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ABSTRACT 

The analysis of gene expression data has grown increasingly complex with the expansion of high-throughput techniques like 
bulk RNA-seq and scRNA-seq. These datasets challenge traditional clustering methods, which often struggle with the high 
dimensionality, noise, and variability in biological data. Consequently, biclustering methods, which group genes and conditions 

simultaneously, have gained popularity in bioinformatics. Biclustering is valuable for identifying co-regulated gene subsets under 
specific conditions, aiding in the exploration of transcriptional modules and gene-disease links. This review examines both traditional 
clustering and biclustering methods for gene expression analysis, covering applications such as patient stratification, gene network 
identification, and drug-gene interaction studies. Key biclustering algorithms are discussed, focusing on their strengths and 
challenges in handling complex profiles. The article highlights significant issues like hyperparameter optimization, scalability, and 
the need for biologically interpretable results. Emerging trends are also reviewed, such as consensus clustering and distance metrics 
for high-dimensional data, with attention to the limitations of evaluation metrics. The potential for these methods in diagnostic 
systems for diseases like cancer and neurodegenerative disorders is also considered. Finally, we outline future directions for 

enhancing clustering and biclustering algorithms to create a personalized medicine system based on gene expression data. 
Keywords: Data mining; gene expression data; clustering; biclustering; decision-making system; ensemble-based methods; 

alternative voting 
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INTRODUCTION  

The increasing volume of biological data 

generated by modern experimental techniques, such 
as DNA microarrays and RNA sequencing, has led 

to a growing demand for advanced methods and 

algorithms for analyzing gene expression data. 
Among the most critical tasks in this area are 

clustering and biclustering, which allow for 

identifying groups of genes with similar expression 

patterns or co-expressed under specific conditions. 
These methods hold particular promise in 

developing diagnostic systems for complex diseases, 

such as cancer and neurodegenerative disorders, 
where understanding gene expression profiles can 

lead to improved prediction, diagnosis, and 

treatment strategies. 
The uniqueness of experimental gene 

expression data lies in its high dimensionality, noise, 

and heterogeneity. These characteristics make  
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traditional clustering methods insufficient, as they 

often fail to capture the intricate structure of the 

data. In contrast, biclustering approaches provide a 
more refined analysis by allowing the discovery of 

gene subsets that are co-regulated under specific 

subsets of conditions. Despite this potential, several 
challenges remain unresolved in this domain. 

Among them are issues related to the scalability of 

algorithms, the accuracy and interpretability of the 

results, and the integration of different data types to 
enhance the robustness of the clustering and 

biclustering processes. 

The primary goal of this survey is to provide 
a comprehensive analysis of the current state of 

methods and algorithms for clustering and 

biclustering gene expression data. We aim to 
highlight the existing problems in this field and 

assess the effectiveness of various approaches in 

addressing these challenges. Ultimately, the review 

create the conditions to the development of a robust 
diagnostic system for disease prediction based on 
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gene expression profiles, paving the way for more 

accurate and personalized medicine. 

1. PROBLEM STATEMENT 

The analysis of gene expression data, critical 

for insights into biological processes and disease 

mechanisms, faces considerable challenges due to 
the high dimensionality, noise, and variability of 

data produced by modern sequencing technologies 

such as bulk RNA-seq and scRNA-seq. Traditional 
clustering methods often fall short in addressing 

these complexities, limiting their utility in 

identifying co-regulated gene groups or conditions. 

Consequently, there is an increasing need for 
advanced clustering and biclustering techniques that 

can simultaneously analyze genes and conditions to 

uncover transcriptional modules and gene-disease 
associations. However, despite their potential, 

current clustering and biclustering methods 

encounter obstacles related to algorithm scalability, 

hyperparameter optimization, interpretability, and 
the integration of biologically meaningful results. 

Addressing these challenges is essential for 

advancing diagnostic tools and personalized 
medicine based on gene expression data. 

2. CURRENT ADVANCES IN 

CLUSTERING METHODS FOR DATA 

MINING 

In recent years, there has been a significant 

increase in the number of data mining and machine 

learning methods [1], particularly in clustering [2], 
which are widely applied in bioinformatics. Each 

clustering method has its unique properties, but none 

of them is universally “best” for all types of data. 
The primary goal of clustering is to organize a 

dataset into a smaller number of groups (clusters) so 

that similar elements are grouped together, while 
dissimilar ones are placed in different groups. The 

degree of similarity between elements is typically 

gauged by their “distance”: the closer the elements 

are, the higher their similarity. Partition-based 
clustering techniques, which rely on iterative 

algorithms, strive to identify the optimal K centers to 

separate the data into K clusters. These centers can 
either be centroids, as used in the k-means 

algorithm, or medoids, as employed in the k-

medoids algorithm. The k-means algorithm locates 

centroids by minimizing the total squared Euclidean 
distances between each data point and its nearest 

centroid. Its advantage is low computational 

complexity, but it is sensitive to outliers and requires 
prior determination of the number of clusters K. 

