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The most widespread operations of digital signal pro-
cessing are the calculation of digital convolutions, corre-
lation functions, and spectra of various signals [1, 2]. In
the recent papers, the Hartley transform (HT) has been
applied widely as an alternative to the Fourier trans-
form (FT).

The HT was proposed in [3] and, later, covered
extensively in the literature on digital signal processing
[4–8]. The HT is superior to the FT, in particular, in cal-
culation of signal spectra because the HT allows
replacement of the FT complex basis by the HT real
basis that retains, simultaneously, number 

 

N

 

 of the
degrees of freedom of the transformation [7]. In addi-
tion, the direct and inverse HTs are implemented in the
same algorithm. For an arbitrary function that is contin-
uous in time and frequency, the direct and inverse HTs
are defined as follows:

where cas

 

(

 

z

 

) = 

 

cos
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z
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sin

 

(

 

z
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 and 

 

z

 

 is an arbitrary value
of the argument.

Solution of digital-signal-processing problems
necessitates discretization in time or frequency or
simultaneous discretization in both variables. Thus, fre-
quency discretization yields the direct and inverse fre-
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quency-discrete HTs
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respectively, where 

 

T

 

 is the duration of a signal.
Simultaneous time and frequency discretization

yields the direct and inverse discrete HT (DHT)

 

(3)

(4)

 

Expressions (3) and (4) imply that both the direct
and inverse DHTs have the same kernels of transforma-
tion and differ only by the normalization factor. There-
fore, these transforms can be calculated using one and
the same fast algorithm: the fast Hartley transform
(FHT) [4, 7].

The Fourier and Hartley transforms are related by
the following simple formulas:
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0

T

∫=

h t( ) 1/T( ) H k( )cas 2π f kt( ),
k ∞–=

∞

∑=

H k( ) N 1– h n( )cas
2πnk

N
-------------⎝ ⎠

⎛ ⎞ ,
n 0=

N 1–

∑=

h n( ) H k( )cas
2πnk

N
-------------⎝ ⎠

⎛ ⎞ .
k 0=

N 1–

∑=

ReF k( ) 1/2( ) H k( ) H N k–( )+[ ],=

k 0 1 … N 1,–, , ,=

ImF k( ) 1/2 H k( ) H N k–( )–[ ],=

 

Modified Signal-Processing Algorithms 
Based on the Hartley Transform

 

A. B. Kokhanov and V. V. Zakharov

 

Received August 11, 2004

 

Abstract
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where 

 

F

 

(

 

k

 

)

 

 and 

 

H

 

(

 

k

 

)

 

 are the FT and HT, respectively, of
an arbitrary discrete function.

For arrays of real data, the following inverse rela-
tionship holds:

 

(7)

 

Obviously, like the FT, the HT has an orthogonal
harmonic decomposition basis. Equations (5)–(7)
describe the linear relationship between Fourier and
Hartley spectra and, hence, indicate the possibility of
using the HT for calculation of a spectrum from its HT.
The properties of the HT resemble those of the FT [7].
In addition, the orthogonality of the Hartley basis pro-
vides, in certain cases, for signal processing based on
the HT instead of the FT.

In this paper, modified HT-based algorithms are pro-
posed for calculation of digital cyclic convolutions,
correlation functions, and autocorrelation functions.
These algorithms are simpler and require less RAM as
compared to conventional procedures. The developed
algorithms employ two transformations instead of three
different HTs. Therefore, the computational cost and
required RAM are reduced by one-third and, as a result,
the CPU time necessary for computation of a convolu-
tion is reduced. We suggest applying the HT instead of
the FT in orthogonal frequency division multiplex
(OFDM) for simplification of a transceiver. The gain in
the computational efficiency is demonstrated.

First, let us consider calculation of the cyclic digital
convolution of two functions 

 

h

 

(

 

n

 

)

 

 and 

 

q

 

(

 

n

 

)

 

 defined by
the expression

 

(8)

 

where * is the sign of a convolution of two digital sig-
nals.

A lot of computational methods based on formula (8)
have been proposed in the literature [1, 2, 9]. They dif-
fer in both computational complexity and hardware
implementation.

