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MATHEMATICAL SIMULATION
OF LAMINAR-TURBULENT TRANSITION
AND THE TURBULENCE SCALE ESTIMATION

Introduction. In fluid mechanics the turbulence represents a flow pattern characterized by chaot-
ic property changes [1]. This mode causes a rapid pressure and velocity variation in space and time.
As opposed to laminar flow, the turbulent fluid stream does not flow in parallel layers with no disrup-
tion between them (it flows chaotically).

The turbulent flow is characterized by such parameters as irregularity, diffusivity (the character-
istic responsible for the enhanced mixing and increased rates for transports of mass, momentum and
energy in a flow) and dissipation (the turbulence dissipates rapidly as the kinetic energy is converted
into internal energy through viscous shear stresses). Moreover, in turbulent flow a lot of unsteady vor-
tices do appear and mutually interact.

There exist numerous examples of turbulence both natural (most of the atmospheric circulations, intense
oceanic currents etc.) and artificial (present at various engineering fields: fluids flowing inside of machinery,
circumfluent external flows over all kind of vehicles such as cars, airplanes and ships, etc.). The engineering
often does require a comprehensive understanding of turbulence phenomena and knowledge of the laminar-
turbulent transition laws. In many cases the turbulence scale also is a contributing crucial factor.

Analysis of reference sources. On the one hand the turbulence is rather well studied [1, 2] at a
first sight. Such features of turbulence as its irregularity, diffusivity and dissipation are described from
various points of view.

Turbulent flows are always highly irregular ones. For this reason, turbulence problems are usual-
ly treated rather from statistical side than applying a deterministic approach. Generally the turbulence
investigations are based on the statistical theory of Kolmogorov [2], which, in its turn, departs from
the Richardson’s notion of turbulence [1].

On the other hand the turbulence still remains only partially understood despite multiple efforts
of many leading scientists applied for well over a century [1, 3].

One of the most interesting (from practical point of view) problems of fluid dynamics is the one
of laminar flow to turbulent one transition [4]. This problem is still unsolved. Up to present date we
did not found a theorem correlating the non-dimensional Reynolds number to turbulence [1, 4]. Also
still unresolved remains the turbulence scale estimation problem.

Research objective. This research goal consists in developing the principles for laminar-
turbulent transition mathematical modeling and methods for estimating the turbulence scale.

Main Body.

Mathematical model. The continuous medium (fluid or gas) motion is described by the Euler
equations (for inviscid flows) or by the Navier-Stokes equations (for viscous flows) combined with the
continuity equation. In the case of compressible medium this set of equations is expanded with the
energy conservation law (or the first law of thermodynamics).

The mathematical reason for a laminar flow transition into the turbulent one relates to instability
of hydrodynamic equations solutions corresponding to a steady laminar flow. This instability is known
as the instability of steady (laminar) flow, but its nature is mathematical (not physical).
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Despite its intricacy the mathematical theory of laminar flows stability may be generally stated in
such a simple way:

— small nonstationary perturbations imposed on the one-dimensional (as a rule) stationary solu-
tion, which corresponds to steady laminar flow;

— those perturbations time-dependent increase does mean both the stability loss and transition
to turbulence.

Numerous hydrodynamic stability problems can be considered as two-dimensional ones because

of their symmetry.
In the two-dimensional case the perturbations are set in such a form:
~ exp(ihy + ot), (1)
where & =21/ A (2)

A — wave length;

i — unit imaginary number (i* =-1);
® — complex number (eigen-value);
y — spatial coordinate;

t — time parameter.
Such a choice for the perturbations represented is due to the fact that every linearized perturba-
tion can be represented (by spatial coordinate y) as a Fourier series or a Fourier integral, that does

mean we can proceed to this perturbation as to the exponential type exp(ify) elementary waves’ su-

perposition. Necessary boundary condition for perturbations is their finitude at infinity (¢ — ).
As a result there is an eigen-value problem for the linearized set of the hydrodynamic equations.
If the solution of the eigen-value problem leads to inequality
Rew >0, 3)
that means that we observe an instability and transition to turbulence takes its place as a result.

If the solution of the eigen-value problem leads to inequality

Rew<0, 4)
that means that the flow is stable to perturbations of the exponential type (1). But this fact is not a
guarantee of the flow absolute stability.

If the solution of the eigen-value problem leads to the equality

Rew=0, (%)
that means that this case is “neutral” from the point of view of the stability theory, i.e. necessary is to
change the problem posing (as a rule the problem formulation needs to use another — and more com-
plicated — model) to solve the laminar flow stability problem and to define conditions for the
autoturbulization.

Thus classical theory of hydrodynamic instability allows solving the laminar-turbulent transition
possibility problem, considering that the inequality (2) embodies a sufficient criterion for such transi-
tion. But this theory development allows also to estimate approximately the scale of turbulence A .