Many scRNA-seq analysis methods use k-means. 

For  instance,  the  SAIC  method  [3]  integrates  

k-means clustering with ANOVA for cell grouping, 

followed by the identification of gene signatures. 

SCUBA [4] divides cells into two groups at each 
time interval and applies gap statistics to identify 

bifurcation points. SC3 [5] utilizes k-means for 

projecting pairwise cell distance matrices and 
merges clustering results via a consensus function. 

Both pcaReduce [6] and scVDMC [7] use k-means 

for initializing their algorithms. 
The k-medoids algorithm selects K points from 

the original N data points in a way that minimizes 

the total distance to these medoids. This technique 

performs well with discrete data that have well-
defined cluster centers. However, like k-means, it is 

sensitive to outliers and requires predefining the 

number of clusters K. RaceID2 [8], designed to 
detect rare cell types in scRNA-seq data, 

demonstrated that replacing k-means with k-medoids 

improves clustering accuracy. 

Hierarchical clustering remains the most 
commonly used method for analyzing gene 

expression data. It constructs a hierarchical structure 

among data points, which naturally forms clusters 
through the tree’s branches. Many scRNA-seq 

clustering algorithms either utilize hierarchical 

clustering or incorporate it as a step in their analysis. 
One of its advantages is that it requires few 

assumptions about the data's distribution, making it 

applicable to datasets with diverse shapes. 

Furthermore, hierarchical clustering effectively 
represents the relationships between all data points, 

aiding in the interpretation of clustering results. 

interpretation of clustering results. There are two 
primary types of hierarchical clustering: 

agglomerative and divisive. BackSPIN [9] is a 

bidirectional clustering method that applies 
hierarchical clustering across both the gene and cell 

dimensions. The correlation matrix of gene 

expression data is progressively divided through an 

iterative process using SPIN [10] until the 
predefined separation criteria are satisfied. The 

cellTree [11] algorithm creates a hierarchical 

structure for individual cells by generating a 
minimum spanning tree based on distributions 

produced by Latent Dirichlet Allocation (LDA). 

CIDR [12] employs hierarchical clustering on top 

coordinates obtained via Principal Coordinates 
Analysis (PcoA) from a dissimilarity matrix created 

after imputing missing data. ICGS [13] uses 

hierarchical clustering to group gene expression 
data, selecting genes based on their expression levels 

and dynamic range, followed by pairwise correlation 

analysis. RCA [14] applies hierarchical clustering to 
a correlation matrix that is constructed from the 
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projections of single-cell profiles onto aggregated 

scRNA-seq data. SC3 [5] also utilizes agglomerative 

clustering on a consensus matrix, which is formed 
by merging the results of multiple k-means 

clusterings. DendroSplit identifies clusters within a 

hierarchical tree by performing dynamic splits and 
merges of branches, using a division index based on 

the original gene expression data. 

Mixture model-based clustering operates on the 
assumption that the data are samples derived from a 

mixture of different probability distributions, with 

each distribution representing a distinct cluster. 

Formation of a cluster structure is carried out by 
estimating the likelihood of each sample belonging 

to a specific distribution. For continuous data, the 

Gaussian Mixture Model (GMM) is the most 
popular, whereas the categorical mixture model is 

preferred for discrete data. These approaches 

provide the benefit of a robust probabilistic 

framework, enabling the integration of prior 
knowledge into the clustering process. Nevertheless, 

interpreting mixture models necessitates advanced 

optimization or sampling methods, which are 
computationally demanding and rely heavily on the 

assumptions made about the data distribution. 

Typically, training mixture models is performed 
using the Expectation-Maximization (EM) 

algorithm, which alternates between estimating 

mixture parameters and classification probabilities. 

Alternatively, sampling and variational approaches 
are employed for training probabilistic graphical 

models. The computational complexity of these 

models is determined by the type of distribution 
used in the mixture. 

BISCUIT [15], as an illustration, utilizes a 

Hierarchical Dirichlet Mixture Model (HDMM) and 
includes cell-specific scaling along with the 

imputation of missing values. This model treats cells 

as a Gaussian mixture with a Dirichlet distribution 

for the mixing coefficients, a normal prior for the 
means, and a Wishart distribution for the covariance 

matrices, accounting for technical variability 

between individual cells. BISCUIT is trained using 
Gibbs sampling. Seurat 1.0 [16] integrates scRNA-

seq data with in situ RNA to enable spatial 

clustering of cells. The integration is achieved 

through a bimodal mixture model that focuses on a 
specific group of marker genes, enabling the 

identification of spatial clusters based on the 

probability that a scRNA-seq profile belongs to a 
given cluster. DTWScore [17] selects the most 

distinctive genes from scRNA-seq time-series data 

and uses GMM to cluster cells. TSCAN [18] 
employs GMM to cluster cells and then constructs a 

minimum spanning tree is employed to identify 

pseudotemporal progression.  

