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ABSTRACT 

Depth maps are essential in applications such as robotics, augmented reality, autonomous vehicles, and medical imaging, 
providing critical spatial information. However, depth maps from sensors like time-of-flight (ToF) and structured light systems often 
suffer from low resolution, noise, and missing data. Addressing these challenges, this study presents an innovative method to refine 

depth maps by integrating high-resolution color images. The proposed approach employs both hard- and soft-decision pixel 
assignment strategies to adaptively enhance depth map quality. The hard-decision model simplifies edge classification, while the 
soft-decision model, integrated within a Markov Random Field framework, improves edge consistency and reduces noise. By 
analyzing discrepancies between edges in depth maps and color images, the method effectively mitigates artifacts such as texture-
copying and blurred edges, ensuring better alignment between the datasets. Key innovations include the use of the Canny edge 
detection operator to identify and categorize edge inconsistencies and anisotropic affinity calculations for precise structural 
representation. The soft-decision model introduces advanced noise reduction techniques, improving depth map resolution and 
preserving edge details better than traditional methods. Experimental validation on Middlebury benchmark datasets demonstrates that 

the proposed method outperforms existing techniques in reducing Mean Absolute Difference values, especially in high-upscaling 
scenarios. Visual comparisons highlight its ability to suppress artifacts and enhance edge sharpness, confirming its effectiveness 
across various conditions. This approach holds significant potential for applications requiring high-quality depth maps, including 
robotics, augmented reality, autonomous systems, and medical imaging. By addressing critical limitations of current methods, the 
study offers a robust, versatile solution for depth map refinement, with opportunities for real-time optimization in dynamic 
environments. 
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INTRODUCTION, FORMULATION OF THE 

PROBLEM 

Depth maps are a cornerstone of modern 
technology, providing spatial information critical for 

understanding and interacting with three-

dimensional environments. Their importance spans a 
diverse range of applications, from robotics and 

automation to advanced imaging and modeling [1]. 

In robotics, depth maps enable machines to perceive 
their surroundings with precision, facilitating tasks 

such as navigation, object recognition, and 

manipulation in dynamic environments. This 

capability is fundamental for the development of 
autonomous systems and industrial automation, 

where spatial awareness is paramount. 

In augmented and virtual reality, depth maps 
enhance user experience by accurately blending 
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virtual elements with real-world environments. They 

allow systems to perceive spatial relationships, 

creating immersive and interactive virtual spaces 
that transform entertainment, education, and 

training. Similarly, autonomous vehicles depend on 

depth maps for safety and functionality [2]. 
They provide the spatial data necessary for 

obstacle detection, scene interpretation, and path 

planning, ensuring reliable operation in complex and 
variable environments. 

Beyond navigation and interactivity, depth 

maps are crucial in three-dimensional reconstruction 

and modeling. They enable the creation of precise 
models of objects and environments, serving 

industries such as gaming, architecture, and cultural 

heritage preservation. 
These models facilitate realistic renderings, 

design optimization, and the digital preservation of 

historically significant sites and artifacts. In medical 

imaging, depth maps enhance visualization 
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techniques and enable the reconstruction of 

anatomical structures, supporting accurate 

diagnostics and surgical planning. 
Depth maps also play a vital role in surveillance 

and security systems, aiding in object tracking and 

identification under challenging conditions such as 
low light or crowded scenes. Their ability to provide 

depth information adds an extra layer of reliability to 

systems requiring robust performance in real-world 
settings. 

Modern methods for generating depth maps can 

be broadly categorized into passive and active 

approaches. Passive methods rely on analyzing two- 
or multi-view color images using stereo 

correspondence algorithms. These techniques, 

extensively studied over the past decades, estimate 
depth values based on either local or global image 

processing [3]. 

Local methods are characterized by higher 

computational speed due to their independent 
processing of each pixel, but they often exhibit 

lower accuracy compared to global approaches, 

which optimize depth values for the entire scene 
simultaneously. The primary limitations of passive 

methods include difficulties in handling low-

textured regions and challenges arising from 
occlusions. 

