Modern Information Technology — CyuacHi Indopmarnitiai TexHos0Tii 2018

YK 004.855.5
MAKING USE OF COMPUTER VISION APPROACH
FOR IMPLEMENTATION OF SELF-DRIVING CAR
Putilina Daria, Medvediev Maxim
Scientific advisor: prof. Svetlana Antoshchuk
OdessaNationalPolytechnicUniversity, Ukraine

ABSTRACT. This article presents an approach of steering a self-driving car on the road constructed from
traffic cones using Computer Vision. Our algorithm gets an image in real-time from an onboard-camera and
then, depending on the results of the analysis, it calculates a steering angle. After training, our model could
forecast how and when to steer the self-driving car in real time. As a result, we reached the accuracy of
steering about 95%.

Introduction. In the context of international project on algorithms andoperation of autonomous methods
vehicles development, was carried out project “Neurorace” by a winter scientific school. Within the framework
of this school, the task was set to teach an autonomous car to drive along the road using various approaches. Our
team solved this task with the help of computer visionmethods.The autonomous machine is based on the
platform NVidia Jetson TX1 and is equipped with an attached camera.The track was organized as follows: the
boundaries of the road were made from markers, in the role of which were usual plastic cups, the left border was
marked by yellow cups, and the right-hand border was by blue ones.

Aim.The main goal was to increase an accuracy of markers detection and car steering. Due to training of
the classifier we achieved an accuracy about 99% of cup recognition in normal lighting conditions and about
92% in difficult one. While the part of false negative errors was about 2% and part of false positive about 6%.
After we increased a traffic cones detection precision we could also raise an accuracy of car steering, it was
about 95%.

Implementation. In the framework of this school, was supposed the car moving along the road without
time; the main condition was to keep the car within the boundaries of the route.As an ideal trajectory we
considered car passing through the center of the route. For successful driving our car should find the cups on
cach side, get the coordinates from the image and turn them into "real" coordinates. With the help of these
coordinates, it will be possible to calculate the right and left boundaries of the track. Then the line of motion is
calculated. It is transferred to the controller, which will receive from it the angle of rotation and the speed of
movement.

Proceeding from this, we identified six main tasks that needed to be solved in order to fulfill the set goal:
Read the data with the attached camera and get a static image for further processing; Image processing and
obtaining contours of markers (plastic cups); Finding the bounding box of markers and getting their centroids;
Training classifier to increase cones recognition accuracy; Obtaining the boundaries of the track and
constructing an ideal trajectory; Calculation of the required steering angle and supplying him to the controller of
the machine.

Implementation/Readout. To obtain a training sample as follows: a gamepad was connected to the
machine and the car was being driven several circles under operator control. We recorded data during several
hours using different configurations of tracks, mix colors of cones and changing directions. In addition, to raise
our successful result we decided also collect data outdoor. That allowed us to train classifier taking into account
also bad light conditions.The resulting video was divided on many static images.

Implementation/Contour recognition. For the beginning of contour definition, we executed a color
segmentation in OpenCV. The simplest way to perform a division of the segment was to use a color space HSV
that we made. Constructing histograms, we were able to define the most appropriate thresholds for
segmentation.

Second step we started from contour analysis. Contours can be explained simply as a curve that joins all
the continuous points along the boundary, having same color or intensity. The contours are a useful tool for
shape analysis and object detection and recognition. After that we find contours in our binary mask.We filled
the contours with white color, to eliminate holes in the blob that are too large for the Morphological Closing to
deal with. Then we filled the contour with black color to completely remove the objects from the mask.[1]

Implementation/Obtaining bounding box markers.Contour Moments help us to calculate some
features like center of mass of the object, area of the object, so we extracted useful data like area and centroid
forfurther calculating. The easiest thing we decided to do with a found contour is to calculate a bounding box
that encompasses all the points that describe cup's shape.

Implementation/Classifier/Prepare data for training. To increase traffic cones recognition accuracy
we decided to use a classifier. But the first step of working with classifier we need to prepare data for training.