Graph-based clustering models data points as 
nodes in a graph, with edges representing pairwise 

similarities between them. This method operates on 

the assumption that dense communities exist within 
the graph, which can be visualized as dense 

subgraphs or spectral components. Although these 

algorithms are less reliant on assumptions about data 
distributions, they often require substantial 

computational resources, which is a significant 

limitation. Spectral clustering and clique detection 

are among the most widely used graph-based 
clustering algorithms. Spectral clustering [19] begins 

by constructing a similarity matrix and a graph 

Laplacian using a similarity function, such as the 
RBF kernel (which must be tuned). The eigenvectors 

of the Laplacian are calculated, and k-means is used 

for the clustering process. However, the high 

computational load involved in calculating all 
eigenvectors often makes spectral clustering 

impractical for large datasets. In TCC-based 

clustering [20], spectral clustering is applied with a 
similarity matrix based on transcript compatibility 

and Jensen-Shannon divergence between cells, but 

only when the number of cell types is 
predetermined; otherwise, affinity propagation is 

employed. SIMLR [21] refines cell similarity 

metrics by introducing rank constraints and graph 

diffusion, followed by spectral clustering on the 
latent components. 

A clique in graph theory refers to a subgraph 

where each node is connected to every other node, 
representing clusters of data points within the graph. 

Since finding cliques can be computationally 

expensive, heuristic approaches are often employed. 
For instance, SNN-Cliq [22] uses clique detection to 

cluster cells based on scRNA-seq data. Since true 

cliques are rare in sparse graphs, it instead identifies 

dense, quasi-cliques that are not fully connected in 
the shared nearest neighbor (SNN) graph. In single-

cell analysis, one of the most widely used graph-

based clustering methods is the Louvain algorithm, a 
community detection approach that provides better 

scalability than other methods. It uses a greedy 

strategy to assign nodes to communities and 

iteratively updates the network to achieve a coarser 
representation. For instance, SCANPY [23] 

integrates the Louvain algorithm for large scRNA-

seq dataset analysis, and Seurat [16] uses it on an 
SNN graph to classify cell types. 

Density-based clustering identifies clusters as 

areas in the input space with a high density of data 
points. Notable examples include DBSCAN and 
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density peak clustering. DBSCAN [24] forms 

clusters by choosing a data point as the center of a 

sphere with radius ε and checking whether the 
number of points inside the sphere surpasses a given 

threshold. This operation is performed for every 

point to expand the clusters. This method is both 
efficient and versatile for data of arbitrary shapesю 

However, DBSCAN is sensitive to parameter tuning, 

and its performance may degrade if cluster densities 
are uneven. In scRNA-seq analysis, density-based 

clustering is frequently used to find outlier cells, as 

illustrated by GiniClust,  and Monocle 2 [25]. 

Unlike DBSCAN, which uses a density threshold, 
density peak clustering [26] focuses on the distances 

between points and assumes that cluster centers are 

local maxima of density. Monocle 2 [25] uses this 
technique for cell clustering within the t-SNE-

generated space. 

Kohonen networks, commonly referred to as 

self-organizing maps (SOMs) [27], employ 
competitive learning to perform clustering tasks. 

This method iteratively updates the cluster center 

positions for each data point, with adjustments 
weighted based on the similarity or distance between 

the point and centers, using stochastic gradient 

descent. Cluster centers are commonly initialized on 
predefined structures like grids. SOMs are scalable 

because stochastic gradient descent does not require 

all data points to be stored in memory 

simultaneously. Additionally, these predefined 
structures can incorporate prior knowledge, allowing 

for more interpretable relationships between clusters 

to be established. Despite their advantages, SOMs 
are quite sensitive to parameter choices, especially 

the learning rate in weight adjustments. They are 

commonly utilized for visualizing and clustering 
scRNA-seq data. Studies [28] have utilized SOMs to 

create intuitive visualizations, such as 2D heatmaps, 

where the spatial layout reflects similarities in 

expression patterns. The SCRAT software package 
[29] supports the generation of 2D heatmaps that 

display correlations between genes in single-cell 

profiles. SOMSC [30] applies SOMs to compress 
high-dimensional gene expression data into a two-

dimensional space, aiding in the detection of 

transitions between cell states and in ordering cells 

along a pseudotemporal trajectory. 
An enhancement of traditional self-organizing 

maps (SOMs) is the Self-Organizing Tree Algorithm 

(SOTA) [31], which allows the formation of a tree 
structure, providing better representation of 

hierarchical relationships between clusters. Unlike 

SOMs, SOTA forms a tree, enabling the natural 
representation of cluster hierarchies, useful for 

visualizing and analyzing complex data 

relationships. SOTA adapts to the data by splitting 

tree nodes as necessary, offering more flexible and 
accurate clustering compared to the fixed grid 

structure of SOMs. Due to its hierarchical structure, 

SOTA is more efficient with large datasets, as it 
does not require processing all points 

simultaneously, which can be problematic for 

SOMs. The tree structure of SOTA facilitates the 
interpretation of clusters and their relationships, 

while SOM provides a less informative flat map. 