In contrast, active methods employ specialized 

depth sensors that enable depth map generation at 

frame rates comparable to those of color cameras. 
The most widely used active depth sensing 

technologies include time-of-flight (ToF) sensors 

and structured light sensors (Fig. 1) [4].  
ToF sensors calculate depth by measuring the 

phase shift between emitted and reflected infrared 

light, but they often produce noisy depth maps with 
low resolution. Structured light sensors project an 

infrared pattern onto the scene, which is then 

analyzed to compute depth, offering higher 

resolution. However, depth maps obtained through 
this method frequently suffer from artifacts such as 

“holes”, caused by occlusions, low surface 

reflectivity, or distortions in the projected pattern [5]. 
The common challenges associated with depth 

maps include low resolution, noise, and missing data 

in certain areas. These deficiencies can be partially 

mitigated through enhancement methods that 
leverage color images, which provide additional 

structural information about the scene. The strong 

correlation between texture and depth distribution 
allows for significant improvements in the quality of 

depth maps. Consequently, integrating depth data 

with color imagery represents a promising avenue 
for advancing depth sensing technologies. 

 

 

 
 

Fig. 1. Color image and depth map, obtained with 

      structured light sensor 
Source: compiled by the [4] 

Thus, the purpose of this study is to develop a 

method for depth maps refinement using color 

images. The proposed approach integrates depth data 
with color imagery to enhance the quality of depth 

maps and fill missing regions. 

1. LITERATURE REVIEW 

Depth map enhancement is a complex task 

encompassing two primary objectives: increasing 

spatial resolution (super-resolution) and restoring 

missing data (depth completion). These objectives 
are particularly relevant for data obtained using ToF 

sensors and structured-light sensors.  

Super-resolution aims to improve the spatial 
resolution of depth maps, a critical requirement for 

applications demanding high-precision visualization. 

Depth completion, on the other hand, focuses on 
addressing areas with missing depth data, which are 

typical in real-world scenarios [6].  

Despite their differing goals, these tasks share a 

common foundation and can be unified under a 
single formulation. Modern methods, independent of 
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external datasets, leverage the principle of joint 

analysis of edges in depth maps and corresponding 

color images. This approach utilizes the additional 
information provided by the texture of the color 

image to refine the structure of the depth map [7].  

The methods addressing these challenges are 
broadly classified into two categories: filter-based 

methods and optimization-based techniques.  

Filter-based methods are efficient due to their 
localized nature. One of the pioneering works in this 

area is the joint bilateral upsampling technique 

proposed in [8]. This method uses high-resolution 

color images to refine the edges of low-resolution 
depth maps through bilateral filtering techniques.  

Subsequently, the approach was improved in 

[9], where the traditional separation of color space 
and spatial distances was replaced with a unified 

geodesic space, leading to enhanced results. Another 

work [10] proposed an iterative method based on 

cost volumes, which involves multiple depth 
candidates. Each candidate is refined using joint 

bilateral upsampling.  

An important contribution was made in [11], 
where the authors introduced guided filtering, which 

models a linear relationship between the output 

image and the guiding image. This method assumes 
that edges in the output are present only when edges 

exist in the input.  

Further advancements were achieved in [12], 

which introduced a weighted mode filtering method 
based on a joint histogram of depth candidates. This 

method minimizes the L1 norm, making it more 

robust to outliers compared to L2 norm 
minimization. The authors of [13] proposed trilateral 

filtering, which incorporates local gradient 

information of depth maps, providing a significant 
advantage over bilateral upsampling.  

The method proposed in [14] employs an 

onion-peeling filtering procedure to consider local 

depth gradients for super-resolution. However, all 
filter-based methods are limited in their ability to 

suppress noise due to the localized nature of their 

solutions.  
Optimization-based approaches, in contrast to 

filter-based methods, are more robust to noise and 

can model more complex dependencies. One of the 

earliest works in this domain was presented in [15], 
where depth map super-resolution was formulated as 

a multi-label optimization problem, solved using 

Markov Random Fields.  
The approach was refined in [16], where a more 

adaptive data term tailored to the characteristics of 

depth maps was introduced. Another work [17] 
proposed dynamic Markov Random Fields, 

extending traditional spatial Markov Random Fields 

by incorporating temporal information. This 

significantly improved the accuracy and robustness 
of super-resolution in dynamic scenes.  

Further advancements were introduced in [18], 

which included non-local regularization using edge, 
gradient, and segmentation information extracted 

from high-resolution color images.  

An innovative contribution was made in [19] 
where the authors applied generalized second-order 

smoothness constraints guided by an anisotropic 

diffusion tensor derived from color images.  

