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1. Introduction

Development of the theory of fractals has sparked in-
creased interest in the phenomena of self-similarity, charac-
teristic of power laws, as well as the mathematical analysis of 
non-integer orders [1]. The latter is based on the systematic 
use of concepts on derivatives and integrals, whose orders 
are not integers, but could be fractional, irrational, and 
complex. Related to this is the invention by L. Euler of the 
continuation of factorial function n!=1⋅2⋅…⋅n in the domain of 
real and complex numbers, implemented by gamma function

Γ( ) dv e x xx v= - -
∝

∫ 1

0

,  Γ( ) !.n n+ =1 			   (1)

Its application led to a breakthrough into the domain of 
non-integer number of degrees of differentiation and inte-
gration operators [2]. Owing to this, a family of differential 
equations is enriched. The presnece in the equations of a 

fractional derivative for time is interpreted as a reflection of 
the special property of the described process ‒ memory, or, in 
the case of a stochastic process, a non-Markovian character.

The fractional calculus is considered to originate in the 
year of 1695, when Leibniz, in a letter to François L’Hôpital, 
discussed the differentiation of the non-integer order ½. 
More than 300 years have passed with many studies address-
ing this issue. The renewed interest in it has been evident 
over recent decades. That is primarily related to that the dif-
ferential equations of fractional order often make it possible 
to describe physical processes with a greater accuracy than 
do the integer ones. Such a mathematical notation has been 
used in various fields, specifically acoustics, electronics, 
thermodynamics, and many others [3‒7].

Theory of automatic control employs, in turn, fractional 
calculus as a mathematical apparatus to study the output 
coordinates in a series of systems with specific properties. 
For example, PIγDµ controllers are used that make it possible 
to improve the quality of transient processes in comparison 
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Проведено синтез і дослідження регуляторів дробово-
го порядку, які для ряду технологічних процесів забезпечу-
ють найкращі показники якості перехідних процесів, зокре-
ма для двигуна постійного струму з послідовним збудженням. 
Внаслідок залежності магнітного потоку від струму якоря 
та насичення магнітної системи якірний ланцюг двигуна 
характеризується як ланка з суттєвими нелинейними вла-
стивостями в статичних та динамічних режимах. Але з висо-
кою точністю його можна описати передавальною функцією 
дробового порядку. Завдяки відповідним дробовим інтеграль-
но-диференційним регуляторам стає можливим забезпечити 
якість перехідних процесів значно кращу, ніж з класичними 
регуляторами.

Розглянуто стандартні методи синтезу коефіцієнтів 
регуляторів і встановлено, що подібні налаштування призво-
дять до погіршення перехідних процесів через насичення регу-
ляторів, викликаної обмеженням напруги джерела живлення. 
Отже, для замкнутого контуру з різними структурами дро-
бових регуляторів було запропоновано використовувати гене-
тичний алгоритм для визначення оптимальних значень коефі-
цієнтів регуляторів за критерієм найменшого часу першого 
узгодження і мінімального перерегулювання.

Експериментальні дослідження з різними структурами 
регуляторів проведено для налаштувань на модульний опти-
мум і дробовий порядок астатизму від 0.35 до 1.5. За отри-
маними результатами можна стверджувати, що найкращі 
показники забезпечують регулятори з астатизмом 1+μco, 1.5. 
Тоді перерегулювання фактично менше 2 %. Також показано, 
що при астатизмі 1+μco забезпечується висока якість перехід-
них процесів і в зоні ненасиченої магнітної системи.

Результати дослідження можуть бути використані в 
першу чергу в системах замкнутого керування в двигунах 
постійного струму з послідовним збудженням, а також з 
об’єктами, в яких спостерігається степеневі закономірності

Ключові слова: дробове обчислення, регулятори з дробовим 
порядком диференціювання і інтегрування, двигун послідовно-
го збудження
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with the classical integer PID controllers. That relates not 
only to that controllers also employ fractional calculus, but it 
also gives a certain freedom in the choice of a decimal degree 
for differential and integral components. Another advantage 
of such regulators is the possibility of increasing the reserve 
of stability compared to the integers.

