2. Terminology and Statement of Main Theorem

Let \mathcal{B} be a rare basis in \mathbb{R}^{n}. The spectrum of \mathcal{B} will be defined as the set of all n-tuples of the type

$$
\left(\left\lceil\log \left|R_{1}\right|\right\rceil, \ldots,\left\lceil\log \left|R_{n}\right|\right\rceil\right)
$$

where $R_{1} \times \cdots \times R_{n} \in \mathcal{B},\lceil x\rceil$ denotes the least integer greater than or equal to x and here and below \log stands for $\log _{2}$. The spectrum will be denoted by $W_{\mathcal{B}}$.

Let us call a set $W \subset \mathbb{Z}$ a net for a set $S \subset \mathbb{Z}$ if there exists a number $N \in \mathbb{N}$ such that for every $s \in S$ there exists $w \in W$ with $|s-w| \leq N$.

Given a set $W \subset \mathbb{Z}^{n}$ and $t \in \mathbb{Z}^{n-1}$, we let W_{t} denote the set $\{\tau \in \mathbb{Z}:(t, \tau) \in W\}$.
Let us call a set $W \subset \mathbb{Z}^{n}$ a net for a set $S \subset \mathbb{Z}^{n}$ if W_{t} is a net for S_{t} for every $t \in \mathbb{Z}^{n-1}$.
If $k \in\{1,2, \ldots, n\}$, we let $\pi_{k}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ denote the projection defined by $\pi_{k}\left(x_{1}, \ldots, x_{n}\right)=$ $\left(x_{1}, \ldots, x_{k}\right)$.

If $S_{1}, \ldots, S_{n} \subset \mathbb{Z}$, we say that the set $W \subset \mathbb{Z}^{n}$ is dense in the set $S_{1} \times \cdots \times S_{n}$ provided the sets

$$
\pi_{1}(W), \pi_{2}(W), \ldots, \pi_{n}(W)=W
$$

are nets for the sets

$$
S_{1}, \pi_{1}(W) \times S_{2}, \ldots, \pi_{n-1}(W) \times S_{n},
$$

respectively.
Our main theorem is the following.
Theorem 1. If for a rare basis \mathcal{B} in \mathbb{R}^{n} there exist infinite sets $S_{1}, \ldots, S_{n} \subset \mathbb{Z}$ for which the spectrum of \mathcal{B} is dense in $S_{1} \times \cdots \times S_{n}$, then the maximal operator $M_{\mathcal{B}}$ satisfies a sharp weak type $L\left(1+\log ^{+} L\right)^{n-1}$ estimate. Moreover, for every $\alpha \in(0,1)$ there exists a bounded set $E_{\alpha} \subset \mathbb{R}^{n}$ with positive measure such that

$$
\left|\left\{x \in \mathbb{R}^{n}: M_{\mathcal{B}}\left(\chi_{E_{\alpha}}\right)(x)>\alpha\right\}\right| \geq c_{n} \frac{1}{\alpha}\left(1+\log \frac{1}{\alpha}\right)^{n-1}\left|E_{\alpha}\right| .
$$

3. Proof of Theorem 1

Lemma 1. Let \mathcal{B} be a rare basis and suppose each of the intervals from \mathcal{B} has dyadic side lengths. Suppose $S_{1}, \ldots, S_{n} \subset \mathbb{Z}$ are infinite sets and the spectrum of \mathcal{B} is dense in $S_{1} \times \cdots \times S_{n}$. Then for every $k \in \mathbb{N}$ there exist increasing sequences $\left(s_{1, m}\right)_{m=0}^{k}, \ldots,\left(s_{n, m}\right)_{m=0}^{k}$ with members from S_{1}, \ldots, S_{n} respectively such that for every n-tuple (m_{1}, \ldots, m_{n}) belonging to $\{1, \ldots, k\}^{n}$ there exists an interval $R_{1} \times \cdots \times R_{n}$ from the basis \mathcal{B} for which $\left|R_{1}\right| \in$ $\left(2^{s_{1, m_{1}-1}}, 2^{s_{1, m_{1}}}\right], \ldots,\left|R_{n}\right| \in\left(2^{s_{n, m_{n}-1}}, 2^{s_{n, m_{n}}}\right]$.
Proof. Since $\pi_{1}\left(W_{\mathcal{B}}\right)$ is a net for S_{1}, there exists a number N such that for every $s \in S_{1}$ there exists $\tau \in \pi_{1}\left(W_{\mathcal{B}}\right)$ with $|s-\tau| \leq N$. Let $\alpha_{1,0}<\cdots<\alpha_{1,2 k}$ be numbers from S_{1} such that $\alpha_{1, m}-\alpha_{1, m-1}>N$ for every $m \in\{1, \ldots, 2 k\}$. Set $s_{1, m}=\alpha_{1,2 m}(m \in\{0, \ldots, k\})$. Then it is easy to see that

$$
\begin{equation*}
\pi_{1}\left(W_{\mathcal{B}}\right) \cap\left(s_{1, m-1}, s_{1, m}\right] \neq \emptyset \tag{2}
\end{equation*}
$$

for every $m \in\{1, \ldots, k\}$.
Suppose that for some $j<n$ increasing sequences $\left(s_{1, m}\right)_{m=0}^{k}, \ldots,\left(s_{j, m}\right)_{m=0}^{k}$ with members from S_{1}, \ldots, S_{j} respectively are constructed.