Characteristic (secular) equation for the eigen-value ® (in the most general case) is:

F(o, M)=0, (6)
where F' — the multiparameter function (polynomial or quasipolynomial for ® as usual).

If function £ does not depend on the wave length A then the adherence of the sufficient condition (3)
for instability means so-called an absolute instability, i.e., instability to perturbations with every possi-
ble wave lengths. For example such situation takes place for the stability problem of the laminar plane
flame in the inviscid incompressible medium.

If the function F represents an explicit function of the wave length A then formally two cases
are possible:

1) absolute instability;

2) instability in respect to perturbations with the bounded spectrum of the wave lengths.
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The second case is the most probable one. In this case the instable wave lengths spectrum may be
either discrete or continuous ones. Therewith the number of instable (Rew > 0) roots of the secular
equation (6) may be either finite (for example if function F is polynomial), or infinite one (for exam-
ple if function F' is quasipolynomial). It is possible to find out the wave length A,, that corresponds to
the perturbation with the fastest amplitude growth rate. The wave length A, can be taken as an ap-
proximate estimate for the turbulence scale A .

If the stability problem is solved for viscous medium then critical (transition) Reynolds number

Re, may be calculated by the wave length A, . That is

AV
Re;, =——, 8)
U,
and
* AV
Re, =——, )
U
where v — kinematic-viscosity coefficient,
u, — characteristic process velocity (for example velocity of the constant laminar flow, burning
velocity or detonation velocity).
If
Re, >Re; , (10)

then we observe the development of instability and the transition
of laminar flow to turbulence.
For every particular case the wave length A, (and the turbu-

lence scale A) is connected with the global typical size of the
problem (such as a tube diameter, a channel width, a flame
sphere radius etc.)

Results. The above-mentioned method for the turbulence
scale estimation is applied to the research of the cellular flame
(Fig. 1) as the turbulent flame well-known species. The stability
problem is solved for the viscous incompressible medium with
resulting two-dimensional time-dependent solutions of the
Navier-Stokes equations obtained [5] analytically. The theoreti-
cal results issuing for A, [5] are in good agreement with the cell

sizes A in experiments.

The turbulent flame structure investigation provides the
possibility to study deflagration-to-detonation transition (DDT),
that represents interest both for explosion safety and for the pulse
detonation engine designing [6]. Thus analytical estimates for DDT run-up distance and for the deto-
nation wave formation time are obtained [5] by rather simple algebraic formulae.

The stability and structure of the self-sustaining detonation wave propagating in a cylindrical
tube (considered as a model combustor) is studied [7]. The stability problem is therefore solved for an
inviscid compressible medium. The method used for analysis of perturbation development in the deto-
nation wave provides a satisfactory prediction for the detonation structure. According to the effected
analysis an integer number of nonuniformities having a mean size A, is packed in the tube cross-

Fig. 1. A sample of the cellular
flame surface

section. This number can be found precisely. Thus the solution for single-head (Fig. 2), double-head
and multihead detonations can be obtained. In such a way obtained results are also in good agreement
with experimental data [8] and with different numerical simulations for the turbulent structure of gase-
ous detonation.
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The suggested method never takes in consideration the
TWN'“%rM5 laminar-turbulent transitions details that represents the
L. vN\ ‘\ T . main imperfection of the elaborated method.

. s ; ' : By now there exist a huge number of different models
(including semi-empirical) for the detailed turbulent flow
calculations. Almost all of these models are implemented in
programme codes (for example in Open source Field Oper-
ation And Manipulation — Open FOAM, which is a C™
toolbox for the solution of continuum mechanics problems,
including computational fluid dynamics). But such pro-
grammes implementation takes a lot of computing time. And the suggested method is so simple that it
is rather useful for problems of turbulent scale estimating without flow detalization. Its main ad-
vantage relates to the possibility of turbulence scale A calculations in the real time mode.

Conclusions. The laminar-turbulent transition mathematical model and the turbulence scale es-
timating methods elaborated are based on the hydrodynamic stability problem solution.

The suggested mathematical model is universal, but its implementation in every particular case
requires to get a characteristic equation in an explicit form and to solve this equation (analytically or
numerically).

The elaborated model is mathematical but it is not physical (or mechanical). It can’t explain the
real mechanism of the laminar-turbulent transition.

The suggested method does not allow to get the detailed picture of turbulent flow but provides a
possibility to calculate the turbulence scale in a short period of time.

Specific results are obtained for the laminar-turbulent transitions in such flows as:

1) combustion wave propagating in viscous medium;

2) self-sustaining detonation wave propagating in inviscid medium.

In both cases the calculation data are in good agreement with experimental ones. This fact proves
the suggested theory correctness and feasibility.

