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We apply the multiparticle fields model to calculate the differential cross section dσ=dt of elastic proton-
proton scattering. This problem includes the calculation of multidimensional integrals arising from the loop
Feynman diagrams. We demonstrated how these integrals can be reduced with Laplace’s method to one-
and two-dimensional integrals which can be calculated numerically. The obtained result qualitatively
describes the minimum in differential cross section dependency dσ=dtðtÞ.
DOI: 10.1103/PhysRevD.106.036023

I. INTRODUCTION

The process of proton-proton elastic scattering is the
subject of both theoretical and experimental research for the
last few decades. The humanity have accumulated a lot of
experimental data [1], but we still not have a dynamic
theory from the first principles [2] yet. The descriptions of
such processes are usually built with either the pheno-
menological approaches [3] which are different variations
of Regge theory [4,5], or with the geometrical models
[6–8]. All these approaches are based on some assumptions
that are not the corollaries of fundamental physical prin-
ciples, but may even be in conflict with these principles. In
particular, the Reggeized models [9–11] use the assumption
that the multi-Regge region [12–15] provides the dominant
contribution to the integrals for observables. This region of
the phase space contains the points corresponding to the
significantly different values of energy-momentum of the
secondary particles in the final state of the scattering [16],
which violates the energy-momentum conservation law.
Among the various experimental data regarding the

proton-proton(antiproton) scattering the most theoretical
investigations have centred on the elastic scattering [17].
The later is justified by expectation for the description of
elastic processes to be significantly simpler compared to
the description of inelastic ones. In particular, the scattering
amplitude for elastic process is the function of just two
Lorentz invariants [4]. The description of inelastic proc-
esses is then obtained from the description of elastic
processes with the Abramovsky-Gribov-Kancheli (AGK)

cutting rules [18–21]. However, this approach requires
additional assumptions regarding the form of multi-Regge
vertex [22,23] and introduction of unobservable quantity
such as cross-section of scattering with an exchange of a
certain number of Reggeons. All these assumptions are
directed to establish the elastic scattering amplitude
dependence on the Mandelstam variable s. At the same
time, the dependence on another variable t remains unde-
fined. In the simplest one-Reggeon model t dependence is
included in both the Regge pole trejectory and the residue.
While the trajectory is defined by the masses of t-channel
resonances, the residue remains completely undefined. In
the context of Regge diagrams this residue is explained as
the product of vertices corresponding to the interaction of
Reggeon with the hadrons undergoing elastic scattering
[24–26]. The certain t dependence of such vertices is
postulated in such a way that allows one to describe the
experimentally measured differential cross section dσ=dt at
low values of t. This dependence is usually postulated to be
exp ð−R2jtjÞ, where R is a fitted parameter also known as
the Regge radius of hadron [24]. Such an assumption
provides the desirable t dependence of the differential cross
section dσ=dt of elastic scattering at low t which is close to
linear one in logarithmic scale applied to the cross section
axis [27]. However, this dependence is not linear on the
whole range of measurements, but is nonmonotonic and
has a maxima and a minima [28–31]. The models with the
multi-Regge exchange of simple poles and the model of
quasieikonal multi-Regge vertices [27,32,33] are failed to
explain these features. Indeed, this nonmonotonic behavior
has been described within the additive quark model [25]
due to the interference contributions from processes with an
exchange of various number of Reggeons. As for the
phenomenological approaches, this dependence is also
reproduced within the models with a Regge multiple poles
[34–36]. However, these models have high uncertainty in t
dependence, since the increasing in the order of pole
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requires an increasing in the number of terms in Laurent
series whose forms are also need postulating.
The nonmonotonic dependency of differential cross

section dσ=dtðtÞ was also reproduced in the models with
simple Regge poles of various signatures and with the two-
Reggeon cuts [37,38].
The present research is devoted to the description of

effect of nonmonotonic t dependence of the elastic scatter-
ing differential cross section dσ=dt built upon a purely
dynamical model. In other words, we use the model that is
based on the fundamental physical principles, beginning
from the Lagrangian and its corresponding dynamical
equations, quantization, and solution of the equations
describing the dynamics of corresponding relativistic
quantum system in Fock space. We do that in the
framework of the multiparticle fields model.

II. PROBLEM STATEMENT
AND LITERATURE REVIEW

We described the model of multiparticle fields in [39–41]
and showed that hadrons can be considered as the quanta of
field defined on the subsets of simultaneous events. These
subsets are extracted from the tensor product of two (for
mesons) and three (for barions) Minkowski spaces. The
codomains of these fields are invariant subspaces of the
tensor product of bispinors, where the scalar (for mesons)
and bispinor (for protons) representations of Lorentz group
act. The trivial representation of SUcð3Þ group acts also on
these subsets, which corresponds to the fact that hadrons
have no color. As usually, we build a Lagrangian for these
fields and apply gauge principle. The local SUcð3Þ invari-
ance of Lagrangian is provided by the gauge fields trans-
forming by the tensor representation of the Lorentz group
and internal symmetry groups. In this case, the common
way of providing the gauge invariance through the intro-
duction of covariant derivatives is the special case of the
multiparticle approach for obtaining the local invariance.
We have shown [39–41] that these tensor fields can be used
for description of the creation and annihilation processes of
glueballs, i.e., the bound states of confined gluons. The
same fields provide both the confinement of quarks within
the protons and mesons, and the interaction between the
quarks of different protons through the exchange of glue-
balls. As the result, we have the dynamical model for the
three-particle bispinor fields that interact via the two-
particle glueball fields. The calculation of observable
quantities within this model can be performed with
Feynman diagram technique, since such nonperturbative
effects as the confinement of quarks and gluons are already
accounted for in the internal dynamics of multiparticle field
quanta. The nonzero masses of glueballs are also obtained
from the dynamical equations in a natural way. This leads
to the finite value of the elastic scattering amplitude at t ¼ 0
due to the strong interaction. It is known that the total
proton-(anti)proton scattering cross section is finite after