Let us consider an arbitrary $\left(t_{1}, \ldots, t_{j}\right) \in \pi_{j}\left(W_{\mathcal{B}}\right)$ such that $t_{1} \in\left[s_{1,0}, s_{1, k}\right], \ldots, t_{j} \in\left[s_{j, 0}, s_{j, k}\right]$. Let

$$
W_{\mathcal{B}, t_{1}, \ldots, t_{j}}=\left\{\tau \in \mathbb{Z}:\left(t_{1}, \ldots, t_{j}, \tau\right) \in \pi_{j+1}\left(W_{\mathcal{B}}\right)\right\} .
$$

Since $W_{\mathcal{B}}$ is dense in $S_{1} \times \cdots \times S_{n}$ we have $W_{\mathcal{B}, t_{1}, \ldots, t_{j}}$ is a net for S_{j+1}. Let $N_{t_{1}, \ldots, t_{j}}$ be the number such that for every $s \in S_{j+1}$ there exists $\tau \in W_{\mathcal{B}, t_{1}, \ldots, t_{j}}$ for which $|s-\tau| \leq N_{t_{1}, \ldots, t_{j}}$.

Denote by N the largest of the numbers $N_{t_{1}, \ldots, t_{j}}$ where $\left(t_{1}, \ldots, t_{j}\right) \in \pi_{j}\left(W_{\mathcal{B}}\right)$ and $t_{1} \in$ $\left[s_{1,0}, s_{1, k}\right], \ldots, t_{j} \in\left[s_{j, 0}, s_{j, k}\right]$. Let $\alpha_{j+1,0}<\cdots<\alpha_{j+1,2 k}$ be numbers from S_{j+1} such that $\alpha_{j+1, m}-\alpha_{j+1, m-1}>N$ for every $m \in\{1, \ldots, 2 k\}$. Set $s_{j+1, m}=\alpha_{j+1,2 m}(m \in\{0, \ldots, k\})$. Then for every $\left(t_{1}, \ldots, t_{j}\right) \in \pi_{j}\left(W_{\mathcal{B}}\right)$ with $t_{1} \in\left[s_{1,0}, s_{1, k}\right], \ldots, t_{j} \in\left[s_{j, 0}, s_{j, k}\right]$ we have that

$$
\begin{equation*}
W_{\mathcal{B}, t_{1}, \ldots, t_{j}} \cap\left(s_{j+1, m-1}, s_{j+1, m}\right] \neq \emptyset \tag{3}
\end{equation*}
$$

for every $m \in\{1, \ldots, k\}$.
Taking into account (2) and (3), it is easy to check that the sequences $\left(s_{1, m}\right)_{m=0}^{k}, \ldots$, $\left(s_{n, m}\right)_{m=0}^{k}$ constructed in such a way have the needed property. The lemma is proved.

Suppose $E \subset \mathbb{R}$ is a measurable set, Ω is a collection of disjoint closed one-dimensional intervals, $H=\bigcup_{I \in \Omega} I$ and $0 \leq \alpha \leq 1$. We will say that $E \alpha$-saturates H (notation: $E \leftarrow{ }^{\alpha} H$) if $|I \cap E| /|I|=\alpha$ for every $I \in \Omega$. For the case $\alpha=1 / 2$ we will write simply $E \leftarrow H$.

Note that:
a) If $E \leftarrow^{\alpha} H$ then $|H \cap E| /|H|=\alpha$;
b) If $E \subset H, E \leftarrow^{\alpha} H$ and $H \leftarrow^{\beta} T$ then $E \leftarrow^{\alpha \beta} T$.

Let I and J be closed one-dimensional intervals with lengths 2^{p} and 2^{q} where $p, q \in \mathbb{Z}$ and $p<q$. Let us consider the partition of J into non-overlapping closed subintervals $J_{1}, \ldots, J_{2^{p-q}}$ having the same length as I and such that $\min J_{1}<\cdots<\min J_{2^{p-q}}$. By $\langle I, J\rangle$ denote the union of the intervals J_{k} with odd indices. Obviously, $\langle I, J\rangle \subset J$ and $\langle I, J\rangle \leftarrow J$.

Let I be a closed one-dimensional interval with a length 2^{p} where $p \in \mathbb{Z}, \Omega$ be a collection of disjoint closed one-dimensional intervals having a length 2^{q} with $q \in \mathbb{Z}$ and $p<q$, and $H=\bigcup_{J \in \Omega} J$. By $\langle I, H\rangle$ we denote the union $\bigcup_{J \in \Omega}\langle I, J\rangle$. Obviously, $\langle I, H\rangle \subset H$ and $\langle I, H\rangle \leftarrow H$.
It is easy to check the validity of the following statement.
Lemma 2. Suppose $s_{0}<s_{1}<\cdots<s_{k}$ are some integers, $I_{0}=\left[0,2^{s_{0}}\right], \ldots, I_{k}=\left[0,2^{s_{k}}\right]$ and

$$
I_{k}^{*}=I_{k}, I_{k-1}^{*}=\left\langle I_{k-1}, I_{k}^{*}\right\rangle, I_{k-2}^{*}=\left\langle I_{k-2}, I_{k-1}^{*}\right\rangle, \ldots, I_{0}^{*}=\left\langle I_{0}, I_{1}^{*}\right\rangle
$$