Fig. 2. Photograph of the
single-head detonation in gas mixture.
Picture taken through a slot, positioned
in parallel to the tube axis
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AHOTALIA / AHHOTALUA / ABSTRACT

B.E. Bonxos. MaTeMaTH4He MO/Je/II0BAHHA Iepexoay JaMiHAPHOI Tedii B TypOy/1eHTHY Ta OlliHKa MaclITal0y Ty-
pOyaentHocti. [locnipkyBanuii B 1aHiit poOOTi mpoliec epexoy JaMiHapHOI Tedil B TypOyJIeHTHY BHKJIHMKAE iHTepec ULt
pi3HMX Tany3ed Hayku i TexHikd. OZHUM 3 HalBaXJIMBILIMX 3 IPAKTUYHOI 30py IUTaHb € MUTaHHS PO Macmtab TypOyIeHT-
HOCTi. MeTOI0 CTaTTi € PO3BUHEHHS IETEPMiHOBAaHOTO MaTEeMaTUYHOIO MOJICIIOBAHHS IIePeX0/y JaMiHapHOi Tedil B TypOy-
neHTHy. Po3po6iieHo opuriHanbHUil METOX OL[iHIOBaHHS MacuITaly TypOyJICHTHOCTI Ha OCHOBI PO3B’sI3aHHS 3a1ayi po CTiii-
KICTh JaMiHapHOi Teuil i 0OYMCIICHHs TOBXHUHHU XBHJII 30ypeHHs 3 HailOUIBIIOW MIBUAKICTIO 3pocTaHHs. [lieBicTh MeTomy
JIIEMOHCTpPY€E HOTO 3aCTOCYBaHHS JI0 TOCTIKEHHS HECTIHKOCTI Ta CTPYKTYPH XBUJIb TOPiHHSA 1 I€TOHALI].

Kniouoei cnosa: : namiHapHiCcTh, TYpOyJICHTHICT, HECTIHKICTh, MATEMAaTHYHA MOJIEINb, TOPiHHS, JETOHAIIIS.

B.D. Boakos. MaTemMaTu4eckoe MOJeJMPOBAHHE NepexoJa JaMHHAPHOIO Te4eHHs B TypOyJICHTHOE M OLECHKA
MacmTada TypOyJeHTHocTH. MccnexyeMmslil B JaHHO# paboTe mponece Iepexoa JIAMUHAPHOTO TeUSHUs B TypOyJIeHTHOe
NPEJCTABIISeT HHTEPEC JUIsl PA3IMYHBIX o0nacTeil Hayku U TeXHUKH. OHUM N3 Ba)KHEUIINX C NPAKTUYECKOH TOYKH 3PSHUS
SIBJISIETCSL BOIPOC O MacmTade TypOyaeHTHOCTH. L{enbro cTaThy sSBISICTCS pa3BUTHE IETEPMHHUPOBAHHOTO MAaTEMAaTHYECKOTO
MOZIENUPOBAHUS Tepexo/ia JAMHHAPHOTO TeueHus! B TypOyJeHTHoe. Pa3paboTaH opHrHHaIBHBIN METOJ OLIEHKH Maciitaba
TypOYJIE€HTHOCTH Ha OCHOBE PEIEeHUs 3aJauy 00 yCTONUYMBOCTH JIAMUHAPHOTO TIOTOKA U BBIYMCIICHUS JAJIMHBI BOJHBI BO3MY-
IIEHHUS ¢ HanOOJNBIIEeH CKOPOCTHIO pocTa. JIeHCTBEHHOCTh METO/A JIEMOHCTPUPYET €ro MPUMEHEHHE K HCCIISIOBAHNIO HEYyC-
TOWYMUBOCTH U CTPYKTYPHI BOJH TOPEHHS U ACTOHAIHN.

Kniouesvie cnosa: mnaMuHapHOCTB, TypOYIEHTHOCT, HEYCTOHYHBOCT, MaTEMaTHIECKast MOJIEIb, TOPEHHE, IETOHAIIHS.

V.E. Volkov. Mathematical simulation of laminar-turbulent transition and the turbulence scale estimation. The
laminar-turbulent transition, analyzed in this work represents a particular interest for various branches of science and engi-
neering. From the practical point of view, the turbulence scale represents one of the most important problems. This article
goal of the article consisted in developing a deterministic mathematical model of laminar-turbulent transition effect. Elabo-
rated is an original method for estimating the turbulence scale on the basis of the laminar flow stability problem solution and
calculation of the wave length that corresponds to the fastest growth rate perturbation. This method efficiency is demonstrat-
ed by its application to investigate the flame waves and detonations structure and instability.

Keywords: laminarity, turbulence, instability, mathematical model, deflagration, detonation.
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