The authors of [20] proposed an auto-regressive 
model that creates a predictor for each pixel based 

on local correlations in the initial depth map and 

non-local similarities in registered high-quality color 
images. In [21], a robust M-estimator-based 

regularization term was developed, enabling the 

method to account for inconsistencies between depth 

maps and color images. 
Thus, the quality of edges in low-resolution 

depth maps can be significantly enhanced by 

leveraging additional information from the 
corresponding edges in color images. This approach 

is based on the assumption of a strong correlation 

between the edge structures in the color image and 
the depth map. However, this assumption does not 

always hold true, as substantial discrepancies 

between the two can often be observed [22]. 

The improper utilization of guiding information 
provided by the color image may result in two 

primary issues: texture-copying artifacts and blurred 

edges on the depth map. 
Texture-copying artifacts occur when inherently 

smooth regions in the depth map are misinterpreted 

as textured due to the presence of corresponding 
textures in the color image. Conversely, blurred 

edges typically arise when relatively homogeneous 

regions in the color image align with areas in the 

depth map that exhibit strong gradients [23]. 
Previously proposed methods aimed at 

improving depth maps have sought to balance the 

contributions of the original depth map and the 
corresponding color image. However, these methods 

have significant limitations. The primary 

shortcoming is their inability to explicitly evaluate 

edge inconsistencies between the depth map and the 
color image. This lack of evaluation restricts the 

ability to adaptively regulate the influence of 

guiding information from the color image during the 
depth map refinement process [24]. 

To address these limitations, an advanced depth 

map enhancement method has been developed, 
incorporating mechanisms for assessing edge 
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discrepancies through both hard and soft decision 

strategies. These approaches enable more precise 

control over the integration of edge information 
from the color image, effectively mitigating 

common errors such as texture copying or edge 

blurring [25]. 
The proposed method is grounded in a 

comprehensive analysis of the relationship between 

the edge structures of the depth map and the color 
image. This allows for a substantial improvement in 

the accuracy and quality of the resulting depth maps. 

By adopting an adaptive approach that accounts for 

both local and global scene characteristics, this 
method represents a significant advancement in the 

development of more robust and versatile algorithms 

for depth map enhancement. 

2. PROPOSED METHOD 

To evaluate edge inconsistency between a low-

resolution depth map and a high-resolution color 

image, it is necessary to consider several key aspects 
that determine the accuracy and reliability of such an 

analysis. 

First and foremost, for a precise measurement 
of the inconsistency between the depth edge map 

and the color edge map, their resolutions must be 

unified. This requirement arises because 
discrepancies in resolution make it challenging to 

accurately align the structures and positions of the 

edges. In this context, the depth map, which may 

have lower resolution or missing regions, must be 
pre-interpolated to match the resolution of the color 

image. This interpolation can be performed using 

either regular methods (grid-based) or irregular 
methods (considering spatial distribution of the 

data), ensuring uniform resolution before edge 

detection [26]. 
A fundamental characteristic underlying this 

analysis is the structural similarity between the color 

image and the corresponding depth map. This 

similarity becomes particularly evident when 
comparing their binary edge maps, which capture 

the primary contours and boundaries of objects. The 

proposed method is based on evaluating the 
inconsistency between the binary edge maps 

generated separately from the color image and the 

depth map. 

To detect edges in the coarsely interpolated 
depth map and the corresponding color image, the 

Canny edge detection operator is employed. This 

operator is widely recognized for its ability to 
extract clear and stable edges, even in the presence 

of noisy data. However, due to the low resolution or 

noise in the depth map, the detected edges may shift 
from their actual positions. This introduces 

additional challenges when comparing these edges 

with the registered edges from the high-resolution 

color image [27]. 
Based on the analysis of such deviations, 

inconsistent edges in the depth map can be 

categorized into two types. The first type includes 
edges degraded by coarse interpolation, which can 

be refined using guiding information from high-

resolution color edges. The second type represents 
true inconsistencies, stemming from fundamental 

differences between the depth map and the color 

image. 

2.1. Hard-decision pixel assignment 

An effective approach for classifying these 

types of inconsistencies is the hard-decision method, 

which definitively assigns each edge pixel to one of 
these categories. Inspired by the principles of error 

correction coding, where the number of errors must 

remain below a threshold to allow successful 

correction, the following strategy is proposed: if the 
displacement between an edge in the depth map and 

the nearest edge in the color image is below a 

predefined threshold, the edge is considered 
degraded due to interpolation. Otherwise, it is 

classified as a true inconsistency. 