When applying fractional-order regulators, such sys-
tems, relative to the control object, can be categorized in the 
following way:

‒ integer controller ‒ integer control object; 
‒ fractional-order controller ‒ integral control object; 
‒ integer controller ‒ control object of fractional order; 
‒ fractional-order regulator ‒ control object of fraction-

al order.
Fractional calculus can be used to describe electrical 

machines with adjustable magnetic flow, due to which the 
saturation of the magnetic system occurs. Paper [8] studied 
the influence of a magnetization curve on the characteristics 
of asynchronous electric machines; however, the apparatus 
of fractional integral-differential calculus was not applied.

In a DC motor with series excitation (DCMSE), as well 
as in generic engines, armature is connected in series with 
the excitation winding. Consequently, there develops a high 
starting torque at good indicators for weight and dimen-
sions. Disadvantages include the complexity of implement-
ing closed control systems, since DCMSE have nonlinear 
properties, predetermined by a magnetization curve and 
dependence of flow on armature current. However, this same 
property makes them an excellent study object using the 
apparatus of fractional calculus, thereby making it possible 
to compensate for the non-linear dependence and synthesize 
controllers that optimize the behavior of a closed system.

Given the wide scope of application of such machines in 
different fields of technology, it is a relevant task to improve 
the accuracy of control by employing new methods of anal-
ysis and synthesis.

2. Literature review and problem statement

A large body of research into control over DCMSE has 
been accumulated since 1970s. Thus, papers [9, 10] proposed 
controllers with changing, time-variable, parameters. Types 
of control methods vary from application of a nonlinear PI 
controller [11, 12] to fuzzy logic [13] and neural networks [14].  
Such methods differ from conventional methods of synthesis 
of regulators for closed systems, which somewhat compli-
cates the configuration process. Therefore, fractional-order 
regulators have been investigated recently. That makes 
it possible to take into consideration the non-linearity of 
control object, as well as to apply standard setting methods 
(for example, modular optimum). This relates to that the 
fractional-order transfer functions are similar to the integer 
ones, therefore, the methods used in the theory of linear con-
tinuous systems also apply to them.

Thus, paper [15] employed a PIγDµ-controller for speed 
of engine with independent excitation. To implement the 
fractional component, the authors used a higher-order trans-
fer function approximation. Inner current circuit was not 
considered. Article [16] reported a PIγ-controller of speed 
and a PDµ-controller of position. Paper [17] used a sliding 
mode servo system and a fractional derivative in the speed 
circuit. Work [18] shows the possibilities to optimize con-
trollers with a parametrically uncertain structure. Despite 

the different methods for calculating coefficients, it was 
shown that such controllers can help obtain transient pro-
cesses with better parameters than when implementing 
the integer differentiation and integration. However, there 
are still unresolved issues related to the optimization of a 
current circuit and the settings for a fractional order of as-
tatism greater than unity, which ensure a greater dynamic 
accuracy of the system. The reason for this is the difficulty of 
calculating these components based on discrete definitions 
by Riemann-Liouville, Grunwald-Letnikov, Caputo, Weyl, 
Erdelyi-Kober, etc. [19]. In any case, calculations come down 
to the requirement for storing maximally possible arrays of 
data and coefficients and computing the sums of their pair-
wise products. Accordingly, costs of CPU time grow signifi-
cantly and memory volume requirements increase.

Thus, for example, fractional differentiation in the form 
of Grunwald-Letnikov requires that calculation should be 
performed according to formula:

a t h

j

j

t a
h

D f t h
j

f t jhγ γ γ
( ) lim ( ) ( ),= -







-
→

-

=

-





∑
0

0

1 		  (2)

where a, t are the calculation bounds, γϵR is the fractional 
exponent. 