Then the sets $I_{0}^{*}, I_{1}^{*}, \ldots, I_{k}^{*}$ have the following properties:

1) $I_{0}^{*} \subset I_{1}^{*} \subset \cdots \subset I_{k}^{*}$;
2) $I_{0}^{*} \leftarrow I_{1}^{*} \leftarrow \cdots \leftarrow I_{k}^{*}$ and, moreover, $I_{m-1}^{*} \leftarrow J$ for every $m \in\{1, \ldots, k\}$ and every dyadic interval J contained in I_{m}^{*} whose length belongs to $\left(2^{s_{m-1}}, 2^{s_{m}}\right]$;
3) $I_{0}^{*} \leftarrow^{1 / 2^{m}} I_{m}^{*}$ for every $m \in\{1, \ldots, k\}$ and, moreover, $I_{0}^{*} \leftarrow^{1 / 2^{m}} J$ for every $m \in\{1, \ldots, k\}$ and every dyadic interval J contained in I_{m}^{*} whose length belongs to $\left(2^{s_{m-1}}, 2^{s_{m}}\right]$.

Remark 1. It is important to recognize that the interval J in 3) above may have not only length $2^{s_{m}}$ but also the "intermediate" lengths $2^{s_{m-1}+1}, \ldots, 2^{s_{m}-1}$ as well.

Remark 2. The idea of using the sets $I_{0}^{*}, I_{1}^{*}, \ldots, I_{k}^{*}$ in Lemma 2 for the study of weak type estimates for maximal operators associated to rare bases goes back to Stokolos [11].

For every $k \geq n$, by $\Omega_{n, k}$ we denote the set of all n-tuples $\left(m_{1}, \ldots, m_{n}\right) \in \mathbb{N}^{n}$ for which $m_{1}+\cdots+m_{n}=k$. Clearly, $\operatorname{card}\left(\Omega_{n, k}\right) \leq k^{n-1}$. On the other hand, it is easy to see that $\operatorname{card}\left(\Omega_{n, k}\right) \geq c_{n} k^{n-1}$.

Lemma 3. For every $k \geq n$ and increasing sequences of integers

$$
\left(s_{1, m}\right)_{m=0}^{k}, \ldots,\left(s_{n, m}\right)_{m=0}^{k}
$$

there exists a bounded set $E \subset \mathbb{R}^{n}$ of positive measure with the following property: if \mathcal{B} is a rare basis in \mathbb{R}^{n} and Ω is the set of all n-tuples $\left(m_{1}, \ldots, m_{n}\right) \in \Omega_{n, k}$ for which there exists an interval $R_{1} \times \cdots \times R_{n} \in B$ with dyadic side lengths such that

$$
\left|R_{1}\right| \in\left(2^{s_{1, m_{1}-1}}, 2^{s_{1, m_{1}}}\right], \ldots,\left|R_{n}\right| \in\left(2^{s_{n, m_{n}-1}}, 2^{s_{n, m_{n}}}\right]
$$

then

$$
\left|\left\{x \in \mathbb{R}^{n}: M_{\mathcal{B}}\left(\chi_{E}\right)(x) \geq 1 / 2^{k}\right\}\right| \geq c_{n} \operatorname{card}(\Omega) 2^{k}|E|
$$

Proof. For every $j \in\{1, \ldots, n\}$ denote by $I_{j, 0}, \ldots, I_{j, k}$ and $I_{j, 0}^{*}, \ldots, I_{j, k}^{*}$ the sets corresponding to the sequence $s_{j, 0}, \ldots, s_{j, k}$ according to Lemma 2. We define the set $E \subset \mathbb{R}^{n}$ by

$$
E=I_{1,0}^{*} \times \cdots \times I_{n, 0}^{*} .
$$

We now show that

$$
\begin{equation*}
\left\{x \in \mathbb{R}^{n}: M_{\mathcal{B}}\left(\chi_{E}\right)(x) \geq 1 / 2^{k}\right\} \supset \bigcup_{\left(m_{1}, \ldots, m_{n}\right) \in \Omega} I_{1, m_{1}}^{*} \times \cdots \times I_{n, m_{n}}^{*} \tag{4}
\end{equation*}
$$

Let us consider an arbitrary $\left(m_{1}, \ldots, m_{n}\right) \in \Omega$. Let $R_{1} \times \cdots \times R_{n}$ be an interval from \mathcal{B} such that $\left|R_{1}\right|, \ldots,\left|R_{n}\right|$ are dyadic numbers and $\left|R_{j}\right| \in\left(2^{s_{j, m_{j}-1}}, 2^{s_{j, m_{j}}}\right]$ for every $j \in\{1, \ldots, n\}$. Then for every $j \in\{1, \ldots, n\}$ each component interval of $I_{j, m_{j}}^{*}$ can be decomposed into pairwise non-overlapping subintervals Δ each of whose lengths is equal to $\left|R_{j}\right|$. By Lemma 2 (see statement 3)) each Δ will be $1 / 2^{m_{j}}$-saturated by the set $I_{j, 0}^{*}$. Hence, we can decompose the set $I_{1, m_{1}}^{*} \times \cdots \times I_{n, m_{n}}^{*}$ into pairwise non-overlapping intervals $\Delta_{1} \times \cdots \times \Delta_{n}$ each of which is a translate of $R_{1} \times \cdots \times R_{n}$ and