This approach not only simplifies the analysis 
process but also provides a more robust mechanism 

for managing edge information, enabling effective 

correction and refinement of the depth map using 

high-quality color data. Furthermore, the 
adaptability of this methodology enhances its 

applicability across a wide range of tasks related to 

image processing and depth data analysis. 
Target function. In accordance with 

Hammersely-Clifford theorem [28], target function 

for depth map super-resolution could be calculated 
as: 

 
𝑀′

= arg min
𝑚𝑘∈𝑀

∑ 𝜉𝑐
𝑘𝐻𝑡(𝑚𝑘 , 𝑣𝑘)

𝑣𝑘∈𝑉

+ 𝜉∑ ∑ 𝜉𝑓
𝑘𝑙𝐻𝑟(𝑚𝑘 ,𝑚𝑙)

𝑙∈𝑁𝑘𝑘

, 
(1) 

 

 𝐻𝑡(𝑚𝑘 , 𝑣𝑘) = |𝑚𝑘 − 𝑣𝑘|, (2) 
 

 𝐻𝑟(𝑚𝑘 , 𝑚𝑙) = |𝑚𝑘 −𝑚𝑙|, (3) 

where 𝑀′ is depth map; V is perceived values of 
depth attribute; 𝑘, 𝑙 are pixels of refined depth map; 

𝑣𝑘 is perceived depth attribute of pixel 𝑝; 𝑁𝑘 is 
surrounding pixels of pixel 𝑝; 𝐻𝑡  represents the data 
component that reflects the consistency between the 
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refined depth attribute and the perceived values; 𝐻𝑟  
represents the regularization component that 
promotes a piecewise smooth solution and 
discourages differing depth assignments among 
adjacent pixels; 𝜉 is utilized to balance the influence 
of the data component and the regularization 

component; 𝜉𝑐
𝑘 is confidence of perceived 𝑣𝑘; 𝜉𝑓

𝑘𝑙 is 

anisotropic affinity of 𝑘, 𝑙 which incorporating the 
proposed hard-decision pixel assignment. 

Outliers Discovery. Depth values observed for 
pixels located at depth edges in low-resolution depth 
maps are unreliable. This unreliability arises due to 
the blurring effect caused by the mixing of depth 
values from two distinct layers. Such distortions 
make these values unsuitable for inclusion in the 
construction of the data term, as they significantly 
reduce the accuracy of the model. 

In the proposed approach, the Canny edge 
detection operator is employed to identify edges in 
the low-resolution depth map. This operator has 
proven to be an effective tool for detecting edges, 
even in low-quality input data. By analyzing 
gradients, it enables the identification of key object 
boundaries, which, in this context, serve as 
indicators of unreliable pixels. 

To designate pixels located on edges, a binary 

variable 𝜉𝑐
𝑘 is introduced. The value of this variable 

is determined as follows: if a pixel 𝑘 is classified as 

an edge pixel, 𝜉𝑐
𝑘 is assigned a value of 0, indicating 

its exclusion from the data term. Conversely, if the 

pixel does not belong to an edge, 𝜉𝑐
𝑘 is set to 1, 

allowing the pixel to be included in the data 
component construction process. 

This proposed method effectively excludes 
pixels with unreliable depth values, minimizing the 
influence of artifacts and distortions typically 
associated with blurred edge regions. As a result, it 
enhances the accuracy of depth map processing and 
analysis. Furthermore, the use of the Canny operator 
provides a straightforward yet effective procedure 
for edge detection, making this approach applicable 
to a wide range of tasks in image processing and 
depth data analysis. 

Anisotropic Affinity obtaining. For each pixel 𝑙 
situated near pixel 𝑘, the anisotropic affinity 𝜉𝑓

𝑘𝑙, 

which quantifies the relationship between the pixel 

pair 𝑘, 𝑙, is computed based on the values of 𝜉𝑓
𝑘 and 

𝜉𝑓
𝑙 . These values are influenced by the structural 

attributes of the pixels within the color image and 
the coarsely interpolated depth map, and their 
determination follows the rules outlined below: 

1) if pixel 𝑘 is consistently positioned either on 
an edge or within a homogeneous region in both the 
color image and the coarsely interpolated depth map, 

it is presumed that the color distribution aligns with 

the depth distribution in the vicinity of 𝑘. In such 

cases, 𝜉𝑓
𝑘 is derived using a weighting function 

proposed in the joint bilateral upsampling technique 
[29], which evaluates the influence of guidance 
provided by the color image. This condition is 
referred to as “Color-guided”, highlighting the 
coherence between the two data sources; 