Thus, SOTA offers a more flexible and effective 

approach to clustering gene expression data 
compared to traditional SOMs. 

Ensemble clustering, or consensus clustering, 

uses multiple approaches to cluster the same dataset. 
The results are then combined using a consensus 

function. This approach accounts for the diversity of 

data representations and clustering models, making 

it more robust and effective compared to individual 
models. Nonetheless, the effectiveness of ensemble 

clustering is influenced by the quality of the 

underlying algorithms and the methods used for data 
transformation. SC3 [5] is an example of a 

consensus approach designed for clustering scRNA-

seq data. It initiates by computing pairwise distance 
matrices between cells based on Euclidean, Pearson, 

and Spearman correlations, then applies 

transformations via PCA and the Laplacian. The six 

resulting projections are then clustered using the k-
means algorithm, and the outcomes are combined 

into a consensus matrix by employing a similarity-

based partitioning strategy [5]. This matrix is 
subsequently used for hierarchical clustering. 

Another consensus method, conCluster [32], merges 

multiple partitions derived from different runs of t-
SNE (t-Distributed Stochastic Neighbor Embedding) 

and k-means, each with varying parameters, and 

merges them for final clustering using k-means. 

Therefore, SC3 and conCluster demonstrate the 
advantages of ensemble clustering by providing 

higher accuracy and robustness through the 

combination of different approaches. 
The Affinity Propagation clustering algorithm 

[33] works by exchanging messages between two 

types of log-likelihoods to determine cluster centers 

(exemplars). The first type of message, 
responsibility, indicates how appropriate a data point 

xk is for representing another point xi compared to 

other possible candidates. The second type, 
availability, evaluates how appropriate it is for point 

xi to be represented by point xk, considering other 

points also represented by xk. The main advantage of 
Affinity Propagation is that it does not require the 
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number of clusters to be predefined. However, 

Affinity Propagation has some limitations, including 

its high computational cost and sensitivity to 
outliers. In TCC-based clustering [20], Affinity 

Propagation is applied for cell clustering when the 

number of cell types isn't predetermined. 
Additionally, SIMLR [21] can employ Affinity 

Propagation on the similarity matrix derived from 

multiple kernels, without the need for spectral 
clustering in the latent space. 

3. ENSEMBLE CLUSTERING IN GENE 

EXPRESSION DATA ANALYSIS 

When analyzing gene expression data, 
experimental data can be structured in multiple 

ways. In the conventional approach, the data is 

typically arranged as a matrix where the rows 
signify genes, and the columns represent samples 

(such as various tissues or conditions). In this 

structure, each matrix element shows the expression 

level of a specific gene in a particular sample. This 
format is common in bulk RNA-seq analysis, which 

focuses on gene expression across different samples. 

In the case of single-cell RNA-seq (scRNA-seq), the 
matrix is transposed, with rows corresponding to 

cells and columns representing genes. Each element 

in this matrix reflects the expression level of a 
specific gene in an individual cell. For cancer 

research, scRNA-seq can help identify specific 

genes or gene combinations that are characteristic of 

cancer cells. This aids not only in diagnosis but also 
in developing personalized treatment strategies by 

identifying the most effective therapeutic targets for 

each patient.  
It is important to note that, regardless of the 

specific approach, the initial data are always 

represented as a matrix of gene expression values: 

𝐸 = [

𝑒11 ⋯ 𝑒1𝑛

⋮ ⋱ ⋮
𝑒𝑚1 ⋯ 𝑒𝑚𝑛

],               (1) 

where: 𝑒𝑖𝑗 is the expression level of the j-th gene 

corresponding to the i-th sample or cell; n is the 
number of samples or cells; m is the number of 

genes. 

In the context of bulk RNA-seq or scRNA-seq 

data analysis, samples are commonly separated into 
k non-overlapping clusters through a chosen 

clustering algorithm. This allows for the grouping of 

relevant sample or cell types within the gene 
expression matrix based on their characteristics. 

Accurate clustering of genes enables the 

identification of significant gene subsets, which can 
be further utilized in diagnostic models. These 

models use the identified gene clusters as attributes 

for classifying samples or cells. The application of 

ensemble clustering methods at this stage enhances 
the objectivity of decision-making regarding the 

nature of the grouping of the studied objects. Fig. 1 

illustrates a general scheme of the method based on 
the application of a cluster ensemble [34]. Also 

known as consensus clustering or cluster 

aggregation, ensemble clustering aims to recover the 
inherent groupings of samples or cells by utilizing 

labels from different data partitions [35]. The key 

objective is to integrate several base clustering 

results into a unified clustering solution, as depicted 
in Fig. 1. To date, various methods and approaches 

have been proposed and applied to gene expression 

data processing, such as cola [36], scEFCS [37], 
SC3 [5], and SHARP [38]. While these approaches 

address different scientific challenges and focus on 

distinct aspects, the fundamental principles and key 

issues surrounding the generation and integration of 
numerous partitions or models remain consistent, 

enhancing the objectivity of cluster structure 

formation. This approach can also be extended to 
bulk RNA-seq data analysis, where instead of 

individual cells, samples are considered, which 

similarly require reliable and accurate clustering to 
uncover natural groupings of samples and/or genes. 