$$
\begin{gathered}
\frac{\left|\left(\Delta_{1} \times \cdots \times \Delta_{n}\right) \cap E\right|}{\left|\Delta_{1} \times \cdots \times \Delta_{n}\right|}=\frac{\left|\left(\Delta_{1} \times \cdots \times \Delta_{n}\right) \cap\left(I_{1,0}^{*} \times \cdots \times I_{n, 0}^{*}\right)\right|}{\left|\Delta_{1} \times \cdots \times \Delta_{n}\right|}= \\
\frac{\left|\Delta_{1} \cap I_{1,0}^{*}\right|}{\left|\Delta_{1}\right|} \cdots \frac{\left|\Delta_{n} \cap I_{n, 0}^{*}\right|}{\left|\Delta_{n}\right|}=\frac{1}{2^{m_{1}} \cdots \frac{1}{2^{m_{n}}}=\frac{1}{2^{k}} .}
\end{gathered}
$$

Hence, $\left\{x \in \mathbb{R}^{n}: M_{\mathcal{B}}\left(\chi_{E}\right)(x) \geq 1 / 2^{k}\right\} \supset I_{1, m_{1}}^{*} \times \cdots \times I_{n, m_{n}}^{*}$. Consequently, taking into account that $\left(m_{1}, \ldots, m_{n}\right)$ is arbitrary in Ω, we conclude (4) holds.

For any $j \in\{1, \ldots, n\}$ we denote $H_{j, 0}=I_{j, 0}^{*}$ and $H_{j, m}=I_{j, m}^{*} \backslash I_{j, m-1}^{*}$ for $m \in\{1, \ldots, k\}$. By virtue of Lemma 2 it is easy to see that:
i) The sets $H_{1, m_{1}} \times \cdots \times H_{n, m_{n}} \quad\left(\left(m_{1}, \ldots, m_{n}\right) \in \Omega_{n, k}\right)$ are pairwise disjoint;
ii) For every $j \in\{1, \ldots, n\}$ and $m \in\{1, \ldots, k\}$ we have that $\left|H_{j, m}\right|=\left|I_{j, m}^{*}\right| / 2$. Consequently, for every $\left(m_{1}, \ldots, m_{n}\right) \in \Omega_{n, k}$,

$$
\left|H_{1, m_{1}} \times \cdots \times H_{n, m_{n}}\right|=\frac{1}{2^{n}}\left|I_{1, m_{1}}^{*} \times \cdots \times I_{n, m_{n}}^{*}\right|
$$

iii) For every $\left(m_{1}, \ldots, m_{n}\right) \in \Omega_{n, k}$,

$$
\left|I_{1, m_{1}}^{*} \times \cdots \times I_{n, m_{n}}^{*}\right|=2^{k}\left|I_{1,0}^{*} \times \cdots \times I_{n, 0}^{*}\right|
$$

Hence,

$$
\begin{align*}
& \left|\bigcup_{\left(m_{1}, \ldots, m_{n}\right) \in \Omega} I_{1, m_{1}}^{*} \times \cdots \times I_{n, m_{n}}^{*}\right| \\
& \quad \geq\left|\bigcup_{\left(m_{1}, \ldots, m_{n}\right) \in \Omega} H_{1, m_{1}} \times \cdots \times H_{n, m_{n}}\right| \\
& \quad=\sum_{\left(m_{1}, \ldots, m_{n}\right) \in \Omega}\left|H_{1, m_{1}} \times \cdots \times H_{n, m_{n}}\right| \\
& \quad=\operatorname{card}(\Omega) \frac{1}{2^{n}}\left|I_{1,0}^{*} \times \cdots \times I_{n, 0}^{*}\right| \\
& \quad=\frac{1}{2^{n}} \operatorname{card}(\Omega) 2^{k}|E| . \tag{5}
\end{align*}
$$

From (4) and (5) we conclude the lemma holds.
For an interval R we denote by R_{d} the smallest interval concentric to R which contains R and has dyadic side lengths.

Let \mathcal{B} be a rare basis in \mathbb{R}^{n}. To \mathcal{B} we can associate its dyadic skeleton $\mathcal{B}_{d}=\left\{R_{d}: R \in\right.$ $\mathcal{B}\}$. Note that the maximal operators associated with the bases \mathcal{B} and \mathcal{B}_{d} possess similar properties. Namely, $M_{\mathcal{B}} f \leq 2^{n} M_{\mathcal{B}_{d}} f$ and on the other hand (see, e.g., [7], Lemma 2.12),

$$
\begin{equation*}
\left|\left\{x \in \mathbb{R}^{n}: M_{\mathcal{B}_{d}} f(x)>\alpha\right\}\right| \leq C_{n}\left|\left\{x \in \mathbb{R}^{n}: M_{\mathcal{B}} f(x)>\alpha / 4^{n}\right\}\right| \tag{6}
\end{equation*}
$$

Theorem 1 follows from Lemmas 1 and 3 and estimate (6).