2) when pixel 𝑘 lies on an edge in the color 
image but not on the coarsely interpolated depth 
map, a search window is established on the depth 
map. If edges are found within this search window, 

𝜉𝑓
𝑘 is categorized as “Color-guided”. Otherwise, this 

situation is interpreted as genuine edge 
inconsistency. Since pixel 𝑘 resides in a uniform 

region of the depth map, 𝜉𝑓
𝑘 is assigned a high value 

to suppress discrepancies in label assignments 
between neighboring pixels. This scenario is 
identified as “Uniform region” signifying the 
steadiness of depth information in the area; 

3) if pixel 𝑘 is located on an edge in the 
coarsely interpolated depth map but not in the color 
image, a search window is defined on the color 
image. Should edges be present within this window, 

𝜉𝑐
𝑘 is classified as “Color-guided”. Otherwise, this 

condition is regarded as a true edge inconsistency; 
4) since pixel 𝑘 is positioned near depth edges, 

𝜉𝑐
𝑘 is assigned a low value to encourage distinct 

label assignments for neighboring nodes. This case 
is referred to as “Edge-adjacent” emphasizing the 
importance of accommodating local variations in 
depth. 

This methodology for computing pixel affinities 
takes into account the local traits of depth data and 
its alignment with color information, facilitating a 
more precise and flexible model design. 
Consequently, it ensures a detailed and reliable 
representation in the processing of depth data for 
applications in computer vision. As derived from the 

analysis presented, 𝜉𝑓
𝑘 and 𝜉𝑓

𝑙  are calculated as 

follows: 

 

𝜉𝑓
{𝑘;𝑙} =

{
 
 

 
 𝑒

−
Δ𝐿𝑘𝑙
2

𝜎2 , 𝐶𝑜𝑙𝑜𝑟 − 𝑔𝑢𝑖𝑑𝑒𝑑

𝑒
−
Δ𝐿𝑠𝑚
2

𝜎2 , 𝐸𝑑𝑔𝑒 − 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡

𝑒
−
Δ𝐿𝑙𝑔
2

𝜎2 , 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 𝑟𝑒𝑔𝑖𝑜𝑛,

. (4) 

where Δ𝐿𝑘𝑙 is the brightness difference between 

pixels 𝑘 and 𝑙; Δ𝐿𝑠𝑚 =1 and Δ𝐿𝑙𝑔 = 254. 

Due to the symmetrical relationship between 

pixels 𝑘 and 𝑙 in the analyzed pair, the value of 𝜉𝑓
𝑘𝑙 , 

representing their mutual correlation, is derived 

based on 𝜉𝑓
𝑘 and 𝜉𝑓

𝑙 . Specifically, if 𝜉𝑓
𝑘 and 𝜉𝑓

𝑙  yield 
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the same classification, 𝜉𝑓
𝑘𝑙 can be determined 

unequivocally, removing any chance of ambiguity. 

Moreover, according to the definitions of the 

categories, it is evident that if 𝜉𝑓
𝑘 is categorized as a 

“Uniform region”, 𝜉𝑓
𝑙  cannot fall into the «Edge-

adjacent» category, and vice versa. This mutual 

exclusion guarantees consistency in the attributes of 
neighboring pixels and avoids contradictions during 

processing. 

In more complex scenarios, when 𝜉𝑓
𝑘 is 

classified as “Color-guided” and 𝜉𝑓
𝑙  belongs to a 

different category, this indicates that pixel 𝑙 is 

situated near an edge, either on the color image or on 

the depth map. Under these circumstances, the value 

of 𝜉𝑓
𝑘𝑙 should be determined by 𝜉𝑓

𝑙 , allowing the 

approach to consider local scene characteristics and 
maintain precision in edge handling.  

For better understanding and analysis, all 

possible cases are outlined in Table 1. The table’s 
first column and row enumerate the possible sets of 

values for 𝜉𝑓
𝑘 and 𝜉𝑓

𝑙 , respectively.  

For each specified combination of 𝜉𝑓
𝑘 and 𝜉𝑓

𝑙 , 

the corresponding value of 𝜉𝑓
𝑘𝑙 is listed within the 

table. This representation provides a clear 
framework for determining pixel pair correlations, 

enhancing the comprehensibility of the methodology 

and ensuring accuracy in depth data analysis. 