 

Fig. 1. General scheme of the ensemble  

        clustering method  
        Source: compiled by the authors 

The development of multiple diverse cluster 
partitions or models is a key requirement for all 

ensemble clustering techniques. Ensemble clustering 

techniques currently applied in single-cell and multi-
cell transcriptomics can be broadly divided into 

three types: gene-oriented methods, cell-oriented 

methods, and strategies that emphasize various 
algorithms (Fig. 2) [34]. A typical approach for 

generating base cluster partitions involves randomly 

selecting a set number of gene features from the 

gene expression matrix, forming subsets that capture 
only part of the original genetic data. Repeating this 

process multiple times results in a series of subsets, 

each used for further cluster analysis. To ensure the 
accuracy of the subsequent analysis, a preprocessed 
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gene expression matrix, where the dimensionality is 

reduced to retain the most significant genes, is 

usually employed. For instance, the cola method 
[36] starts by performing feature selection to prepare 

the data, then generates multiple cluster partitions, 

offering the option to sample either genes or cells 
depending on user specifications. Random selection 

of cells, similar to gene sampling, is also a key 

strategy in gene expression data analysis. 
One common approach for creating subsets of 

gene expression data involves sorting gene features 

according to a predefined criterion. This allows for 

obtaining a data subset that retains a subset of the 
original gene information after dimensionality 

reduction. Once the dimensionality of the initial data 

is reduced, the remaining or newly formed features 
are listed in descending order according to their 

variability. Due to the fact that each feature impacts 

the result differently on the final outcome, the 

features with the highest variability values are 
typically retained as low-dimensional input data for 

further analysis. In the case of high-dimensional 

data, dimensionality reduction helps uncover 
information hidden within these higher dimensions. 

However, this process can also result in the loss of 

critical information by removing part of the 
structural details. To mitigate this drawback, it is 

typically recommended to combine several 

dimensionality reduction methods [39]. Practically, 

employing different reduction techniques produces 
multiple data subsets. The resulting clustering’s 

from these subsets are integrated into a final 

outcome, overcoming the limitations of a single 
dimensionality reduction technique.  

Feature selection is a widely used 

dimensionality reduction technique that removes 
genes with lower variability, keeping those with 

higher variability for cluster analysis. The process 

starts with calculating measures of variability for 

each gene, including standard deviation, variance, 
and coefficient of variation. After arranging the 

genes in descending order by these indices, the top 

features are selected to generate data subsets. 
Feature extraction plays a central role as a 

dimensionality reduction method in high-

dimensional single-cell expression profiles. In 

contrast to feature selection, classical feature 
extraction techniques, like PCA, produce “new 

components” by combining several gene features. 

The biological significance of these principal 
components has not been thoroughly explored. 

However, this does not indicate that the “new 

principal components” are lacking in value. 
Researchers commonly select different subsets of 

principal components to capture all available 

variability and represent the original dataset in 

practical applications. In [40], the ANMF-CE 
method produces multiple base cluster partitions by 

selecting new dimensions after feature extraction. 

The study utilizes the Adaptive Total Variation Non-
Negative Matrix Factorization (ATV-NMF) 

algorithm for feature extraction, a method that 

handles missing values, noise, and arbitrarily shaped 
clusters. 

Random projection (RP), unlike other 

dimensionality reduction techniques, does not 

necessitate calculating distances or similarities 
between cells or “new components”, thus reducing 

execution time and resource consumption while still 

preserving the variability of information in low-
dimensional data with high probability, similar to 

that in the context of high-dimensional data, SHARP 

is a notable clustering ensemble system based on the 

random projection method [38]. It applies random 
projection repeatedly to the matrix to create multiple 

low-dimensional datasets, which replace the original 

data for hierarchical clustering, producing a variety 
of cluster partitions.  

Autoencoders are among the most frequently 

used neural network models, capable of extracting 
both linear and non-linear features from the original 

data. Different types of autoencoders (AEs) are 

commonly applied to reduce high-dimensional 

scRNA-seq data into lower dimensions. As an 
illustration, the scIAE method outlined in [41] 

separates gene expression profiles into training and 

testing subsets, applying random projection to each 
one independently to create several subsets of the 

original data. 