4. A Generalization of Theorem 1 and Applications

Let $k \geq n$ and $\Omega \subset \Omega_{n, k}$. We will say that a rare basis \mathcal{B} in \mathbb{R}^{n} is Ω-complete if there exist increasing sequences of integers $\left(s_{1, m}\right)_{m=0}^{k}, \ldots,\left(s_{n, m}\right)_{m=0}^{k}$ such that for every n-tuple (m_{1}, \ldots, m_{n}) belonging to Ω there exists an interval $R_{1} \times \cdots \times R_{n} \in \mathcal{B}_{d}$ with $\left|R_{1}\right| \in\left(2^{s_{1, m_{1}-1}}, 2^{s_{1, m_{1}}}\right], \ldots,\left|R_{n}\right| \in\left(2^{s_{n, m_{n}-1}}, 2^{s_{n, m_{n}}}\right]$.

From Lemma 3 and estimate (6) we obtain the following result.

Theorem 2. Let \mathcal{B} be a rare basis in \mathbb{R}^{n}. Suppose there exist an increasing sequence of natural numbers $k_{j} \geq n$ and a sequence of sets $\Omega_{j} \subset \Omega_{n, k_{j}}$ with the properties: \mathcal{B} is Ω_{j} complete for every $j \in \mathbb{N}$ and $\inf _{j \in \mathbb{N}} \operatorname{card}\left(\Omega_{j}\right) / k_{j}^{n-1}>0$. Then $M_{\mathcal{B}}$ satisfies the sharp weak type $L\left(1+\log ^{+} L\right)^{n-1}$ estimate. Moreover, for every $j \in \mathbb{N}$ there exists a bounded set $E_{j} \subset \mathbb{R}^{n}$ with positive measure such that

$$
\left|\left\{x \in \mathbb{R}^{n}: M_{\mathcal{B}}\left(\chi_{E_{j}}\right)(x) \geq 1 / 2^{k_{j}}\right\}\right| \geq c_{\mathcal{B}} k_{j}^{n-1} 2^{k_{j}}\left|E_{j}\right|
$$

where $c_{\mathcal{B}}$ is a constant of the form $c_{n} \inf _{j \in \mathbb{N}} \operatorname{card}\left(\Omega_{j}\right) / k_{j}^{n-1}$.
Theorem 2 is an extension of Theorem 1 since by Lemma 1 the density of the spectrum $W_{\mathcal{B}}$ in the Cartesian product of infinite sets $S_{1}, \ldots, S_{n} \subset \mathbb{Z}$ implies $\Omega_{n, k}$-completeness of the basis \mathcal{B} for every $k \geq n$.

We now indicate eight applications of Theorems 1 and 2 to rare bases.
I. Let $S_{1}, \ldots, S_{n} \subset \mathbb{Z}$ be infinite sets and \mathcal{B} be the basis consisting of all n-dimensional intervals with side lengths of the form $2^{s_{1}}, \ldots, 2^{s_{n}}$ where s_{1}, \ldots, s_{n} belong to the sets S_{1}, \ldots, S_{n} respectively. Taking into account that the spectrum of \mathcal{B} is the product $S_{1} \times \cdots \times S_{n}$ and applying Theorem 1 for \mathcal{B} and S_{1}, \ldots, S_{n} we obtain the result proved in [11].

II (Soria Bases). Let $\Gamma \subset \mathbb{Z}$ be an infinite set and let \mathcal{B} be the basis of all 3-dimensional intervals $R_{1} \times R_{2} \times R_{3}$ such that $\left|R_{1}\right|,\left|R_{2}\right| \in \mathbb{D}$ and $\left|R_{3}\right|=2^{\gamma} /\left|R_{2}\right|$ for some $\gamma \in \Gamma$, where here and in later applications we denote the set of dyadic numbers $\left\{2^{s}: s \in \mathbb{Z}\right\}$ by \mathbb{D}. It is easy to see that the spectrum $W_{\mathcal{B}}$ is the set

$$
\left\{\left(w_{1}, w_{2}, w_{3}\right): w_{1}, w_{2} \in \mathbb{Z}, w_{3} \in \Gamma-w_{2}\right\}
$$

and $W_{\mathcal{B}}$ is dense in $\mathbb{Z} \times \mathbb{Z} \times \Gamma$. Hence taking $S_{1}=S_{2}=\mathbb{Z}$ and $S_{3}=\Gamma$ by Theorem 1 we obtain the sharp weak type $L\left(1+\log ^{+} L\right)^{2}$ estimate for the maximal operator $M_{\mathcal{B}}$ associated to the basis \mathcal{B} which was proved in [3].

III (Zygmund Bases). Let $\Gamma \subset \mathbb{Z}$ be an infinite set and let \mathcal{B} be the basis of all 3dimensional intervals $R_{1} \times R_{2} \times R_{3}$ such that $\left|R_{1}\right|,\left|R_{2}\right| \in \mathbb{D}$ and $\left|R_{3}\right|=2^{\gamma}\left|R_{2}\right|$ for some $\gamma \in \Gamma$. It is easy to see that the spectrum $W_{\mathcal{B}}$ is the set

$$
\left\{\left(w_{1}, w_{2}, w_{3}\right): w_{1}, w_{2} \in \mathbb{Z}, w_{3} \in \Gamma+w_{2}\right\}
$$

and $W_{\mathcal{B}}$ is dense in $\mathbb{Z} \times \mathbb{Z} \times \Gamma$. Hence taking $S_{1}=S_{2}=\mathbb{Z}$ and $S_{3}=\Gamma$ by Theorem 1 we obtain the sharp weak type $L\left(1+\log ^{+} L\right)^{2}$ estimate for the maximal operator $M_{\mathcal{B}}$ associated to the basis \mathcal{B} which was proved in [5].

