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Abstract — The paper is devoted to the development of regular method of synthesis of 

sequences of length 24N   with an optimal Peak-to-Average Power Ratio (PAPR) of Walsh-

Hadamard spectrum on the basis of spectral rectangles. The range distribution of the PAPR of 

Walsh-Hadamard spectrum for full code of the length 24N   is determined. The synthesized 

sequences can be applied in MC-CDMA technologies.  

 

Index Terms — Peak-to-average power ratio, Multi-code code division multiple access, Walsh-

Hadamard transform. 

 

I. INTRODUCTION 

Active use of the technology of Multi-code code division multiple access (MC-CDMA) in 

modern communications systems makes it an actual task of further researches. The key objects in 

MC-CDMA technology which determines its effectiveness are the orthogonal functions that are 

used in the system. The most frequently used functions are discrete Walsh functions [1]. In the 

MC-CDMA systems binary data vector   , 0, 1ib b i N    is subjected to orthogonal transform. 

Each data bit 
ib  changes the sign of one of the orthogonal functions of discrete time, and the output 

is the sum of N  modulated functions ( )ih t , then the transmitted signal is a Walsh-Hadamard 

transformant of the binary sequences b  
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It is clear that use of Walsh-Hadamard transformation coefficients as a signal gives rise to 

such significant lack of MC-CDMA systems as high PAPR [2] 
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where 
maxP — peak power of ( )bS t  signal; 

           
avP  — average power of signal ( )bS t ; 

           N  — length of signal ( )bS t . 

The problem of reducing of the PAPR of used in the MC-CDMA technology signals got 

its decision in [2] through the use of C-code based on bent-sequences. 

Nevertheless, the existence of bent-sequences is possible only if length of signals is equal 

to 22 ,kN k N  [3], while modern communication systems require a greater value of flexibility 

and scalability of the number of users. Thus, an actual task is to research the possibility of using 

other lengths of signals in particular 12 2kN   . 

The purpose of this article is to build a regular method of synthesis of optimal C-code with 

codeword length 12 2kN   . 

 



II. CONSTRUCTING OF HADAMARD MATRICES OF ORDER 24 

For the construction of Hadamard matrices of the order L  aliquot to 12 the Paley 

construction is commonly used, which is based on a Jacobsthal matrix [4]. To construct the 

Jacobsthal matrix in the field ( )GF q  we use the character χ( )a , showing whether the element a  

is a perfect square of some other element of the field b . Thus, 
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Jacobsthal matrix Q  is a matrix, elements of which  have row index μ , column index ν  

and value χ(μ ν) . 

We construct a Jacobsthal matrix for the field (11)GF  

 Q

           
           
           
           
           

            
           
          
           
           
            

. (4) 

In accordance with the Paley construction [4] on the basis of the Jacobsthal matrix the 

Hadamard matrix of order 1 12L q   can be built by the rule 
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 
    

, (5) 

where α  is a column vector of length q , consisting of 1 ; 

           E  — diagonal matrix of order 1q  . 

Applying (5) to the Jacobsthal matrix (4) we obtain the Hadamard matrix of order 12 

 
'

12H

            
                       
            
            
                        
            
                       
            
             

. (6) 

Multiplying the matrix (6) on its first line we receive the canonical form of Hadamard 

matrix of order 12 



 12H

            
                       
            
            
                        
            
                       
            
             

. (7) 

Note, that as well as for Hadamard matrix of order 2 ,kL k N  to the Hadamard matrix 

(7) Sylvester construction is applicable to increase recurrently its order [5] 
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H H
H

H H
 

 

 
   

, (8) 

wherein as the source matrix 
12H  is used the constructed by the Paley construction matrix (7). For 

example, it is easy to construct the Hadamard matrix of order 24L   

 24H

                       
            
           
            
            
            
           
           
   



        
            
           
            
                       
           
            
           
      

 
 
 








       
                            
                         
           
                         














. (9) 

The matrix 
24H  may be used as the basic signal system for use in MC-CDMA technology. 

Each row of the matrix (9) may be a unique code assigned to each of 24 users 
1 2 24, ,...,b b b  working 

in the communication system, whilst in turn each user will code his transmitted information by 

positive or inversed line of matrix (9). Suppose for example, at some point of discrete time t , each 

user were transmitting the following information bits 

  
1 2 3 4 5 6 7 8 9 10 11 12

13 14 15 16 17 18 19 20 21 22 23 24

( ) i

b b b b b b b b b b b b

I t b b b b b b b b b b b b b

 
             

 
            

. (10) 

Obviously, the resulting signal in accordance with (1) will be the product of  

  24( ) ( ) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24 0 0 0 0 0 0 0 .bS t I t H     (11) 

In accordance with (2) the PAPR of this signal would be 2κ 24 24 24  , such a signal 

is difficult and inconvenient for transmission and leads to irrational use of transmitter power and 

a large non-linear distortion in communication systems with MC-CDMA. 