Table 1. Evaluation of 𝝃𝒇
𝒌𝒍 value based on 𝝃𝒇

𝒌  

and 𝝃𝒇
𝒍  values 

Value of 𝜉𝑓
𝑘 

Value of 𝜉𝑓
𝑙  

“Color-

guided” 

“Edge-

adjacent” 

“Uniform 

region” 

“Color-guided” 
“Color-

guided” 

“Edge-

adjacent” 

“Uniform 

region” 

“Edge-adjacent” 
“Edge-

adjacent” 

“Edge-

adjacent” 
--- 

“Uniform region” 
“Uniform 

region” 
--- 

“Uniform 

region” 

                               Source: compiled by the authors 

By implementing a structured process for 

classifying and defining the values of 𝜉𝑓
𝑘𝑙, this 

method offers flexibility in handling various pixel 

types, making it a robust and adaptable solution for 

applications involving image processing and depth 
map evaluation. 

2.2. Soft-decision pixel assignment 

Given the shortcomings of the edge 

inconsistency measurement technique based on 

hard-decision, this section introduces an enhanced 

approach that utilizes a soft-decision edge 

inconsistency measurement. 

This method allows for a more accurate and 

quantitative evaluation of the inconsistency between 

depth edges and their corresponding color edges, 

which is essential for improving the precision of 

depth data processing. 

The proposed approach is integrated into a 

Markov Random Field framework, which 

demonstrates a significantly stronger capability in  

reducing texture-copying artifacts and maintaining 

the integrity of depth edges compared to its hard-

decision counterpart. 

A major motivation for adopting this improved 

method is the inherent limitations of multi-label 

optimization using graph cut algorithms, which often 

fail to achieve an exact global minimum. 

Additionally, depth values are typically stored in 

millimeters as continuous floating-point values:  

 𝑀′

= arg min
𝑚𝑘∈𝑀

∑ 𝐻𝑡(𝑚𝑘 , 𝑣𝑘)

𝑣𝑘∈𝑉

+ 𝜉∑ ∑ 𝜉𝑓
𝑘𝑙𝐻𝑟(𝑚𝑘 , 𝑚𝑙)

𝑙∈𝑁𝑘𝑘

, 
(5) 

 

 𝐻𝑡(𝑚𝑘 , 𝑣𝑘) = (𝑚𝑘 − 𝑣𝑘)
2, (6) 

 

 𝐻𝑟(𝑚𝑘 , 𝑚𝑙) = (𝑚𝑘 −𝑚𝑙)
2. (7) 

where 𝜉𝑓
𝑘𝑙 is calculated using the suggested soft-

decision edge inconsistency measurement. 

The key differences between the proposed 

model and the one outlined in the previous section 

are as follows: 

1) assuming Gaussian noise in the original 

low-resolution depth map, the data component and 

regularization component are formulated using a 

quadratic function rather than absolute values. This 

modification results in improved noise reduction 

performance and significantly enhances the overall 

quality of depth map refinement; 

2) unlike the hard-decision method, which 

suffers from limited accuracy in edge classification, 

the proposed approach employs a soft-decision 

measurement. The affinities used in the 

regularization term are calculated using this soft-

decision edge inconsistency measurement, allowing 

for adaptive consideration of local edge variations 

and a more precise modeling of the interplay 

between depth and color data. A detailed 
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explanation of this method and its implementation is 

provided in the subsequent subsections. 

This innovative approach greatly enhances the 

scope of depth map analysis and processing, 

ensuring more accurate artifact suppression and 

superior preservation of structural scene details. It 

represents a significant step forward in developing 

adaptive methodologies capable of effectively 

handling diverse types of depth data in computer 

vision and image processing tasks. 

The assessment of discrepancies between the 

edge map of a color image and the edge map of a 

depth map can be framed as a bidirectional 

evaluation of edge map quality. 

However, in previous researches, the 

conventional method for analyzing the quality of 

edge maps involves measuring the positional offset 

of each edge pixel relative to its location on a 

reference map. The scenario under consideration 

here differs significantly. 

In the context of depth map refinement, edge 

pixels on the depth edge map and their 

corresponding pixels on the color edge map, which 

theoretically should coincide in position, often 

display deviations. These deviations may result from 

pre-processing operations, such as coarse 

interpolation (as discussed previously), or from 

noise introduced by depth sensors. 

Consequently, assessing inconsistency based on 

positional differences of paired edge pixels, as 

employed in traditional edge quality evaluation 

methods [30], is not feasible in this case. 

Instead, the proposed approach to measuring 

edge inconsistency focuses on analyzing the 

structural similarity of edge maps. 