exclusion of electromagnetic interaction [8,42]. As the
result of optical theorem [4], the scattering amplitude must
have a finite value at t ¼ 0. This finiteness is simply
postulated in the mentioned phenomenological models. So
it is necessary to develop a model that would describe the
mentioned features of scattering amplitude without simply
postulating them. In QCD perturbation theory one have an
infrared singularity for the scattering with a massless gluon
exchange. It is clearly problematic to use perturbative QCD
at t ¼ 0, where finiteness of the elastic scattering amplitude
may be caused by nonperturbative effects. However,
it is still unclear which nonperturbative effects and how
they lead to the finiteness of the scattering amplitude.
Meanwhile, in the model of multiparticle fields it is
the nonzero mass of the glueball (which is actually the
consequence of nonperturbative effects) that leads to the
finite value of the scattering amplitude.
Note that although the multiparticle fields approach takes

into account the internal quark structure of protons, in
contrast to the works [43–45], we do not include the effects
of spatial size of protons, and consider them as the point
particles with the internal quark degrees of freedom.
The qualitative description of the inelastic scattering may

be done considering tree-level diagrams only [46].
However, the tree-level diagrams (see Fig. 1) are not
enough to describe the elastic scattering. Nevertheless,
the nonmonotonicity of the cross section dependence
appears even in such a simple model, except that it
reproduces only the minimum, but not the maximum.
Therefore, the description of experimental data requires

the calculation of more complex loop diagrams.
The calculation of such diagrams is reduced to the

calculation of multidimensional integral over virtual four-
momenta. Similar integrals have been considered in [47]
with an application of Feynman parametrization, where,
however, only the location of the singularities was studied
but not the calculation method. The Feynman identity
simplifies the integrand due to the fact that instead of the
product of multiple Feynman denominators we obtain the
power of single denominator, while, unfortunately, it also
leads to the essentially more complex integration domain.

FIG. 1. Pole tree-level diagrams of elastic proton-proton scat-
tering. P1, P2 are the four-momenta of initial protons, P3 and P4

are the four-momenta of outgoing protons. Double lines corre-
spond to the glueballs (bound state of gluons). The minus
between the diagrams reflects the fact that protons are described
by Fermi-Dirac statistics.

N. CHUDAK et al. PHYS. REV. D 106, 036023 (2022)

036023-2



For this reason, here we consider an approximate method of
calculation starting from the expression for the loop diagram
contribution to the elastic scattering amplitude. There is also
another approach to the similar integrals [48] based on the
eikonal approximation. However, such approximation sig-
nificantly changes the pole structure of the integrand. While
the eikonal approximation allows one to reduce the dimen-
sion of the integral for the eikonal, such approach does not
solve the problem of calculating the integrals themselves.
The main problem here is to calculate the limit of multidi-
mensional integral as the parameters that shift the integrand
poles tend to zero. Note that taking the limit inside the
integral is not allowed in this case, because the poles will
move inside the integration domain so the integral will
diverge. This puts restrictions on the application of numeri-
cal integration methods, because taking the limit in the end
requires the calculation at small parameters, which makes
the poles close to the integration domain and thus compli-
cates the numerical calculations.
To solve the outlined problem, we use the Laplace’s

method [49] which worked well for the description of
inelastic scattering processes [50–53]. This method allowed
us to effectively calculate the integrals with dimension up to
100.However, in thoseworks the limit could be taken before
the integration, because the poles of integrands were outside
of the integration domain, which is not the case here.
Now let us figure out how to apply Laplace’s method in

the present situation. We know that the problem arises from
the Feynman denominators that correspond to the lines of a
diagram. Let us number these lines in an arbitrary order and
put the expression of each denominator in the form
ðza − iεÞ−1, where a is the line number, za is the expression
corresponding to the ath line, and ε is the parameter which
should be made zero after the integral is calculated.
Selecting a subset of k lines we can equate the correspond-
ing expressions za to zero and consider the obtained system
of equations. If the obtained system of equations is
consistent, it defines the subset of integration domain
where the integrand is equal to ε−k. As a result, the major
contribution to the integral comes from the region in which
the greatest number of denominators is equal to zero. Let us
denote this number by l and the total number of integration
variables by n. From the corresponding system of equations
we can express the l variables through the rest n − l ones.
Then it is convenient to change the first l integration
variables. These new variables are the deviations from the
values that satisfy the equation system for l denominators.
It means that the absolute value of the integrand now has a
distinct maximum at zero values of the first l variables
regardless of the next n − l variables. Then we can apply
the Laplace’s method to integrate over the first l variables.
As we have already mentioned, the absolute value of the
integrand at the maximum point is equal to ε−l. At the same
time, when applying Laplace’s method, there comes the
Gaussian integral which leads to the factor ε−l. It removes

the ε from expression and allows one to turn ε to zero
before the integration. Then the obtained integral can be
calculated using numerical methods.
In the present paper we apply the described idea to

calculate the sum of simplest single-loop diagrams for the
elastic scattering of protons (Fig. 2).
We calculate the elastic proton-proton scattering differ-

ential cross section within the multiparticle fields approach.
We consider the contributions of the diagrams in Figs. 1
and 2, including the diagrams obtained from those depicted
on Fig. 2 by interchanging the final-state particle lines.
Finally, we compare the calculation results with the
experimental data.

III. LAPLACE’S METHOD AND PASSAGE
TO THE LIMIT ε → 0

An analytical expression for the diagram in Fig. 2(a) has
the following form

A ¼ ðigÞ4
ð2πÞ6 ðv̄

þ
v3ðP4ÞÞs4γas4s2ðv−v2ðP2ÞÞs2

× ðv̄þv4ðP3ÞÞs3γbs3s1ðv−v1ðP1ÞÞs1
× δððP3 þ P4Þ − ðP1 þ P2ÞÞtab; ð1Þ

where g is the effective coupling, and Mp and MG are the
masses of the proton and the glueball, respectively,
ðv̄þv3ðP4ÞÞs4 ; ðv−v2ðP2ÞÞs2 ; ðv̄þv4ðP3ÞÞs3 , and ðv−v1ðP1ÞÞs1 are

the solutions of the Dirac equations, γas4s2 , and γbs3s1 are
the elements of the Dirac matrices, and tab is the tensor
whose components are defined by

tab ¼
Z

d4kðka þ 2ðP2ÞaÞð2ðP1Þb − kbÞ

×
1

M2
p − ðP1 − kÞ2 − iε

1

M2
p − ðP2 þ kÞ2 − iε

×
1

M2
G − k2 − iε

1

M2
G − ðP1 − P3 − kÞ2 − iε

; ð2Þ

where a; b ¼ 0; ::3.