For fractional integration, the form of Grunwald-Let-
nikov is as follows:

a t
a

t

I f t
f

t
γ

γγ
τ
τ

τ( )
( )

( )
,=

- -∫
1

1( )
d 			   (3)

where Г is the gamma function.
Attempts to resolve such a problem have led to con-

structing several groups of methods. Some of these methods 
assume that links that include derivatives and integrals of 
fractional order have a constant phase-frequency charac-

teristic ±
π

γ
2

.  Therefore, over a certain frequency range, it  
 
is acceptable to approximate with the link of higher integer 
orders from the left- and right-hand sides of the differential 
equation, which ensures an approximately constant phase 
shift [20, 21]. Other methods approximate dependences of 
coefficients on an array number, which reduces the time of 
computation [22]. Applying these methods makes it possi-
ble to employ fractional-order regulators in high-speed sys-
tems, specifically, in a current circuit of electric machines.

A DCMSE magnetization curve is close enough to 
a power dependence. It can therefore be assumed that 
PIγDµ-controllers could prove to be effective at optimizing 
the characteristics of a current circuit. The results obtained 
could be applied to other systems with similar properties 
as well.

3. The aim and objectives of the study

The aim of this study is to synthesize DCMSE current 
controllers with a fractional order of integration and differ-
entiation in order to ensure the highest performance speed 
at small overshoot under the predefined order of astatism.

To accomplish the aim, the following tasks have been set:
‒ to study experimentally a motor with series excitation 

and to find an adequate mathematical model of a current 
circuit based on fractional-differential equations; 
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‒ to synthesize controllers to ensure several setting 
options with the required quality of transient processes and 
different astatism order, including under conditions for pow-
er supply voltage limitation; 

‒ to undertake a study at different levels of job surges 
in order to assess the degree of self-similarity of the system 
with fractional integral-differentiating regulators.

4. Studying the transient current processes in a motor 
with series excitation

The object of our study was an Italian engine, made 
by CESET, the series MCA 38/64-148/AD8 with a rated 
frequency of ωn=12,800 rpm, current In=1.6 A, and power 
Pn=370 W. Current was measured by the analog sensor 
ACS712, based on the Hall effect. The 12-bit analog-to-dig-
ital conversion and data entry were performed by the soft-
ware recorded on the debug board STM32F4DISCOVERY 
clocked at 168 MHz. The engine was supplied voltage from 
the power supply unit Moeller SN3-100-BV8 24 V: it was 
regulated by using a pulse-width four-quadrant inverter.

Mathematical notation of the electromechanical energy 
conversion at DCMSE (excluding eddy currents) takes the 
following form [23]:

u t R i t L
di t

dt
k t t w

d t
dt

M t k

a a a a
a

f( ) ( )
( )

( ) ( )
( )

,

( )

= ⋅ + ⋅ + ⋅ ⋅ + ⋅

=

∑ ∑ Φ
Φ

ω

⋅⋅ ⋅

- =













Φ

Σ

( ) ( ),

( ) ( )
( )

,

t i t

M t M t J
t

dt

a

s

ω
(4)

where RaΣ=Ra+Rap+Rf is the total resistance of armature 
circuit; wf is the number of turns of the excitation winding; 
LaΣ is the inductance of the motor armature circuit scatter-
ing; Ф(t) is the magnetic flux of the motor; k is the structural 
factor; JΣ is the total moment of inertia on motor shaft; ω(t) 
is the motor’s angular velocity; M(t) is the torque generated 
by motor; Мs(t) is the static torque on shaft.

Inductance scattering LaΣ is much less than the induc-
tance of excitation winding LfΣ. However, one should not 
neglect it in the study of dynamic processes because at 
LaΣ=0 the jump-like changes in voltage applied to the motor, 
according to (4), must cause instantaneous changes in the 
motor’s current, which is impossible. 

It is important to note that equations (4) contain not 
only a non-linear dependence, but also its derivative, which 
does not make it possible to linearize the system by including 
the inverse nonlinear function in the closed circuit. 

Fig. 1 shows a schematic diagram of the motor based on 
equations (4).

We shall highlight a current circuit excluding the mo-
tor’s EMF (it is dashed in Fig. 1). 