This methodology considers not only the local 

structure formed by neighboring regions around 

each pixel but also the global arrangement of the 

entire edge map. 

This enables a more precise evaluation of edge 

alignment in scenarios where simple positional 

comparisons of edge pixels are insufficient for 

accurate analysis. 

To simplify the explanation, the method is 

described in terms of a reference edge map and a 

target edge map. For every edge pixel on the 

reference map, the approach identifies the best 

match on the target map within a specified 

neighborhood around the corresponding position. 

This implies that if the edges in the color map 

and the depth map are well-aligned, the 

displacement of matched edge pixels will remain 

within a small range. 

Additionally, it is important to account for not 

only the magnitude of the displacement but also its 

direction and the uniformity of displacements among 

all matched edge pixels in a local region [31]. 

As such, the proposed approach not only 

captures a more accurate representation of the 

alignment between edge maps but also incorporates 

both local and global structural context. 

This makes it a more robust solution for 

analyzing and enhancing depth data in the presence 

of noise or pre-processing artifacts. 

3. EXPERIMENTAL RESULTS 

For the experimental evaluation of the proposed 

method, datasets from the Middlebury benchmark 

were used [32]. As an additional challenge, a 

degradation model based on the downsampling 

method was applied.  

The Mean Absolute Difference (MAD) metric 

was employed as a measure to evaluate the accuracy 

of the constructed depth map. Mean Absolute 

Difference refers to a statistical measure that 

calculates the average of the absolute differences 

between corresponding elements in two datasets. It 

is often used to quantify the overall error or 

deviation between predicted and observed values or 

between two images in image processing. 

 Mathematically, it is expressed as: 

 

𝑀𝐴𝐷 =
1

𝑁
∑|𝑥𝑖 − 𝑦𝑖|

𝑁

𝑖=1

, (8) 

where 𝑁 is the number of elements in the datasets; 

𝑥𝑖 and 𝑦𝑖 are the corresponding elements from the 

two datasets. 

The proposed method demonstrates the lowest 

Mean Absolute Difference in most scenarios. 

For the challenging case of 16× super-

resolution, where the coarsely upsampled depth map 

introduces substantial errors affecting the quality of 

the depth edge map, the proposed method achieves 

the best results in 3 out of 4 cases. 

This highlights the robustness of the proposed 

method to variations in the quality of the depth edge 

map.
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Table 2. Experimental results of the proposed method and peer methods  

Method 

Dataset 

Book Moebius Dolls Reindeer 

2x 4x 8x 16x 2x 4x 8x 16x 2x 4x 8x 16x 2x 4x 8x 16x 

AR 0.13 0.21 0.36 0.78 0.13 0.23 0.42 0.83 0.22 0.35 0.52 0.82 0.23 0.42 0.62 1.12 

Guided 0.23 0.36 0.59 1.15 0.24 0.39 0.61 1.17 0.29 0.36 0.57 1.15 0.43 0.56 0.89 1.82 

JBU 0.18 0.37 0.75 1.58 0.19 0.38 0.77 1.48 0.22 0.40 0.76 1.48 0.28 0.52 1.02 1.90 

TGV 0.20 0.28 0.43 0.84 0.21 0.30 0.51 0.89 0.23 0.35 0.72 2.21 0.33 0.51 1.05 3.07 

Bicubic 0.14 0.30 0.61 1.16 0.14 0.32 0.61 1.15 0.22 0.38 0.68 1.20 0.32 0.57 1.01 1.89 

MLS 0.17 0.28 0.47 1.18 0.16 0.26 0.51 0.94 0.25 0.38 0.62 0.99 0.34 0.65 0.77 1.45 

Method-H 0.15 0.28 0.49 0.93 0.17 0.32 0.64 1.19 0.19 0.38 0.74 1.45 0.23 0.42 0.77 1.52 

Method-S 0.10 0.20 0.37 0.74 0.11 0.21 0.39 0.81 0.12 0.26 0.49 0.83 0.14 0.31 0.56 1.10 

Source: compiled by the authors 

Fig. 2 presents a visual comparison of depth 
maps for 8× upscaling. From the visual analysis of  

the highlighted area, it can be concluded that the AR 

method suffers from texture-copying artifacts and 
blurred edges, whereas the proposed method 

significantly reduces such artifacts. 

  
a b 

  
c d 

Fig. 2. Visual comparison of depth maps:  

a – source image; b – real depth map; c – method AR; d – proposed method 
Source: compiled by the authors 
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CONCLUSIONS 

The study presented a novel approach for 

refining depth maps obtained from depth sensors, 
addressing common challenges such as noise, low 

resolution, and missing data. Through a 

comprehensive analysis and experimental 
evaluation, several key conclusions were drawn. 