The solution to this problem can be found by use of the C-code, with the fixed value of the 

PAPR of each individual codeword. Fig. 1 shows the scheme of C-code use. 

 

 
Fig. 1 The scheme of C-code use in MC-CDMA system before orthogonal transform  

 

It is obvious that C-code codewords 
ic  of length n  must have the lowest PAPR value 

among all the codewords of length n . 

 

III. C-CODE SYNTHESIS METHOD 

To find the optimal, in terms of the PAPR signals, we will connect to the input of the 

orthogonal transformation (9) to the full set of 
242J   codewords, and define values of PAPR for 

each of them. The results are shown in Table I, where J  — the number of sequences of length 

24N  , which have a given value of the PAPR κ . 

 

TABLE I 

Distribution of values of the PAPR for sequences of length 24N   

κ  1.5 2.6667 4.17 6 8.17 

J  7040 2409088 6243072 5456176 2040192 

κ  10.7 13.5 16.7 20.17 24 

J  510048 97152 13248 1152 48 

 

It is clear that from the point of view of practical application in MC-CDMA technology of 

greatest interest are sequences having a minimum value of PAPR, if the case of length of it 24,N 

which κ 1.5  are called the optimal coding sequences (OCS). 

For example, consider the sequence A6C260  represented in hexadecimal form, which can 

be easily represented in binary and exponential form. 

 1 A6C260 [101001101100001001100000]
[ ].

S
           


  
   (12) 

Multiplying this sequence to obtained Hadamard matrix 
24H  (9) we can get its Walsh-

Hadamard spectrum 

 
1 24 [ ],W S H    (13) 

so, its PAPR is really equal to 2κ 6 24 1.5  , and this sequence is optimal. 

An important task is the development of regular rules for constructing a full class of OCS 

of length 24N  . 

In this paragraph we are introducing a regular method of construction of a full class of OCS 

of length 24N   having a PAPR κ 1.5 . 

This article offers another representation of optimal sequences in the form of spectral 

rectangles, which can be defined similarly to Agievich bent rectangles [6] 



 12

12

(1,2,...12)
(13,14,...,24)
S H

R
S H

 

  

. (13) 

Thus, the sequence (12) can be matched to a spectral rectangle 

 
0 0 0 -4 4 4 -4 -4 4 -4 -4 -4

.
6 6 6 -2 2 2 -2 -2 2 -2 -2 -2

R
 


  

 (14) 

As we can see from the rectangle (14), it consists of three columns of type [0 6]T  and 9 

columns of type  4 2 ,
T

form where T  — denotes transposition. Thus, the total number of 

possible permutations of columns in the spectral rectangle (14) is defined as the number of 

combinations  3

12 12! 3! 9! 220C    . Table II shows the hexadecimal equivalents of optimal 

sequences corresponding to this 220 spectral rectangles. 

 