If the motor current is relatively small, the magnetization 
curve in this region is almost linear, hence the current circuit 
can be described by an inertial link of the first order. We 
shall determine its time constant based on the transient pro-
cess at a voltage of 10 V at which there is no saturation in the 
excitation winding (Fig. 2). The result from data processing 
is the derived time constant ‒ Ta=0.0267 s.

Build a closed system to control this object.

Determine a transfer function of the current controller 
Wcr(s) to ensure setting the closed circuit to modular optimum:

W s W s
k

T s

R
T s

k
T s T s

op c cr
conv

c

a

a
cs

c c

.

/
,( ) = ( )

+( ) +( ) =
+( )µ µ µ1

1
1

1

2 1
	  (5)

where

W s
T s T s

T s T s R

k kcr

c c

c a a

conv cs

( ) =
+( ) ⋅

+( ) +( )1

2 1

1 1

µ µ

µ
. 	  (6)

We obtain upon transforms

W s K K scr ( ) = + -
1 2

1, 	  			    (7)

where 

K
T R

T k k
a a

c comv cs
1 2

=
µ

,  K
R

T k k
a

c comv cs
2 2

=
µ

. 		   (8)

When setting the current below the rated (1.6 A), the 
transient processes correspond to the theoretical ones. How-
ever, at big settings, there are significant differences (Fig. 3).

In order to synthesize the optimized system, we shall 
identify a control object while supplying the maximally per-
missible voltage by a surge (Fig. 4). 

In order to mathematically describe the transient pro-
cess, we considered the following transfer functions of con-
trol object:

W
K

a sco1
0 1

=
+µ , 				    (9)

W
K

a s a sco2
1 0 1

=
+ +µ , 				    (10)

Fig. 1. Schematic diagram of the mathematical model of DCMSE

Fig. 2. Experimental and estimated diagrams of transient 
processes in the armature circuit at a voltage of 10 V
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W
K

a s a sco3
1

1
0 1

=
+ ++µ µ . 				    (11)

To identify the unknown coefficients in (9) to (11), we 
used a genetic algorithm, in which the tournament method 
was chosen during selection; new individuals inherited the 
genes of parents through uniform crossbreeding, the likeli-
hood of mutation in a chromosome is 20 % [24]. Estimate for 
the fitness of an individual was the standard error F. Results of 
identification of transfer functions are summarized in Table 1.

Table 1

Results of identification of transfer functions

Parameter
Transfer function of control object

Wco1 Wco2 Wco3

µ 1.14034 0.63744 0.35327

a0 0.014138 0.04951 0.12709

a1 0 0.02439 0.006193

K 0.16228 0.17048 0.19278

F 0.0079 0.0163 0.0039

Experimental and estimation diagrams are compared 
in Fig. 4.

It is obvious that the best transfer function is Wco3, which 
will be further used in the synthesis of controllers.

5. Synthesis of closed current circuit with optimal 
transient characteristics

We shall analyze the closed system to control DCMSE 
current at various settings. 

Schematic diagram of a closed current control system is 
shown in Fig. 5. Denotations: uref, ucs, Δur, ua, ia are the cur-
rent and feedback setting signals, the error between them, 
the armature voltage and current, respectively. In addition:  
 Wcr(s), W s

k
T sconv

conv

c

( ) =
+µ 1

,  Wcs(s)=kcs, Wco(s) are the transfer  

functions of current controller, converter, current sensor and 
control object, respectively.