Another approach involves splitting single-cell 
data into several subsets (subspaces) and analyzing 

them to generate multi-cluster distributions. It is 

important to note that these data subsets differ 

significantly from the primary data matrix. The same 
genes remain in these submatrices, but the key 

difference lies in the selection of cells (Fig. 2). In 

[42], a method based on random cell sampling for 
ensemble clustering was proposed. The Cola method 

introduced in [36] relies on repeated random 

sampling and reclustering of genes or cells, 

ultimately resulting in a stable clustering outcome. 
Compared to gene sampling, clustering results from 

cell sampling subsets tend to be more reliable. 

Although random sampling allows for the rapid 
creation of numerous data subsets, it complicates the 

formation of a subset that fully reflects the original 

dataset. To achieve stable results and increase the 
number of sampling iterations, a random stratified 
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sampling strategy can also be applied to the initial 

single-cell expression data. Unfortunately, these 

strategies frequently result in heavy computational 
resource consumption when processing large-scale 

datasets. [43]. In this study, the authors proposed a 

new RC approach for cell selection, where a random 
portion of cells is initially sampled, and then k-

means clustering is performed to identify 

representative cells that encapsulate the entire 
original dataset [43]. In [44], the authors suggested a 

similar strategy, but with the difference that the 

center of each cluster, identified by the k-means 

method, is considered the representative cell. It's 
important to recognize that randomly sampling a 

portion of cells from the original dataset can result in 

overlapping information. The SHARP algorithm 
addresses this by dividing the large dataset into 

equal blocks before sampling. This method 

optimizes computational resource use, prevents 

memory overload, and minimizes sampling 
imbalances. [38]. 

4. ALGORITHM-ORIENTED METHODS FOR 

GENE EXPRESSION DATA CLUSTERING 

Both gene-based and cell-based approaches, 

which focus on creating subsets of gene expression 

data, can result in the loss of some information from 
the original dataset. In contrast, using methods based 

on distance metrics and/or clustering algorithms 

(Fig. 2) allows the preservation of all valuable 

information contained in the original data. When 
conducting cluster analysis of gene expression data, 

two key aspects must be considered: the methods for 

assessing the distance or similarity between samples 
or genes, and the algorithm for grouping the relevant 

data based on these similarity measures.  

The effectiveness of applying a partition-based 
clustering algorithm largely depends on the ability 

method for assessing the distance or similarity 

between samples or genes [10]. Numerous 

approaches are available for measuring the distance 
between objects, such as Euclidean, Manhattan, 

Mahalanobis, and Minkowski distances. Similarly, 

the distance between samples or cells can be 
assessed through their similarity, where greater 

similarity corresponds to a smaller distance. This 

principle is the foundation of several popular 

similarity measures, such as Pearson and Spearman 
correlation coefficients, and mutual information 

scores. By using various distance or similarity 

metrics, multiple covariance matrices can be created 
for sample pairs, leading to the generation of several 

clustering partitions through a specific clustering 

algorithm (Fig. 2). As different distance or similarity 
metrics emphasize distinct features of the input data, 

the final clustering result obtained by combining 

several partitions from different algorithms tends to 

be more robust and reliable. Building on this idea, 
the authors in [5] proposed SC3 (single-cell 

consensus clustering), a consensus clustering 

approach for single-cell data analysis that utilizes 
three common distance and similarity measures: 

Euclidean distance, Pearson, and Spearman 

correlation coefficients, ensuring more stable 
clustering results. Furthermore, the authors in [41] 

explored four metrics, including those three, and 

introduced a consensus distance. However, it should 

be noted that the issue of selecting the most 
appropriate distance or similarity metric for high-

dimensional gene expression data remains 

unresolved. Euclidean distance is often ineffective 
for high-dimensional data, and metrics based on 

mutual information require careful determination of 

the method for estimating Shannon entropy, which 

opens the door for further research in this field. 
When the clustering process is implemented, a 

common issue arises in ensuring the appropriate 

grouping of clustering objects into distinct clusters. 
The use of different clustering algorithms for gene 

expression data often leads to inconsistent clustering 

outcomes, a phenomenon referred to as algorithmic 
preference in clustering. Applying various algorithms 

to the same dataset has the potential to generate 

numerous base clustering partitions, and integrating 

these results may yield a more reliable clustering 
outcome. However, this introduces the challenge of 

optimizing the hyperparameters for each algorithm, 

which can significantly influence the resulting cluster 
structures. The scEFCS method, as an example, 

integrates nine popular clustering algorithms or 

software tools often used for gene expression data, 
such as SC3, Monocle, CIDR, pcaReduce, 

Rphenograph, Seurat, SHARP, SINCERA, and 

RaceID [37]. In a similar approach, the ECBN 

framework incorporates four well-known clustering 
methods or packages for normalized datasets, 

including CIDR, Seurat, SC3, and t-SNE + k-means 

[45]. GeoWaVe, developed by Burton and colleagues, 
utilizes five commonly used clustering algorithms 

[46], such as FlowSOM [47], PHATE with k-means, 

SPADE, Phenograph [48], and PARC [49]. 