IV (Córdoba Bases). Let $\Gamma \subset \mathbb{Z}$ be an infinite set and let \mathcal{B} be the basis of all 3dimensional intervals $R_{1} \times R_{2} \times R_{3}$ such that $\left|R_{1}\right|,\left|R_{2}\right| \in \mathbb{D}$ and $\left|R_{3}\right|=2^{\gamma}\left|R_{1}\right|\left|R_{2}\right|$ for some $\gamma \in \Gamma$. It is easy to see that the spectrum $W_{\mathcal{B}}$ is the set

$$
\left\{\left(w_{1}, w_{2}, w_{3}\right): w_{1}, w_{2} \in \mathbb{Z}, w_{3} \in \Gamma+w_{1}+w_{2}\right\}
$$

and $W_{\mathcal{B}}$ is dense in $\mathbb{Z} \times \mathbb{Z} \times \Gamma$. Hence, taking $S_{1}=S_{2}=\mathbb{Z}$ and $S_{3}=\Gamma$ by Theorem 1 we obtain the sharp weak type $L\left(1+\log ^{+} L\right)^{2}$ estimate for the maximal operator $M_{\mathcal{B}}$ associated to the basis \mathcal{B} which was proved in [6].
\mathbf{V}. Suppose T_{1}, \ldots, T_{n-1} are infinite subsets of \mathbb{D}, Γ is an infinite subset of $\mathbb{Z}, 1 \leq p \leq n-1$, and $1 \leq j_{1}<\cdots<j_{p} \leq n-1$. Let \mathcal{B} be the basis of all n-dimensional intervals $R_{1} \times \cdots \times R_{n}$ such that $\left|R_{1}\right| \in T_{1}, \ldots,\left|R_{n-1}\right| \in T_{n-1}$ and $\left|R_{n}\right|=2^{\gamma} /\left(\left|R_{j_{1}}\right| \ldots\left|R_{j_{p}}\right|\right)$ for some $\gamma \in \Gamma$.

Let $S_{j}=\left\{\log k: k \in T_{j}\right\}(j \in\{1, \ldots, n-1\})$ and $S_{n}=\Gamma$.
It is easy to see that the spectrum $W_{\mathcal{B}}$ is the set

$$
\left\{\left(w_{1}, \ldots, w_{n-1}, w_{n}\right): w_{1} \in S_{1}, \ldots, w_{n-1} \in S_{n-1}, w_{n} \in \Gamma-\left(w_{j_{1}}+\cdots+w_{j_{p}}\right)\right\}
$$

and $W_{\mathcal{B}}$ is dense in $S_{1} \times \cdots \times S_{n}$.
Applying Theorem 1 for \mathcal{B} and S_{1}, \ldots, S_{n} we obtain the sharp weak type $L\left(1+\log ^{+} L\right)^{n-1}$ estimate for the maximal operator $M_{\mathcal{B}}$ associated to the basis \mathcal{B}.

Under the same conditions we can obtain the sharp weak type $L\left(1+\log ^{+} L\right)^{n-1}$ estimate for the maximal operator $M_{\mathcal{B}}$ associated to the basis \mathcal{B} of all intervals $R_{1} \times \cdots \times R_{n}$ such that $\left|R_{1}\right| \in T_{1}, \ldots,\left|R_{n-1}\right| \in T_{n-1}$ and $\left|R_{n}\right|=2^{\gamma}\left|R_{j_{1}}\right| \ldots\left|R_{j_{p}}\right|$ for some $\gamma \in \Gamma$.

Note that the bases considered in this application are multi-dimensional versions of ones from applications II-IV.
VI. The conditions of Theorem 1 are satisfied by more general bases than ones considered in the applications II-V. In particular, let $\theta_{k}: \mathbb{D}^{n-1} \rightarrow \mathbb{D}(k \in \mathbb{N})$ be functions satisfying the following conditions:

1) $\inf _{k \in \mathbb{N}} \theta_{k}(1, \ldots, 1)=0$ or $\sup _{k \in \mathbb{N}} \theta_{k}(1, \ldots, 1)=\infty ;$
2) for every $\left(t_{1}, \ldots, t_{n-1}\right) \in \mathbb{D}^{n-1}$

$$
\inf _{k \in \mathbb{N}} \frac{\theta_{k}\left(t_{1}, \ldots, t_{n-1}\right)}{\theta_{k}(1, \ldots, 1)}>0 \text { and } \sup _{k \in \mathbb{N}} \frac{\theta_{k}\left(t_{1}, \ldots, t_{n-1}\right)}{\theta_{k}(1, \ldots, 1)}<\infty
$$

Suppose T_{1}, \ldots, T_{n-1} are infinite subsets of \mathbb{D}. Let \mathcal{B} be the basis of all n-dimensional intervals $R_{1} \times \cdots \times R_{n}$ such that $\left|R_{1}\right| \in T_{1}, \ldots,\left|R_{n-1}\right| \in T_{n-1}$ and $\left|R_{n}\right|=\theta_{k}\left(\left|R_{1}\right|, \ldots,\left|R_{n-1}\right|\right)$ for some $k \in \mathbb{N}$.