FIG. 2. The simplest loop diagrams for the elastic scattering of
protons. P1, P2 and P3, P4 are the four-momenta of the incoming
and outgoing protons correspondingly, and k is the four-mo-
mentum of the virtual particle. Double gluon lines correspond to
the glueballs (bound state of gluons).
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We consider the problem in the center of mass reference
frame with the right-hand coordinate system whose z axis is
oriented along P⃗1, and the x axis is perpendicular to z and
lies the plane containing vectors P⃗1 and P⃗3. All quantities
are expressed in the units of the proton mass,MG and g are
considered as the model parameters.
First, we need to calculate the components of the tensor

tab. After the tensor components tab have been calculated,
we use the squared absolute value of the scattering
amplitude to calculate the elastic scattering differential
cross section dσ=dt taking into account the contributions
from the pole diagram from Fig. 1.
To calculate the integral in (2) we use Laplace’s method.

According to the calculation method described in the
previous section, for a small value of ε we determine
which region makes the major contribution to the integral.
If the ε is small and nonzero, the absolute value of
the integrand reaches its maximum in a region where the
maximal number of real parts of the denominators (i.e.,
the parts that do not contain ε) turn to zero. Let us denote
the real parts of the denominators in (2) as

z1 ¼ M2
p − ðP1 − kÞ2;

z2 ¼ M2
p − ðP2 þ kÞ2;

z3 ¼ M2
G − k2;

z4 ¼ M2
G − ðP1 − P3 − kÞ2: ð3Þ

Taking into account (3), expression (2) can be rewritten as

tab ¼
Z

d4kfabðk0; k⃗Þ
Y4
j¼1

1

ðzj − iεÞ : ð4Þ

The squared absolute value of the denominator in (2) is
the sum of the real part squared and the ε2. When the real
part in (3) is equal to zero and ε is nonzero, then the integral
converges and has the maximum. Assume that one of the
denominators (3) is zero, which yields some subset of the
integration domain where the real part of the denominator is
zero. Again, considering the integration over this subset,
the main contribution will be provided by that region where
the real parts of some of the other denominators turn to
zero. So a natural question to ask is how many expressions
in (3) can be turned to zero at the same time? It has been
shown [54] that either the first pair of expressions z1 and z2
corresponding to the horizontal lines in Feynman diagram
[Fig. 2(a)], or another pair z3 and z4 corresponding to the
vertical lines, can be turned to zero simultaneously. Thus,
both the horizontal and vertical lines cannot be turned to
zero at the same time. Next we present the calculations of
each denominator in more detail.
Let us consider the tensor (2) and denote the numerator

as fabðk0; k⃗Þ ¼ ðka þ 2P2aÞð2P1b − kbÞ. Taking into
account that in the center of mass reference frame

P⃗2 ¼ −P⃗1, the denominator z2 in the tensor (2) may be
represented as follows:

z2 ¼ M2
p −

� ffiffiffi
s

p
2

− k0
�

2

þ ðk⃗ − P⃗1Þ2: ð5Þ

Tensor (4) contains now seven nonzero terms, and each of
themhas to be calculated separately.Note that they differ only
in numerators and have the same denominators, whichmeans
they all canbe calculated in the sameway. It is then convenient
to change the coordinate system as shown in Fig. 3.
The vector k⃗ has the coordinates k1 along x axis and k3

along z axis. We transform the axes so that x0 becomes
parallel to the vector P⃗1 − P⃗3. The coordinates of vector k⃗
expressed through the new coordinates k01 and k03 in the
transformed system are

k1 ¼ −k01 cos
�
θ

2

�
þ k03 sin

�
θ

2

�
;

k3 ¼ k01 sin
�
θ

2

�
þ k03 cos

�
θ

2

�
: ð6Þ

The numerator fabðk0; k⃗Þ ¼ ðka þ 2P2aÞð2P1b − kbÞ in
(4) is also expressed through the coordinates (6). For a
further calculation of (4) we also change the variables as
follows:

q0 ¼ k0; q⃗ ¼ P⃗1 − P⃗3

2
− k⃗; ð7Þ

so the tensor (4) can be rewritten as

tab ¼
Z

∞

−∞
dq0

Z
dq⃗fabðq0; q⃗Þ

Y4
j¼1

1

ðzj − iεÞ ; ð8Þ

where the denominators (3) take the following form

FIG. 3. The coordinates k1 and k3 of the vector k⃗ in initial
coordinate system and its coordinates k01 and k03 after trans-
formation of the coordinate system.
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z1¼M2
p−

� ffiffiffi
s

p
2
−q0

�
2

þðq1Þ2þðq2Þ2þ
�jP⃗1þP⃗3j

2
þq3

�2

;

z2¼M2
p−

� ffiffiffi
s

p
2
þq0

�
2

þðq1Þ2þðq2Þ2þ
�jP⃗1þP⃗3j

2
þq3

�2

;

z3¼M2
G−ðq0Þ2þ

�jP⃗1−P⃗3j
2

−q1
�2

þðq2Þ2þðq3Þ2;

z4¼M2
G−ðq0Þ2þ

�jP⃗1−P⃗3j
2

þq1
�2

þðq2Þ2þðq3Þ2: ð9Þ

Note that z1 and z2 differ only in sign before q0. At the
same time the only difference between z3 and z4 is the sign
before q1. It allows us to shorten the calculations by
introducing the following notations

z�1 ¼ M2
p −

� ffiffiffi
s

p
2

� q0
�

2

þ ðq1Þ2 þ ðq2Þ2

þ
�jP⃗1 þ P⃗3j

2
þ q3

�2

;

z�3 ¼ M2
G − ðq0Þ2 þ

�jP⃗1 − P⃗3j
2

� q1
�2

;