Determine the transfer function of current controller 
Wcr(s) based on the settings on modular optimum, taking 
into consideration a magnetization curve:

W s
T s T s

W s
k

T s

K

a s a s

op c

c c

cr
conv

c

. ( ) =
+( ) =

= ( )
+( ) + ++

1

2 1

1 11
1

0

µ µ

µ
µ µ(( ) kcs , 	  (12)

hence

W s
T s T s

T s a s a s

k k Kcr

c c

c

conv cs

( ) =
+( ) ⋅

+( ) + +( )+
1

2 1

1 11
1

0

µ µ

µ
µ µ

. 	 (13)

We obtain upon transforms

W s K ss K s K pcr
co co( ) ,= + +- - -

1
1

2
1

3
1µ µ 	  (14)

where coefficients are

K
a

T k k Kc conv cs
1

1

2
=

µ

,

K
a

T k k Kc conv cs
2

0

2
=

µ

,

K
T k k Kc conv cs

3

1
2

=
µ

. 				    (15)

For the examined object, we obtained a DµIγI controller 
(K1=0.27, K2=5.539, K3=43.581); the diagram of current 
transient process is shown in Fig. 6 and corresponds exactly 
to the indicators for a modular optimum. 

Configure the system with fractional orders of as-
tatism µ=µco=0.3533 and µ=0.6. This will improve the 

Fig. 3. Diagrams of transient processes for the model and 
the experiment with a PI-controller

Fig. 4. Diagrams of current transient processes for transfer 
functions Wco1, Wco2, Wco3 and for experimental data

Fig. 5. Schematic diagram of the current control system
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performance speed of control system thereby reducing 
overshooting.

W s
aT s T s

W s
k

T s

K

a s a
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cr
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+( ) =
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+( ) ++
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1

1 0
1

1

µ
µ µ

µ

µ
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k
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>C >C
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1

1
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0

µ
µ µ

µ

µ
µ µ

ssK
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We obtain upon transforms

W s K ss K s K scr
co co( ) .= + +- - -

1 2 3
µ µ µ µ µ 	  (18)

Therefore, the coefficients are:

K
a

aT k k Kc conv cs
1

1=
µ
µ ,

K
a

aT k k Kc conv cs
2

0=
µ
µ ,

K
aT k k Kc conv cs

3

1
=

µ
µ ,  				    (19)

where a configuration parameter

a ≈
- +

µ
µ µ4 683 5 897 1 595 2. . .

 

ensured the best ratio between performance and overshooting. 
The results of simulating a current circuit with an astat-

ism order of µ=µco (PIγD controller, K1=0.218, K2=4.465, 
K3=35.135) and µ=0.6 (DµIγI controller, K1=0.245, 
K2=5.03, K3=39.579) are also shown in Fig. 6.

The disadvantage of the latter settings is that it takes 
long for current to approach the predefined value.

Of greatest interest is setting a fractional order of astat-
ism 1+µ, µϵ(0; 1), at which not only static but also dynamic 
accuracy of the system improve.

To this end, we derive a transfer function of the control-
ler from equation:

W s
0T s

bT s

bT s T s

W s
k
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op c
c

c

c c
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+
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1

1
µ µ ,  	  (20)

where values a and b are chosen approximately from the 
following ratios:
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b ba ba
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Following the transforms, we obtain a transfer function 
of the controller composed of six components:
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a bT a
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3
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,

K
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1
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µ

,

 K
k k Kconv cs

5

1
= . 	  	  	  (24)

For μ=1.5, we obtain K0=37.04, K1=0.0054, K2=0.144, 
K3=0.683, K4=5.376, K5=0.872, and at μ=1+μco K0=35.09, 
K1=0.0054, K2=0.167, K3=1.158, K4=9.11, K5=0.872.  
The simulation results are shown in Fig. 7. It is evident that 
the performance improved while overshooting, compared 
with a modular optimum configuration, decreased by more 
than 2 times.

The transient processes, shown in Fig. 6, 7, were obtained 
without taking into consideration a power supply voltage lim-
itation. However, the source of the experimental bench makes 
it possible to supply 24 volts only. As a result, the transient 

Fig. 6. Diagrams of transient processes set at a modular 
optimum and a fractional order of astatism µ=µco, µ=0.6
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characteristics do not match the estimated ones with the pro-
cess quality indicators significantly worse (Fig. 8).

We shall change the structure of controllers and deter-
mine their parameters for ensuring optimal transient pro-
cesses in terms of performance and overshooting.