- 212 -



Modern Information Technology — CyuacHi Indopmarnitiai TexHos0Tii 2018

To train the cascade first of all, it was required to collect a good training sample. In our case, we did this by
taking a glass from different directions and under different lighting conditions. About 2000 positive and about
3000 negative. Accordingly, positive images must contain the object itself, and negative images contain an
environment, but do not contain the object itself. In addition, positive images relieved of noise objects and cut
off.

Implementation/Classifier/Selection and training of the classifier. After preparing data, we turn to
Cascade Training. We decided to use Viola-Jones method. Such classifier trains very slow, but the results of
searching for a traffic cone are very fast, that is why we chose this method of recognizing cones on the image.

In addition, this detector has an extremely low probability of a false cone view. This method in general
looks for cups on the principle of the scanning window.

Implementation/Transforming Coordinates. Before drawing the borderlines and trajectory, we should
transform coordinates with which help we could lay the way for our car. In order to get the coordinates from the
camera to the cups found, the centroid of each contour was calculated. This midpoint was used as coordinate
representing one cup. As transformation of the coordinates in the picture, to coordinates representing the real
world, the perspective transform of OpenCV was used. To use this transformation, is needed a matrix calculated
before. For this matrix, you have to take a picture of some cups. The coordinates of the cups in the picture and
the coordinates in the real world has to be measured. With these, the needed matrix for the transformation can
be calculated.

Implementation/Borderlines recognizing and drawing, trajectory drawing, track finding.

When we completed all needed stages to recognize traffic cones and transforming coordinates, our next
step was trajectory drawing [2].As we worked on Python, we used the Numpy library to calculate our track. Due
to this, we could fit a parabola. The transformed coordinates we used to calculate the track borders. As result,
we fit the parabola through the cups and get the left and right track borders. With these two parabolas, that in

our situation are borderlines of our track (in the form ¥ =a=+x2+b=+x+C ) we can calculate the new

parabola which represents further trajectory. Track parabola (two track borders foundJ(1)):
aright + aleft bright + bleft

atrack = — ) btrack = % ctrack= 0

1

As K can be chosen freely, we used K = 4.5 _ Radius of parabola is (2): P= 2a (2)

The lines on the present picture are calculated back to pixel coordinates, the drawing on the right is done
with the "real world" coordinates.

Implementation/Calculating steering angle and car steering.Therefore, we finished all stages that
were set us to start car steering. Now we need to implement the last step: calculating steering angle. [3] To get
the right track in the next step it is needed to swap some coordinates:

x - coordinateinthepicture = y — coordinateinrealworld (the distance straight from the
camera); ¥ — coordinateinthepicture = x — coordinateinrealworld (left and right from the camera).

The camera is the point (0, 0) in real world coordinates, in pixel coordinates this point is in the left upper
corner. It is the best to build the matrix with these rules.

Conclusion. A sample of objects was formed for learning the size of 5000. Then it was divided into test
and training samples so that the test portion was 20% of the total number of objects. Objects for this sample
were selected at random and removed from the general array. The rest formed a training sample.

After passing all six main steps that were solved in order to fulfill the set goal, as a result, we have a self-
driving car, that can move according to builded track, not ideal now, but it can complete in itself a simple track
like a circle. Thus, the set task of this project was achieved.

In the immediate future we will improve our formulas and correspondingly we are working with
trajectory calculating. So in the near future, we want to present our improved method of steering self-driving
car.

We consider exploring the possibilities of presented algorithm in various other subject areas.For example,
we offer to use our approach with goal to minimize quantity of traffic road's accidents, victims and amount of
deceased person because of mistaken traffic cone recognition by drivers.

CIIMCOK UCITIOJIB30OBAHHBIX HCTOYHHUKOB
1. AlexanderMordvintsev&Abid K- Pexxum moctymy: URL: https://media.readthedocs.org/pdf/opencv-python-
tutroals/latest/opencv-python-tutroals.pdf - [OpenCV-PythonTutorialsDocumentation]
2. Prof. ThorstenScholer, Formulasfortrajectorydrawing, Augsburg 2018
3. Prof.ThorstenScholer, Anapproachofsteeringthecar, Augsburg 2018

- 213 -