þ ðq2Þ2 þ ðq3Þ2; ð10Þ

so that z1 ¼ z−1 , z2 ¼ zþ1 , and z3 ¼ z−3 , z4 ¼ zþ3 .
Since the differential cross section depends on the

transmitted four-momentum t, we express the vectors P⃗1

and P⃗3 through Mandelstam variable t

jP⃗1 − P⃗3j ¼
ffiffiffiffiffi
jtj

p
;

jP⃗1 þ P⃗3j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4P2 − jtj

q
; ð11Þ

where P ¼ jP⃗1j ¼ jP⃗3j.
Applying one more change of variable

q3 →
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4P2 − jtj

q
þ q3;

and taking into account (11), we obtain the new expressions
for (10),

z�1 ¼ M2
p −

� ffiffiffi
s

p
2

� q0
�

2

þ ðq1Þ2 þ ðq2Þ2 þ ðq3Þ2;

z�3 ¼ M2
G − ðq0Þ2 þ

� ffiffiffiffiffijtjp
2

� q1
�2

þ ðq2Þ2

þ
�
q3 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4P2 − jtj

p
2

�2

: ð12Þ

Finally, introducing the spherical coordinates ðq; θ;ϕÞ,

q1 ¼ q sin ðθÞ cosðφÞ;
q2 ¼ q sin ðθÞ sinðφÞ;
q3 ¼ q cosðθÞ; ð13Þ

where 0 ≤ θ ≤ π and 0 ≤ ϕ < 2π, we can rewrite (8) as
follows:

tab¼
Z

∞

−∞
dq0

Z
∞

0

q2dq
Z

π

0

sinðθÞdθ
Z

2π

0

dφfabðq0;q;θ;φÞ

×
1

ðzþ1 − iεÞ
1

ðz−1 − iεÞ
1

ðz−3 − iεÞ
1

ðzþ3 − iεÞ ; ð14Þ

where

z�1 ¼ M2
p −

� ffiffiffi
s

p
2

� q0
�

2

þ q2;

z�3 ¼ M2
G − ðq0Þ2 þ

� ffiffiffiffiffijtjp
2

∓ q sinðθÞ cosðφÞ
�2

þ ðq sinðθÞ sinðφÞÞ2 þ
�
q cosðθÞ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4P2 − jtj

p
2

�2

:

ð15Þ

As mentioned in the problem statement, we are going to
use the Laplace’s method to calculate the multidimensional
integral (14).
The essential idea behind this method is that the integral

whose integrand has a single maximum point in the
integration domain, can be approximated nicely by the
corresponding Gaussian integral. We have already seen
above that either the first pair of denominators [associated
with the horizontal lines of the diagram in Fig. 2(a)] or the
second pair (two vertical lines) can be turned to zero
simultaneously. Thus, we examine the first and the second
pairs of denominators separately. We find the correspond-
ing regions of the integration domain where either the first
or the second pair of denominators turn into zero, and
calculate the contribution of these regions to the integral.

A. The first pair of denominators

Let us consider the system of equations for the first two
denominators ðzþ1 − iεÞ and ðz−1 − iεÞ in (14). If we set the
real parts of these denominators to zero, their product
reduces to ε2, which provides the maximal contribution to
the integrand in (14),
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8>><
>>:

zþ1 ¼ M2
p −

� ffiffi
s

p
2
þ q0

�
2

þ q2 ¼ 0

z−1 ¼ M2
p −

� ffiffi
s

p
2
− q0

�
2

þ q2 ¼ 0.

ð16Þ

It is easy to verify that q0 ¼ 0; q ¼ P satisfies the
equation system (16). This solution describes the 2-
dimensional sphere and thus provides some subset of the
4-dimensional integration domain where the absolute
value of the first two denominators in (14) has a single
minimum.
Next, let us apply Laplace’s method to the first pair of

denominators

1

ðzþ1 − iεÞðz−1 − iεÞ¼ exp½−lnðzþ1 − iεÞ− lnðz−1 − iεÞ�

¼−
1

ε2
exp

�
− ln

�
1−

zþ1
iε

�
− ln

�
1−

z−1
iε

��
:

ð17Þ

Considering the second order Taylor approximation of
the exponent in (17) and changing the variable q ¼ Pþ x
in (15), we obtain

1

ðzþ1 − iεÞðz−1 − iεÞ ≈ −
1

ε2
exp

�
sðq0Þ2 þ 4P2x2

−ε2

þ −2ðq0Þ2 þ 4Pxþ 2x2

iε

�
: ð18Þ

The convenience of variable x ¼ q − P is that together with
q0 they are the offset from the point ðq0 ¼ 0; q ¼ PÞ where
the real parts of denominators in the left-hand side of (18)
take minimum value. Consequently, the absolute value of
exponent in (18) has maximum at ðq0 ¼ 0; x ¼ 0Þ.
Changing the variable q → x ¼ q − P in the integral

(14) and substituting (18), we get the approximation for the
integral (14)

tab ≈ −
1

ε2

Z
∞

−∞
dq0

Z
∞

−P
ðPþ xÞ2dx

Z
π

0

sinðθÞdθ
Z

2π

0

dφ

�
fabðq0; x; θ;φÞ

×exp

�
−2ðq0Þ2 þ 4Pxþ 2x2

iε
þ sðq0Þ2 þ 4P2x2

−ε2

�
1

ðz−3 − iεÞðzþ3 − iεÞ
�
; ð19Þ

where the same variable change q ¼ Pþ x is also per-
formed for fab; z

þ
3 and z−3 .

We next turn to analyzing the integrand in (19). We
denote it shortly by aεðq0; x; θ;ϕÞ. The exponent (18) in the
integrand depends only on the integration variables q0 and
x. The absolute value of this exponent has maximum at
ðq0 ¼ 0; x ¼ 0Þ, and the width of its peak tends to zero as
ε → 0. Since the other part of the integrand (19) containing
the second pair of denominators does not have singularities
at ðq0 ¼ 0; x ¼ 0Þ, we can use such the exponential
suppression of the integrand to cut the integration
domain

Z
∞

−∞
dq0

Z
∞

−P
dx →

Z
q0cut

−q0cut
dq0

Z
xcut

−xcut
dx; ð20Þ

where q0cut > 0 and 0 < xcut < P.
This idea is demonstrated in Fig. 4(a). First, we found

that the function aεðq0 ¼ 0; x ¼ 0; θ;ϕÞ has maximum at
ðθ ¼ 0;ϕ ¼ 0Þ. Then we considered a restriction of
aεðq0; x; θ;ϕÞ to aεðq0; x; θ ¼ 0;ϕ ¼ 0Þwhich we denoted
by aεðq0; xÞ and plotted its absolute value in the q0x
plane.