The proposed method effectively leverages 

high-resolution color images to enhance the quality 
of depth maps. By integrating depth and color 

information, the method mitigates artifacts such as  

texture-copying and blurred edges, ensuring 

improved depth map fidelity. 
A significant innovation of the method is its 

ability to evaluate edge inconsistencies between 

depth maps and corresponding color images. By 
employing both hard- and soft-decision pixel 

assignment strategies, the approach adapts to local 

and global scene characteristics, resulting in more 

accurate and robust depth map refinement. 
The soft-decision model, integrated within a 

Markov Random Field framework, demonstrated 

superior performance in preserving structural details 
and suppressing artifacts compared to traditional 

hard-decision methods. This advancement is crucial 

for maintaining the integrity of depth edges in noisy 

environments. 
Extensive experiments using datasets from the 

Middlebury benchmark confirmed the method's 

efficacy. The proposed approach consistently 
outperformed peer methods in reducing Mean 

Absolute Difference, particularly in challenging 

scenarios requiring significant upscaling of depth 
maps. 

The refinement techniques introduced in this 

study are applicable across diverse domains, 

including robotics, augmented reality, autonomous 
systems, and medical imaging. By enhancing the 

precision and reliability of depth maps, the proposed 

method contributes to advancing technologies 
dependent on accurate three-dimensional spatial 

data. 

In conclusion, the research addresses critical 

limitations of existing depth sensing and refinement 
techniques, offering a robust and versatile solution 

for depth map enhancement. Future work may 

explore further optimization and real-time 
applications in dynamic environments. 
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АНОТАЦІЯ 
 

Карти глибини мають важливе значення для таких застосувань, як робототехніка, доповнена реальність, автономні 

транспортні засоби та медична візуалізація, надаючи критично важливу просторову інформацію. Однак карти глибини, 

отримані за допомогою таких датчиків, як датчики часу польоту (ToF) і системи структурованого світла, часто страждають 

від низької роздільної здатності, шуму і пропущених даних. Для вирішення цих проблем у цьому дослідженні представлено 

інноваційний метод уточнення карт глибини шляхом інтеграції кольорових зображень високої роздільної здатності.  

Запропонований підхід використовує як жорсткі, так і м'які стратегії розподілу пікселів для адаптивного покращення якості 

карти глибини. Модель з жорстким рішенням спрощує класифікацію країв, тоді як модель з м'яким рішенням, інтегрована в 

рамках теорії випадкових полів Маркова, покращує узгодженість країв і зменшує шум. Аналізуючи розбіжності між краями 

на картах глибини та кольорових зображеннях, метод ефективно усуває такі артефакти, як копіювання текстури та розмиті 

краї, забезпечуючи краще узгодження між наборами даних. Ключові інновації включають використання оператора 

виявлення країв Кенні для виявлення і класифікації невідповідностей країв та обчислення анізотропної спорідненості для 

точного структурного представлення. Модель з м'яким прийняттям рішень впроваджує передові методи зменшення шуму, 

покращуючи роздільну здатність карти глибини і зберігаючи деталі країв краще, ніж традиційні методи. Експериментальна 

перевірка на еталонних наборах даних Middlebury демонструє, що запропонований метод перевершує існуючі методи у 

зменшенні значень середньої абсолютної різниці, особливо у сценаріях з високим масштабуванням. Візуальне порівняння 
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підкреслює його здатність придушувати артефакти і підвищувати різкість країв, що підтверджує його ефективність у різних 

умовах. Цей підхід має значний потенціал для застосувань, що потребують високоякісних карт глибини, включаючи 

робототехніку, доповнену реальність, автономні системи та медичну візуалізацію. Усуваючи критичні обмеження існуючих 

методів, дослідження пропонує надійне, універсальне рішення для уточнення карт глибини з можливостями оптимізації в 

реальному часі в динамічних середовищах..  

Ключові слова: карти глибин; 3D-реконструкція; обробка зображень; просторовий аналіз даних; уточнення даних; 

сенсорна візуалізація; виявлення країв; зменшення шуму; вимірювання глибини; обчислювальна візуалізація; доповнена 

реальність; автономні системи 
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