Let $S_{j}=\left\{\log k: k \in T_{j}\right\}(j \in\{1, \ldots, n-1\})$ and $S_{n}=\left\{\log \theta_{k}(1, \ldots, 1): k \in \mathbb{N}\right\}$.
It is easy to see that the spectrum $W_{\mathcal{B}}$ is the following set

$$
\left\{\left(w_{1}, \ldots, w_{n-1}, \log \theta_{k}\left(2^{w_{1}}, \ldots, 2^{w_{n-1}}\right)\right): w_{1} \in S_{1}, \ldots, w_{n-1} \in S_{n-1}, k \in \mathbb{N}\right\}
$$

and $W_{\mathcal{B}}$ is dense in $S_{1} \times \cdots \times S_{n}$.
Applying Theorem 1 for \mathcal{B} and S_{1}, \ldots, S_{n} we obtain the sharp weak type $L\left(1+\log ^{+} L\right)^{n-1}$ estimate for the maximal operator $M_{\mathcal{B}}$ associated to the basis \mathcal{B}.
VII. Following [12] let us say that a rare basis \mathcal{B} in \mathbb{R}^{2} satisfies the (is)-property if for every $k \in \mathbb{N}$ there exist intervals $R_{0}, \ldots, R_{k} \in \mathcal{B}$ of the type $\left[0,2^{p}\right] \times\left[0,2^{q}\right](p, q \in \mathbb{Z})$ such that:

1) For every $i, j \in\{0, \ldots, k\}$ with $i \neq j$ the intervals R_{i} and R_{j} are incomparable, i.e., there does not exist translation placing one of them inside the other;
2) For every $i, j \in\{0, \ldots, k\}$ the interval $R_{i} \cap R_{j}$ belongs to \mathcal{B}.

Let \mathcal{B}_{1} be a basis of two-dimensional intervals with the (is)-property and \mathcal{B}_{2} be a basis consisting of one-dimensional intervals with lengths belonging to an infinite set of dyadic numbers. By $\mathcal{B}_{1} \times \mathcal{B}_{2}$ denote their product, i.e., the basis which consists of three-dimensional intervals of the type $J_{1} \times J_{2}$ where $J_{1} \in \mathcal{B}_{1}$ and $J_{2} \in \mathcal{B}_{2}$.

Let $k \geq 3$. We can find intervals $R_{0}, \ldots, R_{k} \in \mathcal{B}_{1}$ of the type $\left[0,2^{p}\right] \times\left[0,2^{q}\right](p, q \in \mathbb{Z})$ with the properties 1) and 2) from the definition of the (is)-property. We can assume that

$$
R_{0}=\left[0,2^{p_{0}}\right] \times\left[0,2^{q_{k}}\right], \ldots, R_{i}=\left[0,2^{p_{i}}\right] \times\left[0,2^{q_{k-i}}\right], \ldots, R_{k}=\left[0,2^{p_{k}}\right] \times\left[0,2^{q_{0}}\right]
$$

where $p_{0}<\cdots<p_{k}$ and $q_{0}<\cdots<q_{k}$. Let $t_{0}<\cdots<t_{k}$ be integers such that $\left[0,2^{t_{0}}\right], \ldots,\left[0,2^{t_{k}}\right] \in \mathcal{B}_{2}$. Set $s_{1,0}=p_{0}, \ldots, s_{1, k}=p_{k}, s_{2,0}=q_{0}, \ldots, s_{2, k}=q_{k}$, and $s_{3,0}=$ $t_{0}, \ldots, s_{3, k}=t_{k}$. Then for every triple (m_{1}, m_{2}, m_{3}) belonging to $V_{3, k}$ it is easy to see that

$$
\left[0,2^{s_{1, m_{1}}}\right] \times\left[0,2^{s_{2, m_{2}}}\right] \times\left[0,2^{s_{3, m_{3}}}\right]=\left(R_{m_{1}} \cap R_{k-m_{2}}\right) \times\left[0,2^{t_{m_{3}}}\right] \in \mathcal{B}_{1} \times \mathcal{B}_{2}
$$

Hence, $\mathcal{B}_{1} \times \mathcal{B}_{2}$ is $\Omega_{3, k}$-complete for every $k \geq 3$.
Applying Theorem 2 we obtain the sharp weak type $L\left(1+\log ^{+} L\right)^{2}$ estimate for the maximal operator $M_{\mathcal{B}}$ associated to the basis \mathcal{B} where $\mathcal{B}=\mathcal{B}_{1} \times \mathcal{B}_{2}$. For the case of \mathcal{B}_{2} being the basis of all intervals with dyadic lengths the estimate was obtained in [12].
VIII. In Section 4.2 of [2] a certain class Λ_{n} of rare bases in \mathbb{R}^{n} is considered such that every basis \mathcal{B} from Λ_{n} has the following property (see Remark 9 in [2]): For every $k \in \mathbb{N}$ there exist intervals $R_{0}, R_{1}, \ldots, R_{k}$ such that

$$
\begin{aligned}
R_{0}= & {\left[0,2^{s_{1,0}}\right] \times\left[0,2^{s_{2,0}}\right] \times \cdots \times\left[0,2^{s_{n, 0}}\right], } \\
R_{1}= & {\left[0,2^{s_{1,1}}\right] \times\left[0,2^{s_{2,1}}\right] \times \cdots \times\left[0,2^{s_{n, 1}}\right], } \\
& \vdots \\
R_{k}= & {\left[0,2^{s_{1, k}}\right] \times\left[0,2^{s_{2, k}}\right] \times \cdots \times\left[0,2^{s_{n, k}}\right], }
\end{aligned}
$$