In this way we consider the contribution to the original
integral (14) supplied by the first pair of denominators z1
and z2. Note that the actual value of this contribution
does not depend on the selection of q0cut and xcut, which
becomes clear as soon as we make the following change of
variables

x ¼ εy; q0 ¼ εE: ð21Þ

It makes the integration (20) to take the form

Z
q0cut

−q0cut
dq0

Z
xcut

−xcut
dx → ε2

Z
q0cut=ε

−q0cut=ε
dE

Z
xcut=ε

−xcut=ε
dy; ð22Þ

and also cancels all the ε in denominators in (19). Since
there is no ε in the denominator now, we can finally pass to
the limit when ε → 0. At this point it is clear that the
resulting integration limits will not depend on the par-
ticular selection of q0cut and xcut because both q0cut=ε and
xcut=ε tend to infinity as ε → 0 [see Fig. 4(b)], while the
width of the peak of jaðE; yÞj remains unchanged.
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Now (19) can be rewritten as

tab ≈ −P2

Z
∞

−∞
dE

Z
∞

−∞
dy

Z
π

0

sinðθÞdθ
Z

2π

0

dφ

�
fabðθ;φÞ

×exp ð−4iPy − sE2 − 4P2y2Þ 1

ðz−3 zþ3 Þ
�
; ð23Þ

where fabðθ;φÞ now denotes fabðq0 ¼ 0; x ¼ 0; θ;φÞ. The
integrals over E and y in (23) are now reduced to Poisson
integrals

Z
∞

−∞
dE exp ð−sE2Þ ¼

ffiffiffi
π

p
ffiffiffi
s

p ;

Z
∞

−∞
dy exp ð−4P2y2 − 4iPyÞ ¼

ffiffiffi
π

p
2eP

; ð24Þ

where e is the Euler’s number (i.e., the base of the natural
logarithm).
Combining (23) with (24) and substituting expressions

for z�3 we obtain

tab ≈ −
πP

2e
ffiffiffi
s

p
Z

π

0

sinðθÞdθ
Z

2π

0

dφ

�
fabðθ;φÞ

1

ðM2
G þ 2P2 − P cosðθÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4P2 − jtj

p
Þ2 − P2jtjsin2ðθÞcos2ðφÞ

�
: ð25Þ

Finally, there remains only a two-dimensional integral
over θ and φ for each component tab. Moreover, we can
calculate the integral over φ for each pair of indices ða; bÞ
analytically (these calculations are quite long but yet
straightforward). So we end up with a one-dimensional
integral over θ which can be calculated numerically.

B. The second pair of denominators

Let us now consider the region of the integration domain
in (4), where the divergence of the integrand arises due to
the second pair of denominators

1

M2
G − ðk0Þ2 þ k⃗2 − iε

×
1

M2
G − ðk0Þ2 þ ððP⃗1 − P⃗3Þ − k⃗Þ2 − iε

; ð26Þ

If we let both the energy component k0 of four-momentum
k and the length of its spatial part jk⃗j tend to infinity

simultaneously, the difference of their squares ðk0Þ2 − jk⃗j2
may still be finite. In contrast, the sum ðk0Þ2 þ jk⃗j2 takes
infinite values even when either k0 or jk⃗j tends to infinity.
Note that the first pair of denominators contains k0 in first
power, which provides the decreasing of the integrand as k0

tends to infinity. At the same time, in the center of mass
system the energy component of P1 − P3 is equal to zero,
and the denominators (26) do not contain the first power of
k0, but only the difference ðk0Þ2 − jk⃗j2 which, as we have
already mentioned, may take finite values as k0 → ∞ and
jk⃗j → ∞. In this case the whole integrand goes to zero due
to the first pair of denominators containing the first power
of k0.
If we consider the component t00 of the tensor (4),

the numerator fabðk0; k⃗Þ ¼ s − ðk0Þ2, where s is the
Mandelstam invariant, tends to infinity as the denominator
of the integrand. In this case the whole integral diverges.
However, this divergence of (4) is only delusive. Let us
show that.

FIG. 4. Color map plot of jaεðq0; xÞj in q0x plane (a), and jaðE; yÞj in Ey plane (b) for ε ¼ 1. The values of parameters andffiffiffi
s

p ¼ 44.6 GeV and Mp ¼ 0.938 GeV.
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As mentioned above, if the expression contained the sum
instead of the difference ðq0Þ2 − jq⃗j2, there would be no
problem with the divergence at all. It is possible to turn this
difference into a sum if we succeeded by transforming the
integration contour in the complex plane from the real axis

to the imaginary one, which can be done by the Wick
rotation. The possibility of this transformation depends on
the location of the integrand poles. Let us take a closer look
at them.
First, we rewrite the expression (8) in the form

tab ¼
Z

∞

−∞
dq0

Z
∞

−∞
dq⃗

�
fabðq0; q⃗Þ

1

q0 − ð−
ffiffi
s

p
2
þ ηÞ

1

q0 − ð−
ffiffi
s

p
2
− ηÞ

1

q0 − ð
ffiffi
s

p
2
þ ηÞ

1

q0 − ð
ffiffi
s

p
2
− ηÞ

1

ðz3 − iεÞðz4 − iεÞ
�
; ð27Þ

where η ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

p þ ðq1Þ2 þ ðq2Þ2 þ ð
ffiffiffiffiffiffiffiffiffiffiffi
4P2−jtj

p
2

þ q3Þ2 − iε
q

.
Let us analyze the placement of quantities η and −η on

the complex plane. It depends on the variables q1, q2, q3, so
it varies across different subsets of the q1, q2, q3 integration
domain. Thus the major question here is which of the two
conditions

ηjε¼0 >
ffiffiffi
s

p
2

or ηjε¼0 <
ffiffiffi
s

p
2

ð28Þ

is met for the particular subset. Whether the first or the
second condition is met, determines the distribution of the
poles among the quadrants of the complex plane.
In case the second inequality (28) holds, each quadrant

of the complex plane contains a pole of the integrand (27).
It means that one cannot do Wick rotation, because one
would cross the poles during rotation.
In the case of the first inequality, the poles are located in

the second and fourth quadrants, so it is possible to rotate
the integration path in the first and third quadrants. Thus the
integration over q0 can be transformed into the integration
along the imaginary axis (Wick rotation), and the expres-
sion ðq0Þ2 − jq⃗j2 transforms into ð−ðq0Þ2 − jq⃗j2Þ as the
integration variable changes q0 → iq0. If one of these
components tends to infinity, their sum also tends to
infinity, which solves the problem. The integrand tends
to zero as ððq0Þ2 þ jq⃗j2Þ−4, which guarantees the conver-
gence of the integral.
The possibility to applyWick rotation arises in the region

of high values of jq⃗j, i.e., in that part of the integration
domain where the integral can diverge. Therefore, selecting
this region and applying corresponding Wick rotation, we
obtain the convergent integral. The rest of the integration
domain is finite and does not impact the convergence of the
integral, since there are no singularities of the integrand in
this region at ε ≠ 0. This was actually the reason for calling
the divergence of the integral “delusive” earlier in this
section.