As shown in Fig. 3, the alternative voting 
strategy is currently the most widely adopted 

approach for obtaining a final result from several 

base clustering partitions [34]. Due to its simplicity, 
the majority rule (i.e., voting) provides a stable and 

representative clustering outcome that reflects the 

majority of base clustering partitions.  
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Fig. 2. Three techniques for generating various cluster partitions 
Source: compiled by the authors 

 
 

Fig. 3. Optimal cluster structure selection strategy based on the alternative voting method 
Source: compiled by the authors 
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It is important to note that achieving a more 

accurate clustering result requires a comprehensive 

input of base clustering partitions, which can lead to 
increased computational costs. The hypergraph-

based approach offers a more adaptable way of 

representing relationships between data points, 
which is especially beneficial when integrating 

multiple base clustering partitions. This approach 

represents the graph as a diagram illustrating the 
connections and topological structure between data 

points. A typical graph is expressed as G (V, E), 

with V as the vertices and E as the edges. A 

hypergraph, a more generalized form, allows edges 
to connect multiple vertices and is denoted H (V, E). 

Unlike standard graphs, hyperedges can connect 

more than two vertices. In this case, clustering 
partitions can be represented as hypergraphs, where 

cluster labels are transformed into corresponding 

hyperedges. Each clustering partition pi is 

represented using a binary matrix, with the rows 
corresponding to cells (vertices) and the columns to 

clusters (hyperedges). The matrix elements vjk 

indicate the value of the j-th row in the k-th 
hypergraph.  

The following rules govern the assignment of 

cell labels: 

𝑣𝑖𝑘 = {
1, 𝑖𝑓 𝑡ℎ𝑒 𝑖 − 𝑡ℎ 𝑜𝑏𝑗𝑒𝑐𝑡 ∈ 𝑘 − 𝑡ℎ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. 

The binary matrix assigns the value 1 to 

elements of a hyperedge when a cell belongs to a 

particular cluster and 0 when it does not. As a result, 
each cluster becomes a hyperedge, and the clustering 

result is illustrated as a hypergraph. The hypergraphs 

created from different clustering partitions can then 
be merged into a single large hypergraph to 

consolidate all partitions. However, one significant 

downside of the hypergraph strategy is its growing 
computational complexity as the number of vertices 

and edges increases. Due to this high computational 

complexity, applying hypergraph-based clustering to 

large datasets becomes challenging. 

5. METHODS AND MODELS FOR 

BICLUSTERING GENE EXPRESSION DATA 

Biclustering is a data mining technique that 
groups both rows (observations) and columns 

(attributes) simultaneously in a data matrix. It 

enhances traditional clustering methods by exposing 
more complex relationships between data elements. 

Fig. 4 visualizes the key differences between 

clustering and biclustering [50].  

Fig. 4 illustrates that clustering methods 
identify mutually exclusive groups of rows or 

columns in a data matrix, while biclustering methods 

uncover data subsets that fulfill criteria of 

homogeneity and statistical significance (local 

model). In the figure, orange and blue signify two 
row clusters (A), two column clusters (B), and two 

overlapping biclusters (C).  

The advantages of bicluster analysis compared 
to traditional clustering algorithms are as follows: 

Firstly, biclustering considers similarity between 

observations (rows) only within a specific subset of 
attributes (columns), unlike traditional clustering, 

which considers all attributes when calculating 

similarity. This makes biclustering particularly 

useful for biological data analysis, where local 
patterns exist, such as gene expression data. It 

allows for the identification of transcriptional 

modules, which consist of subsets of genes (rows) 
that correlate within a subset of samples (columns) 

[51]. Secondly, biclustering permits overlapping 

groups, meaning that both observations and 

attributes can belong to multiple groups 
simultaneously (whereas traditional clustering 

assigns observations strictly to a single group). This 

reflects the fact that genes can participate in multiple 
biological processes simultaneously [52]. 

Additionally, biclustering provides more flexibility 

in uncovering complex relationships between 
observations, making it possible to capture hidden 

structures and patterns that may not be visible when 

relying on global models [53]. The strength of 

biclustering lies in its versatility to detect the 
combined effects of multiple biological processes 

active under different conditions, reveal complex 

biological patterns, and apply methods suited to each 
research task’s needs [54]. Though introduced by 

Hartigan in 1972 [55], biclustering gained 

significant attention in biological and biomedical 
research following the development of the Cheng 

and Church algorithm in 2000, which was pivotal in 

gene expression analysis [51]. Today, biclustering is 

a cutting-edge technique for investigating 
correlations between gene subsets and experimental 

conditions, uncovering biological network modules, 

patient phenotype stratification, and gene-drug 
relationship analysis [54]. Its applications have also 

expanded beyond bioinformatics into areas like text 

mining, recommendation systems, and climatology 

[56]. 
Recent research highlights the growing appeal 

of bicluster-based methods and covers the following 

directions [6]: 

 Algorithmic studies: these focus on 
analyzing the performance and characteristics of 

selected biclustering algorithms [52, 53]; 
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Fig. 4. The difference between data clustering and biclustering 
Source: compiled by the authors 

 

 Comparative studies: these quantitatively 

compare the effectiveness of different biclustering 
algorithms [57]; 

 Evaluation methodologies: these analyze the 

metrics used by algorithms and in comparative 

studies to assess performance [58]; 

 Application studies: these explore the use of 

biclustering in specific applied fields [54]; 

 Software studies: these present software 
tools related to the analysis and application of 

biclustering methods [54]. 