TABLE II 

Full class of forming OCS 
A6C260 

CA54A0 

BC12C0 

873062 

9AA0A2 

D46442 

F30620 

E0B602 

A96282 

CD84C0 

936130 

E52250 

DE0160 

C39031 

8D5051 

AA3221 

B98310 

F05301 

94B141 

89B098 

B29128 

AF00B0 

E1C418 

C6A428 

D51510 

9CC188 

F82580 

C4D04C 

D94094 

978058 

B0E20C 

A35214 

EA8288 

8E60C4 

E26026 

ACA04A 

8BC02C 

987106 

D1A10A 

B54144 

B13013 

965025 

85E016 

CC3083 

A8D085 

D89409 

CB2412 

82F00B 

E61441 

EC4604 

A59209 

C17405 

B62302 

D2C504 

9B1181 

FD47F0 

8B02F0 

B02362 

ADB2F3 

E37673 

C41661 

D7A772 

9E73E3 

FA97E1 

E796F8 

DCB5EA 

C124B2 

8FE4FA 

A886A8 

BB37B2 

F2E7AA 

9605E0 

AAF2EE 

B762F6 

F9A6DA 

DEC6EC 

CD76D6 

84A2CA 

E046C4 

8C40E6 

C2846A 

E5E66E 

F65766 

BF83EA 

DB65E6 

DF14F3 

F876A7 

EBC6B6 

A212A3 

C6F4E7 

B6B66B 

A50652 

ECD6CB 

8834C3 

826626 

CBB6AB 

AF56E5 

D80782 

BCE7C6 

F537C3 

BEA3F8 

858178 

9811B1 

D6D579 

F1B739 

E20730 

ABD3B9 

CF35F1 

F3C37C 

EE52F5 

A09259 

87F27D 

944354 

DD93D9 

B973D5 

D57177 

9BB17B 

BCD36D 

AF6376 

E6B36B 

825165 

862073 

A14235 

B2F337 

FB23B3 

9FC1F5 

EF8679 

FC3753 

B5E35B 

D10551 

DB5735 

928329 

F66765 

813313 

E5D755 

AC03C1 

9F51FC 

82C0BC 

CC04D8 

EB66BC 

F8D79C 

B10398 

D5E5DC 

B9E1BE 

F7257A 

D0452C 

C3F53E 

8A21AA 

EEC5EC 

EAB4BB 

CDD4BD 

DE65B6 

97B1BB 

F355B5 

831439 

90A51A 

D9759B 

BD95D9 

B7C73C 

FE17A9 

9AF5AD 

EDA79A 

894594 

C09589 

CFA0FE 

81605E 

A6026C 

B5B35E 

FC63CE 

9881CC 

9CF0DF 

BB92BD 

A82296 

E1F29F 

8510D5 

F5565D 

E6E65E 

AF32DB 

CBD4DD 

C1861C 

88528D 

ECB6CD 

9BE39E 

FF07D4 

B6D3CD 

A7D07F 

80B02F 

930136 

DAD1AF 

BE31E7 

CE746F 

DDC55E 

94114B 

F0F54F 

FAA72E 

B3732F 

D7956D 

A0C30E 

C42546 

8DF1CF 

D3E43F 

C05417 

89809B 

ED64D7 

E73637 

AEE2AF 

CA04A5 

BD5397 

D9B597 

906187 

A9F61F 

E0260B 

84C44D 

F3971B 

977557 

DEA5CB 

D4F70F 

B01705 

F9C78D 

EA7787 

 

Obviously, all the sequences in Table II have an optimal PAPR κ 1.5 .  Based on (13) 

similar to (14) all the 220J   forming OCS may be represented as spectral rectangles. They are 

the basis for building a complete class of OCS of length 24N   based on the rules of reproduction 

of spectral rectangles. 

Rule 1. The elements in the second line of the spectral rectangle (14) equal to 2, 6jR    

may be encoded in a four ways 

 
 
 

 
 

, ,

, ,
Z

      
        

. (15) 

Thus, using the Rule 1 based on (14) we obtain 3 new spectral rectangles, each of which 

defines a sequence with a PAPR κ 1.5  



 

0 0 0 -4 4 4 -4 -4 4 -4 -4 -4 ;6 6 6 -2 2 2 -2 -2 2 -2 -2 -2

0 0 0 -4 4 4 -4 -4 4 -4 -4 -4 ;-6 6 -6 -2 2 2 -2 -2 2 -2 -2 -2

0 0 0 -4 4 4 -4 -4 4 -4 -4 -4 ;-6 -6 6 -2 2 2 -2 -2 2 -2 -2 -2

0 0 0 -4 4 4 -4 -4 4 -4 -4 -4 .6 -6 -6 -2 2 2 -2 -2 2 -2 -2 -2

  
   

  
   
  
   
  
    

 (16) 

Rule 2. The second line of the spectral rectangle can be taken both in the positive and in 

the negative. 

For example, a spectral rectangle (14) can be used to construct one more new spectral 

rectangle 

              
             

 (17) 

Rule 3. All the spectral rectangles can be taken both in the positive and in the negative. 

For example, the inverse spectral rectangle (14) has the form 

              
             

 (18) 

Rule 4. Rows of the spectral rectangle can be swapped. 

Thus, on the basis of spectral rectangle (14), we obtain a new spectral rectangle 

              
             

 (19) 

Thus, combining Rules 1...4, and the forming OCS given in Table II we can get a full class 

of OCS of length 24N   and cardinal number 

 220 4 2 2 2 7040J       . (20) 

Research made with a brute force method validates the results. 

 

CONCLUSION 

1. We have investigated the distribution of possible values of the PAPR of the Walsh-

Hadamard spectrum of sequences of length 24N  . 

2. We introduced a new representation as a spectral rectangle of optimal sequences with a 

minimum PAPR.  

3. We proposed a regular synthesis method of a C-code of length of it’s codewords 24N   

which can be used to decrease the PAPR in the MC-CDMA technology. 
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