C. Calculation of the second contribution
with the Wick rotation

Let us implement the idea explained in the previous
section. We split the integral (8) into two integrals. The first

integral over the finite region, where the Wick rotation
cannot be applied, we denote as

t<ab ¼
Z

∞

−∞
dq0

Z
jq⃗j<cP

dq⃗fabðq0; q⃗Þ
Y4
j¼1

1

ðzj − iεÞ ; ð29Þ

where c > 1. The value of c has no impact on the result of
integration. However, if c ¼ 1 and jq⃗j < P, then the poles
of integrand (27) lie on the integration path and the integral
diverges, which imposes the lower bound on c.
The second contribution to the tensor tab, i.e., the integral

over the region where the Wick rotation can be applied, we
denote as

t>ab ¼
Z

∞

−∞
dq0

Z
jq⃗j>cP

dq⃗fabðq0; q⃗Þ
Y4
j¼1

1

ðzj − iεÞ : ð30Þ

Here we also use the notations (10) for denominators with
P⃗1 and P⃗3 expressed through t (11)

z�1 ¼M2
p −

� ffiffiffi
s

p
2

� q0
�

2

þ ðq1Þ2 þ ðq2Þ2

þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4P2 − jtj
p

2
þ q3

�2

;

z�3 ¼M2
G − ðq0Þ2 þ

� ffiffiffiffiffijtjp
2

� q1
�2

þ ðq2Þ2 þ ðq3Þ2: ð31Þ

Next we consider the system of equations for the second
pair of denominators similar to what we did for the first pair
of denominators. First, we set the real parts equal to zero
and then find the second conditional maxima

8>><
>>:

z−3 ¼ M2
G − ðq0Þ2 þ

� ffiffiffi
jtj

p
2

− q1
�

2

þ ðq2Þ2 þ ðq3Þ2 ¼ 0

zþ3 ¼ M2
G − ðq0Þ2 þ

� ffiffiffi
jtj

p
2

þ q1
�

2

þ ðq2Þ2 þ ðq3Þ2 ¼ 0.

ð32Þ

Let χ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

G þ jtj
4
þ ðq2Þ2 þ ðq3Þ2

q
. It is easily seen that

q1 ¼ 0, q0 ¼ �χ is the solution of (32). Note that q0 ¼ �χ
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can take both positive and negative values, but we consider
only positive solutions, since the integrand is an even
function of q0. We can now proceed the calculation of the
integral (29) analogously to what we did in Sec. III A. First,
we represent the second pair of denominators in exponen-
tial form

1

z�3 − iε
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðz�3 Þ2þε2
p exp

�
i arccos

z�3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz�3 Þ2þε2

p
�
: ð33Þ

In order to cancel the ε in denominators in (33), we make
the following variable change [analogously to (21)]

q0 ¼ χ þ εE; q1 ¼ εx; ð34Þ

so after passing to the limit when ε → 0, the right-hand side
of the expression (33) takes the form

1

z�3 − iε

����
ε¼0

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
� þ 1

p exp

�
i arccos

ω�ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
� þ 1

p
�
; ð35Þ

where ω� ¼ −2Eχ � ffiffiffiffiffijtjp
x.

Then we can rewrite the integral (29) as

t<ab¼2

Z
∞

−∞
dE

Z
∞

−∞
dx

Z
D<

dq2dq3
�
fabðq2;q3Þ

1

ðzþ1 z−1 Þ
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2
−þ1

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2þþ1

p exp

�
i arccos

ω−ffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
−þ1

p þ i arccos
ωþffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2þþ1

p
��

;

ð36Þ

where D< ¼ fðq2; q3Þ ∈ R2jðq2Þ2 þ ðq3Þ2 < c2P2g and
fabðq2; q3Þ denotes fabðq0 ¼ χ; q1 ¼ 0; q2; q3Þ.
According to Laplace’s method [49], we transform

the square roots in the denominators in (36) containing
ω� as

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2þ þ 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
− þ 1

p ¼ exp
�
−
1

2
log ðω2þ þ 1Þ

−
1

2
log ðω2

− þ 1Þ
�
; ð37Þ

and take the second order Taylor approximation of the
exponent at E ¼ 0, x ¼ 0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2þ þ 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
− þ 1

p ≈ exp ð−4E2χ2 − jtjx2Þ: ð38Þ

Similarly, for the other two terms in these denominators

exp

�
i arccos

ω−ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
− þ 1

p þ i arccos
ωþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2þ þ 1

p
�

≈ − exp ð−4iEχÞ: ð39Þ

Substituting (38) and (39) into (36), the integration with
respect to E and x is now reduced to the Poisson integrals