where $\left(s_{1, m}\right)_{m=0}^{k}, \ldots,\left(s_{n, m}\right)_{m=0}^{k}$ are increasing sequences of integers and for every n-tuple of integers $\left(m_{1}, \ldots, m_{n}\right)$ with $k \geq m_{1} \geq m_{2} \geq \cdots \geq m_{n} \geq 0$ the interval

$$
R=\left[0,2^{s_{1, m_{1}}}\right] \times\left[0,2^{s_{2, m_{2}}}\right] \times \cdots \times\left[0,2^{s_{n, m_{n}}}\right]
$$

belongs to the basis \mathcal{B}.
Suppose \mathcal{B}_{1} is a basis from the class Λ_{n} and \mathcal{B}_{2} is a basis consisting of one-dimensional intervals with lengths belonging to an infinite set of dyadic numbers. Taking into account the above given property of bases from the class Λ_{n} we have that the product basis $\mathcal{B}_{1} \times \mathcal{B}_{2}$ is $\Omega_{k^{-}}$ complete for every $k \geq n+1$ where Ω_{k} is the set of all $(n+1)$-tuples $\left(m_{1}, \ldots, m_{n}, m_{n+1}\right) \in$ $\Omega_{n+1, k}$ with $k \geq m_{1} \geq m_{2} \geq \cdots \geq m_{n} \geq 1$. On the other hand, it is easy to see that $\operatorname{card} \Omega_{k} \geq c_{n} k^{n}(k \geq n+1)$.

Applying Theorem 2 we obtain the sharp weak type $L\left(1+\log ^{+} L\right)^{n}$ estimate for the maximal operator $M_{\mathcal{B}}$ associated to the basis \mathcal{B} where $\mathcal{B}=\mathcal{B}_{1} \times \mathcal{B}_{2}$.

References

[1] A. Córdoba, Maximal functions, covering lemmas and Fourier multipliers, Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978) Part 135 (1979), 29-50. MR0545237 $\uparrow 2$
[2] E. D'Aniello and L. Moonens, Averaging on n-dimensional rectangles, Ann. Acad. Sci. Fenn. Math. 42 (2017), 119-133. MR3558519 $\uparrow 2,9$
[3] D. Dmitrishin, P. Hagelstein, and A. Stokolos, Sharp weak type estimates for a family of Soria bases, J. Geometric Analysis 32 (2022), no. 169, available at https://doi.org/10.1007/s12220-022-00903-5. $\uparrow 2$, 7
[4] M. de Guzmán, Differentiation of integrals in \mathbb{R}^{n}, Lecture Notes in Mathematics, vol. 481, SpringerVerlag, 1975. MR0457661 \uparrow
[5] P. Hagelstein and A. Stokolos, Sharp weak type estimates for a family of Zygmund bases, Proc. Amer. Math. Soc. 150 (2022), 2049-2057. MR4392339 个2, 7
[6] P. Hagelstein and A. Stokolos, Sharp weak type estimates for a family of Córdoba bases, submitted for publication. $\uparrow 2,8$
[7] G. Oniani and K. Chubinidze, Rotation of coordinate system and differentiation of integrals with respect to translation invariant bases, Mat. Sb. 208 (2017), 51-72. Translation in Sb. Math. 208 (2017), 510530. MR3629083 $\uparrow 6$
[8] G. Rey, Another counterexample to Zygmund's conjecture, Proc. Amer. Math. Soc. 148 (2020), 52695275. MR4163839 $\uparrow 2$
[9] F. Soria, Examples and counterexamples to a conjecture in the theory of differentiation of integrals, Ann. of Math. 123 (1986), 1-9. MR0825837 $\uparrow 2$
[10] A. M. Stokolos, On the differentiation of integrals of functions from $L \phi(L)$, Studia Math. 88 (1988), 103-120. MR931036 $\uparrow 2$
[11] A. M. Stokolos, On weak type inequalities for rare maximal functions in \mathbb{R}^{n}, Colloq. Math. 104 (2006), 311-315. MR2197080 $\uparrow 2,4,7$
[12] A. M. Stokolos, Properties of the maximal operators associated with bases of rectangles in \mathbb{R}^{3}, Proc. Edinb. Math. Soc. 51 (2008), 489-494. MR2465920 $\uparrow 8$, 9
[13] A. M. Stokolos, Zygmund's program: some partial solutions, Ann. Inst. Fourier (Grenoble) 55 (2005), 1439-1453. MR2172270 $\uparrow 2$
[14] A. Zygmund, A note on the differentiability of integrals, Colloq. Math. 16 (1967), 199-204. MR0210847 $\uparrow 2$
P. H.: Department of Mathematics, Baylor University, Waco, Texas 76798

Email address: paul_hagelstein@baylor.edu
G. O.: School of Computer Science and Mathematics, Kutaisi International University, Youth Avenue, Turn 5/7, Kutaisi 4600, Georgia

Email address: giorgi.oniani@kiu.edu.ge
A. S.: Department of Mathematical Sciences, Georgia Southern University, Statesboro, Georgia 30460

Email address: astokolos@GeorgiaSouthern.edu