6. Search for optimal parameters of controllers at  
a limited voltage of power source

To find the optimal coefficients, we used one of vari-
ants of the genetic algorithm in which a support function 
varies, based on which we assessed the fitness function 
of each individual [24]. We also selected the ranges of 
coefficients over which we searched for values: for a 
controller with the structure DµIγI K1ϵ[1;20], K2ϵ[1;80], 
K3ϵ[1;60]. Then, by crossbreeding and selection of indi-
viduals, we found the most suitable solution. For example, 
for DµIγI-controller (Fig. 9), we obtained coefficients 
K1=1.746, K2=40.75, K3=12.428 (instead of K1=0.27, 
K2=5.539, K3=43.581, determined earlier); related dia-
grams are shown in Fig. 10.

One can see that the dynamic indicators for the system 
are better than in any of the cases in Fig. 8. 

The selection of values for coefficients in control sys-
tems that are configured on a fractional order of astatism 
µ=0.6 and µ=µco was performed based on schematic dia-
grams of controllers from Fig. 11, a, b, respectively. The 
controller in Fig. 11, a was supplemented with a filter with 
a time constant Tf=0.0006 to suppress the noise from a 
differentiating component. Coefficients at µ=0.6K1=0.2, 
K2=37.246, K3=1.288, at µ=µcoK1=0.0068, K2=29.24, 
K3=25.242. Results from experimental study and simula-
tion are shown in Fig. 12, a and Fig. 12, b.

Compared with a modular optimum, a noise level 
increases and the steady value is slightly less than the as-
signed value. The first harmonization time is tc=0.0344 s, 
making these systems more responsive. However, the best 
properties of the transient process are demonstrated by 
variant µ=µco: both noise level and overshooting reduced. 
In addition, the controller’s subroutine eliminates the 
need to compute signals from two fractional integrators 
of a different order.

By conducting a similar study for the system with 
orders of astatism of µ=1+µco and µ=1.5, we obtained reg-
ulators with structural diagrams, shown in Fig. 13, and 
respective transient processes (Fig. 14).

Coefficients of regulators at Tf=0.0006 s: for µ=1.5–K0= 
=0.393, K1=0.118, K2=29.31, K3=66.22, K4=170.54, 
K5=1.969; for µ=1+µco–K1=0.0193, K2=16.63, K3=44.19, 
K4=26.52, K5=4.452. One can see that setting at µ=1.5 
has a somewhat protracted process in the region of ±2 % 
from the assigned value; in contrast to the model, there is 
no overshooting. When configuring at µ=1+µco, one al-
most immediately achieves the steady value over the time 
of first harmonization tc=0.0344 without overshooting.

Fig. 8. Diagrams of transient processes with and without 
power voltage limitation

Fig. 7. Diagrams of transient processes set on a modular 
optimum and a fractional astatism of order μ=1+μco, μ=1.5

Fig. 9. Schematic diagram of the closed control system with a DµIγI-controller
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Fig. 10. Diagrams of transient processes with the optimized DµIγI-controller

a

b
Fig. 11. Schematic diagram of the closed control system with a fractional order astatism: a – µ=0.6; b – µ=µco

a b
Fig. 12. Diagrams of transient processes set for a fractional order of astatism: a – µ=0.6; b – µ=µco
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Such results were obtained at a relatively large cur-
rent (2In) when there is a clearly pronounced nonlinearity 
due to the saturation of the magnetic system. What will 
happen if the motor operates in a linear region with a 
current less than the rated 1.6 A. For verification, without 
changing the structure of the controller configured for 
µ=1+µco, we performed simulation and experiments with 

the job signal reduced by half (Fig. 15, a). We also verified 
response from the system to step-wise changes in the job 
(Fig. 15, b).