Z
∞

−∞
dx exp ð−jtjx2Þ ¼

ffiffiffi
π

p
ffiffiffiffiffijtjp

Z
∞

−∞
dE exp ð−4E2χ2 þ 4iEχÞ ¼

ffiffiffi
π

p
2eχ

: ð40Þ

After these transformations we can rewrite the expression
(36) as

t<ab ≈ −
π

2e
ffiffiffiffiffijtjp

Z
D<

dq2dq3
�
fabðq2; q3Þ

χ

×
1

ðM2
G þ jtj

2
− q3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4P2 − jtj

p
Þ2 − sχ2

�
: ð41Þ

It is convenient to use the polar coordinates for further
calculations

q2 ¼ q cosðαÞ;
q3 ¼ q sinðαÞ: ð42Þ

Then the expression (41) takes the form

t<ab ¼ −
π

2e
ffiffiffiffiffijtjp

Z
cP

0

qdq
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
G þ jtj

4
þ q2

q
Z

2π

0

dα
fabðq; αÞ

ðM2
G þ jtj

2
− q sinðαÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4P2 − jtj

p
Þ2 − sðM2

G þ jtj
4
þ q2Þ

: ð43Þ

As a result, we obtain the two-dimensional integral with respect to the variables q and α. This integral can be calculated
numerically and allows us to calculate each component of the tensor tab separately.
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Let us get back to the expression (30). Applying Wick rotation, we change the variable q0 → iq0 in the integral (30), so it
can be rewritten as

t>ab ¼ i
Z

∞

−∞
dq0

Z
∞

−∞
dq2

Z
D>

dq1dq3
�
fabðq0; q1; q2; q3Þ

1

ðz1 − iεÞ
1

ðz2 − iεÞ
1

ðz3 − iεÞ
1

ðz4 − iεÞ
�
; ð44Þ

where D> ¼ fðq1; q3Þ ∈ R2jðq1Þ2 þ ðq3Þ2 > c2P2g.
Note that ε in denominators can be set to zero now,

because the integration is performed along the imaginary
axis and we obtain the convergent integral. Rewriting the
denominators in (44), we obtain

t>ab ¼ i
Z

∞

−∞
dq0

Z
∞

−∞
dq2

Z
D>

dq1dq3
�
fabðq0; q1; q2; q3Þ

×
1

ðM2
p þ ξ2 þ ð

ffiffiffiffiffiffiffiffiffiffiffi
4P2−jtj

p
2

þ q3Þ2 − s
4
Þ2 þ ðq0Þ2s

×
1

ðM2
G þ jtj

4
þ ξ2 þ ðq3Þ2Þ2 − ðq1Þ2jtj

�
; ð45Þ

where ξ2 ¼ ðq0Þ2 þ ðq1Þ2 þ ðq2Þ2.
It can be seen that the product of two fractions in (45) is

even function with regard to q0 and q2 and has the
maximum at q0 ¼ 0; q2 ¼ 0. Increasing the absolute values
of q0 and q2 results in increasing the denominators, i.e., in
decreasing the whole fraction. Therefore, we return back to
(44) and separate the integration with respect to q0, q2

and q1, q3. For the convenience and simplicity of the
further calculations, we introduce the following polar
coordinates

q1 ¼ q cosðαÞ q3 ¼ q sinðαÞ: ð46Þ

The expression (44) then can be rewritten as

t>ab ¼ i
Z

∞

cP
qdq

Z
2π

0

dα
Z

∞

−∞
dq0

Z
∞

−∞
dq2

�
fabðq; α; q0; q2Þ

×
1

zþ1 z
−
1

1

zþ3 z
−
3

�
; ð47Þ

where

z�1 ¼ M2
p þ

�
q0 ∓ i

ffiffiffi
s

p
2

�
2

þ q2cos2ðαÞ þ ðq2Þ2

þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4P2 − jtj
p

2
þ q sinðαÞ

�2

;

z�3 ¼ M2
G þ ðq0Þ2 þ

� ffiffiffiffiffijtjp
2

∓ q cosðαÞ
�2

þ ðq2Þ2 þ q2sin2ðαÞ: ð48Þ

The expression (47) contains the integration with respect
to q from cP to þ∞. We can change the variable
q → x ¼ 1=q in order to make the integration limits finite.
At this point the integrand in (47) becomes large enough if
we substitute the expressions for (48) for z�1 and z�3 which
depend on every integration variable x; α; q0; q2. However,
introducing the following notations

w1ðx; αÞ ¼ 1 − x2
jtj
4
þ x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4P2 − jtj

q
sinðαÞ;

w2ðx; αÞ ¼ x2M2
G þ x2

jtj
4
− x

ffiffiffiffiffi
jtj

p
cosðαÞ þ 1;

w3ðx; αÞ ¼ x2M2
G þ x2

jtj
4
þ x

ffiffiffiffiffi
jtj

p
cosðαÞ þ 1; ð49Þ

and changing the integration variables again q0 → E ¼ xq0

and q2 → y ¼ xq2, we can finally rewrite (47) using
notations (49)

t>ab ¼ i
Z

1
cP

0

xdx
Z

2π

0

dα
Z

∞

−∞
dE

Z
∞

−∞
dy

�
fabðx; E; α; yÞ

×
1

ðw1ðx; αÞÞ2w2ðx; αÞw3ðx; αÞ

×
1

1þW1ðx; αÞðE2 þ y2Þ þW2ðx; αÞE2

�
; ð50Þ

where

W1ðx; αÞ ¼
2

w1ðx; αÞ
þ 1

w2ðx; αÞ
þ 1

w3ðx; αÞ
;

W2ðx; αÞ ¼
x2s

ðw1ðx; αÞÞ2
: ð51Þ

The further calculation of (50) depends on the values of
indices a and b. We demonstrate the calculation work flow
for the component t>00 only, while the calculation of other
components is completely similar. In this case (a ¼ 0,
b ¼ 0) the function fab in the integrand of (50) is equal to
f00 ¼ ðE2 þ x2sÞ, so the expression for t>00 has the form
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t>00 ¼ i
Z

1
cP

0

xdx
Z

2π

0

dα

�
1

ðw1ðx; αÞÞ2w2ðx; αÞw3ðx; αÞ
Z

∞

−∞
dE

Z
∞

−∞
dyðE2 þ x2sÞ 1

1þW1ðx; αÞðE2 þ y2Þ þW2ðx; αÞE2

�
:

ð52Þ

The integration with respect to E and y can be reduced to the calculation of the Poisson integrals

Z
∞

−∞
dE

Z
∞

−∞
dyðE2 þ x2sÞ 1

1þW1ðx; αÞðE2 þ y2Þ þW2ðx; αÞE2
¼ πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Wðx; αÞp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W1ðx; αÞ

p
�
1

2

1

jWðx; αÞj þ x2s
�
; ð53Þ

where Wðx; αÞ ¼ W1ðx; αÞ þW2ðx; αÞ. Substituting (53) into (52) yields

t00> ¼ πi
Z

1
cP

0

xdx
Z

2π

0

dα
1

ðw1ðx; αÞÞ2w2ðx; αÞw3ðx; αÞ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

W3ðx; αÞ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

W1ðx; αÞ
p

�
1

2

1

jW3ðx; αÞj
þ x2s

�
: ð54Þ

Finally, we obtain the two-dimensional integral with
finite limits which can be calculated numerically. The other
nonzero components of t>ab have to be calculated in the
same way.
After the components t<ab and t>ab get calculated, we can

finally calculate their sum tab ¼ t<ab þ t>ab and return to the
analytical expression (1) for the diagram in Fig. 2(a).
So far, we have calculated the analytical expression for

the simplest one-loop diagram shown in Fig. 2(a).
However, we should also consider all possible contractions
of bispinor and glueball field operators. In the simplest case
of the elastic scattering of two protons there is another
diagram Fig. 2(b) added to the one-loop diagram Fig. 2(a).
The analytical expression for this diagram is pretty similar
to (1) and the integral in this expression can be calculated in
the same way as for tab.