However, despite certain advancements in this 
field, the successful application of bicluster analysis 

for gene expression data faces several challenges. 

One of the key issues is the difficulty in accurately 
defining the boundaries of biclusters, which can lead 

to the formation of biclusters with heterogeneous 

structures. 

Additionally, the metrics used to evaluate 
bicluster quality may lack precision or relevance, 

complicating objective comparison of results. 

Moreover, the large number of biclusters generated 
during analysis can hinder result interpretation, 

particularly when identifying biologically 

meaningful patterns. Another major obstacle is the 
sensitivity of algorithms to hyperparameter settings, 

as even minor adjustments can significantly 

influence the analysis outcomes, resulting in 

instability and variability in conclusions. 
Furthermore, most existing biclustering methods do 

not account for the more complex multi-level 

hierarchy of biological processes, limiting their 
ability to accurately model real biological systems. 

Improving bicluster analysis technology in this 

context may involve enhancing the efficiency of 

existing algorithms, developing new biclustering 
algorithms, refining methods for optimizing 

hyperparameters, improving similarity metrics 

within biclusters, and increasing the robustness of 
methods to hyperparameter variations. 

CONCLUSIONS 

This survey examined the current state of 

clustering and biclustering algorithms applied to 
gene expression data, emphasizing their significance 

in understanding biological processes and disease 

mechanisms. We highlighted the limitations of 

traditional clustering methods when faced with the 
complexity of high-dimensional gene expression 

datasets. In contrast, biclustering offers a more 

refined approach, capable of revealing hidden 
patterns and biological modules by analyzing both 

genes and experimental conditions simultaneously. 

The main challenges identified include the 
optimization of hyperparameters, ensuring the 

scalability of algorithms, and the need for more 

interpretable clustering results. Additionally, the 

effectiveness of biclustering in identifying 
biologically significant patterns is hindered by the 

heterogeneity of gene expression data, which 

complicates the accurate definition of bicluster 
boundaries. Furthermore, the development of robust 

evaluation metrics and consensus methods remains 

critical to improving the reliability of clustering and 

biclustering outcomes. 
The future of clustering and biclustering in gene 

expression data analysis lies in enhancing existing 

algorithms and developing new approaches that can 
effectively model complex biological systems. 

Priorities include improving the robustness of these 

methods to handle variability in gene expression 
data, refining hyperparameter optimization 

techniques, and incorporating multi-level biological 

hierarchies into clustering models. These 

advancements will support the creation of more 
accurate diagnostic systems and foster progress 

toward personalized medicine. 
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АНОТАЦІЯ 
 

Аналіз даних експресії генів стає дедалі складнішим через розширення високопродуктивних технологій, таких як bulk 
RNA-seq та одноядерне секвенування РНК (scRNA-seq). Ці набори даних створюють значні виклики для традиційних 
методів кластеризації, які часто не здатні справлятися з високою вимірністю, шумом та варіабельністю, властивими 
біологічним даним. Як результат, у біоінформатиці набувають популярності методи бікластеризації, що дозволяють 
одночасно групувати гени та умови. Бікластеризація є корисною для ідентифікації підмножин співрегульованих генів за 
певних умов, сприяючи дослідженню транскрипційних модулів та зв’язків між генами та хворобами. Цей огляд охоплює як 

традиційні методи кластеризації, так і методи бікластеризації для аналізу експресії генів, розглядаючи їх застосування для 
стратифікації пацієнтів, ідентифікації генних мереж та дослідження взаємодії між генами та ліками. Обговорено ключові 
алгоритми бікластеризації з акцентом на їхні сильні сторони та виклики у роботі зі складними профілями. Стаття висвітлює 
важливі питання, такі як оптимізація гіперпараметрів, масштабованість та необхідність біологічно інтерпретованих 
результатів. Розглянуто новітні тенденції, такі як консенсусна кластеризація та метрики відстані для високовимірних даних, 
а також обмеження поточних метрик оцінки. Розглядається потенціал цих методів у діагностичних системах для таких 
захворювань, як рак та нейродегенеративні розлади. Нарешті, ми окреслюємо перспективні напрями для вдосконалення 
алгоритмів кластеризації та бікластеризації з метою створення системи персоналізованої медицини на основі даних 

експресії генів.. 
Ключові слова: інтелектуальний аналіз даних; дані експресії генів; кластеризація; бікластеризація; система прийняття 

рішень; методи на основі ансамблів; альтернативне голосування; персоналізована медицина 
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