In the course of simulation and experiments, qualita-
tive indicators of the system remain unchanged and corre-
spond to the desired settings. This is the crucial difference 
from the linearized system with a PI-controller (Fig. 3).

a b

Fig. 14. Diagrams of transient processes with the modified controllers: a – µ=1.5; b – µ=1+µco

a

b

Fig. 13. Schematic diagram of the closed control system with a fractional order of astatism: a – µ=1.5; b – µ=1+µco
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7. Discussion of results of synthesizing the controllers 
with a fractional order in the current circuit

We have examined various settings of the current 
closed circuit with an integer and fractional order of as-
tatism for the motor with series excitation. We compared 
results from simulation and experimental study at settings 
for a modular optimum and with fractional orders of astat-
ism µco, 0.6, 1+µco, 1.5 (Fig. 10, 12, 14, 15). The findings 
suggest, first, that the chosen mathematical model of 
control object is in good agreement with the experiment, 
especially when current is 2 times larger than rated. Even 
in the linear region (up to the level of the rated current), 
the differences are relatively small ‒ there a slight over-
shooting in the system model, not observed during exper-
iments (Fig. 15, a). 

Second, each setting has its advantages and disadvantages:
– at the DµIγI structure of the controller (Fig. 10), the 

transient process has almost no overshooting ‒ less than 

2 %, but it is prolonged in time in the region of ±2 % of the 
assigned value;

– under settings for a fractional order of astatism 0.6 and 
µco, the presence of a differential link in the controller inten-
sified disturbances, causing instability and enhanced oscil-
lation at certain values of coefficients. That necessitated lim-
itations on these coefficients for the genetic algorithm. The 
best results for controllers under these settings are shown in 
Fig. 12. The first harmonization is less by 0.006 s than that 
in the previous case. However, during motor operation, there 
are disturbances observed, overshooting exceeds 2 %, under 
a steady mode, a static error appears, albeit less than 2 %;

– when configured for a fractional order of astatism of 
1.5, the structure of the controller becomes more complicat-
ed (Fig. 13, a). However, that makes it possible to compen-
sate for those shortcomings that were obtained for the case 
of a fractional astatism of 0.6 and µco. The overshooting is 
small, the time of first harmonization is 0.0344 s, but there is 
a prolongation of the transient process in the region of ±2 % 
of the preset value (Fig. 14, a);

– when configured for a fractional order of astatism 
1+µco, the transient process outperforms all previous settings 
(Fig. 14, b), the only disadvantage includes somewhat increased 
current pulsations compared with the DµIγI controller.

Thus, it can be argued that among the options considered 
the use of a controller set for a fractional order of astatism 
1+µco yields the best results in a closed current circuit of the 
motor with series excitation. An experiment with job signals 
0→1.64 А→3.28 А→1.64 А→0 demonstrates that a given 
setting is also applicable over the entire range of current 
control. 

The results obtained can be used in the future to build 
control systems of valve-jet engines, asynchronous electric 
drives with vector control.

8. Conclusions

1. An experimental study of DCMSE at a current of 
2In and subsequent processing of data have shown that the 
motor armature circuit is most accurately described by a 
fractional-differential equation of order 1+µco (µco≈0.35) 

and, accordingly, transfer function W
K

a s a sco3
1

1
0 1

=
+ ++µ µ .

2. We have investigated a closed-loop system set for 
modular optimum, for an optimum with orders of astatism 
0.6, µco, 1.5, 1+µco. The respective structural schemes and 
parameters for controllers have been determined. The best 
dynamic and static indicators characterize the system with 
an order of 1+µco, including under conditions for a power 
supply voltage limitation. To ensure such a configuration, a 
controller is required with the structure shown in Fig. 14, b, 
whose parameters can be found using genetic algorithms. 
When such a controller is discretely implemented in a loop, 
there is a single calculation of the fractional integral, which 
reduces the requirements to computational power and to 
memory volume in a microprocessor.

3. It is shown that such a closed system retains the opti�-
mal properties at different levels of jobs from 0 to 2In, which 
characterizes it as a self-similar one. Therefore, it becomes 
feasible to analyze and synthesize using classical methods of 
the theory of automatic control for linear systems.

a

b

Fig. 15. Diagrams of transient processes with a controller for 
µ=1+µco: a ‒ with a job signal of 1.6 A; b ‒ at a step-wise 

change in the job signal
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