IV. RESULTS AND DISCUSSION

The analytic calculations presented in the previous
sections allowed us to calculate the differential cross
section of elastic proton-proton scattering dσel=dtðtÞ.
This calculation includes the contributions from the tree-
level (pole) (Fig. 1) and one-loop (Fig. 2) diagrams, as well
as contributions from the diagrams with the P3 and P4

interchanged. The model used for calculation contains two
parameters; MG, the mass of glueball and G, the effective
coupling of proton-glueball interaction. All the quantities
were expressed in the units of the proton mass
MP ¼ 0.938 GeV. The obtained dependency dσel=dtðtÞ
is presented in Figs. 5–8 at different energies

ffiffiffi
s

p
and

different values of MG and G.
As can be seen in Fig. 5, the obtained dependency is

nonmonotonic and qualitatively describes the first mini-
mum of the experimental curve. The values of M and G
were chosen in each case (energy) differently to better
reproduce the experiment. However, the observed non-
monotonic behavior of the theoretical dependency is

preserved in all three cases, even for the same values of
M and G.
Although the results obtained are only in qualitative

agreement with the experimental data, we expect that
inclusion of the diagrams with the higher number of loops
may help to achieve the quantitative description of the
experiment.
In order to demonstrate the qualitative behavior of the

dependency dσel=dtðtÞ (including the second fall), we
plotted it separately in a wider range of t up to 30 GeV2

(Fig. 8).
We also performed the analogous calculations within

another model ϕ3 with the scalar field. However, within
that model we have not obtained the effects of nonmono-
tonic dσel=dtðtÞ dependencies similar to the presented here.
It suggests that the physical mechanisms responsible for
this nonmonotonicity are associated with the spin effects.
The spin flip effects observed in the protons scattering have
been calculated within the Regge theory [55]. However, our

FIG. 5. The differential cross section dσel=dtðtÞ of elastic pp
scattering at

ffiffiffi
s

p ¼ 23.4 GeV. The solid curve is the calculated
dependency (MG ¼ 0.116 and G ¼ 1.8), the dots with error bars
are experimental data [28].
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results are different in that within the Regge approach this
nonmonotonicity arises due to an exchange of Reggeons
having different signatures, i.e., the Reggeon contributions
to the scattering amplitude with different signs. In [55] the
spin effects provides only quantitative changes in the
behavior of differential cross section dependency
dσel=dtðtÞ. In our approach it is the spin effects that are
responsible for the appearance of nonmonotonicity in the
differential cross section dependency dσel=dtðtÞ.
Note, the considered model does not describe the

experimental dependence of elastic scattering total cross
section on s. In Regge models such dependence is usually
reproduced due to the trajectories with the intercept greater
than one [56]. Based on the results of [16], we expect to
achieve this in our model via the calculation of multiloop
diagrams. For instance, consider the loop diagram in Fig. 9.
The expression corresponding to such diagram has a

maximum when all the denominators associated with the
horizontal lines of the diagram turn into zero simultane-
ously. The properties of such maximum are analogous to
that of the maximum point studied in [16], where the
investigation of the role of longitudinal components of
momenta resulted in discovery of a new mechanism of
cross section growth. This mechanism is connected with
the fact that virtualities of the horizontal lines at maximum
point decrease as s grows. Moreover, the results presented
in [16] give us hope to reproduce the existence of the
threshold branch-points of elastic scattering amplitude
implied by the unitarity condition. According to the results
obtained in [46], we also have to take into account the sum
of the diagrams that can be obtained from the diagram
Fig. 9 by rearranging the three glueball vertices along one
of the vertical lines.
In this work we do not analyze the values obtained

for the model parameters, since they are likely to change as
the more complex diagrams will be included. The only
conclusion we can make at this stage is that there exist
such values of parameters that allow the model to
reproduce the nonmonotonicity in differential cross section
dσ=dtðtÞ.

FIG. 6. The differential cross section dσel=dtðtÞ of elastic pp
scattering at

ffiffiffi
s

p ¼ 30.5 GeV. The solid curve is the calculated
dependency (MG ¼ 0.13 and G ¼ 2.2), the dots with error bars
are experimental data [28].

FIG. 7. The differential cross section dσel=dtðtÞ of elastic pp
scattering at

ffiffiffi
s

p ¼ 44.6 GeV. The solid curve is the calculated
dependency (MG ¼ 0.099 and G ¼ 1.8), the dots with error bars
are experimental data [28].

FIG. 8. The calculated dependency of differential cross section
dσel=dtðtÞ of elastic pp scattering at

ffiffiffi
s

p ¼ 44.6 GeV
(MG ¼ 0.088 and G ¼ 1.8).

FIG. 9. Elastic scattering diagram with multiple loops. Solid
lines are three-particle proton field, dash lines are two-particle
glueball field.
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The description of differential cross section through the
glueball exchange is also considered in the papers [57,58].
However, these works consider spin-2 glueball, whereas in
our work we consider a spin-0 glueball. Note that the
obtained value of glueball mass is much lower than the
value used in the work [57]. It is also an order of magnitude
lower than the results of lattice calculations presented in the
paper [59] which also contains the result for the scalar
glueball. At the same time, our values do match the

estimate of the mass of nucleon-nucleon interaction carriers
in Yukawa model [60]. Nevertheless, the physical analysis
of the parameters’ values will make sense only after the
consideration of more complex diagrams.
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