In [2, 7], it is proposed to calculate a cyclic convo-
lution using the frequency-domain Hartley transform
defined as

 

(9)

 

where 

 

H

 

(
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)

 

 and 

 

Q
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)

 

 are the Hartley spectra of func-
tions 

 

h

 

(

 

n) and q(n), n = 0, 1, …, N – 1, and ⇔ is the sign
of correspondence.
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The following notation is employed in formula (9):

(10)

(11)

(12)

(13)

It follows from expressions (9)–(13) that the algo-
rithm developed for calculation of a cyclic convolution
necessitates computation of three transforms: H(k),
Qc(k), and Qs(k).

Let us show that the number of transforms can be
reduced to two. We apply the trigonometric identities

(14)

and

(15)

to synthesize the algorithm.

Having substituted expressions (14) and (15) into
Eq. (10) and taking into account the periodicity of the
sine and cosine functions and the obvious equalities
H(k) = Y(N – k) and Y(k) = H(N – k), which can easily
be proved by inverting the order of summation (k' =
N − k), we obtain

(16)

where k = 0, 1, 2, …, N – 1 and functions H(k) and Y(k)
are defined as
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Applying successively a similar substitution in
Eqs. (11)–(13), we obtain

(19)

(20)

(21)

where

(22)

(23)

In expressions (19)–(21), it is taken into account that
Y(k) = H(N – k) and X(k) = Q(N – k).

With allowance for (16)–(23), expression (9) takes
the final form

(24)

It follows from (24) that, in order to calculate the
digital convolution of two functions h(n) and q(n), it is
sufficient to determine Hartley spectra H(k) and Q(k) of
these functions and calculate their linear combination. If
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the convolution is calculated according to algorithm (9),
it is necessary to determine three discrete functions
H(k), Qs(k), and Qc(k) instead of two as required by
algorithm (24). Thus, the use of algorithm (24) reduces
both the computational work and the required RAM by
a third because it is necessary to store two rather than
three arrays.

Let us apply the FHT to calculate a cross-correlation
function (CCF). Taking into account the definition of
the CCF of discrete signals h(n) and q(n) from [2, 7], we
obtain

(25)

where ** is the sign of either correlation or autocorre-
lation.

By analogy to expressions (9)–(23), we find

(26)

(27)

 

where k = 0, 1, 2, …, N – 1 and X(k) = Q(N – k).

The final expression for the CCF has the form

(28)

It follows from expressions (25) and (28) that calcu-
lation of a CCF also necessitates two rather than three
transforms. Therefore, a similar reduction in both the
number of operations and the required RAM is gua-
ranteed.
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It is obvious that, by analogy to (28), the expression
for the autocorrelation function (AF) of discrete signal
h(n) has the following form in the spectral domain:

where H1(k) and H2(k) are the Hartley spectra of func-
tion h(n) and its shift h(n + k), respectively. All afore-
mentioned gains in the computational efficiency and
RAM space are retained.

Since the Hartley basis is orthogonal, it may be
applied sometimes instead of the Fourier basis. Let us
consider, for example, the possibility of employing the
HT for OFDM. With this kind of modulation, which is
applied widely in modern communications systems for
data transmission, it is possible to perform separate
processing of signals represented by a sufficiently large
number of orthogonal carriers in the frequency domain
[10–12]. The key OFDM operation is the inverse FT
(IFT) in the transmitter and the direct FT (DFT) in the
receiver. If the input signal is represented as discrete
complex data sequence c( fn) consisting of frequency-
domain samples, the corresponding signal in the time
domain is determined as

(29)

where c( fn) = (n, i)g(t – iTs) are the constellation
code symbols of an m-ary (m = 2, 4, 8, 16, …) digital
modulation either phase shift keying or quadrature
amplitude one [13], the function g(t) = rect(t/Ts)
describes the rectangular form of symbol transmission
of duration Ts, fn = n/Ts is the frequency corresponding
to the transmitter with index n, and iTs ≤ t ≤ (i + 1)Ts .

In expression (29), signal s(t) is equivalent to a fre-
quency-splitting signal (fn denotes discrete frequencies
involved in frequency splitting) that is phase- or ampli-
tude-and-phase-shift keyed in each channel. It is evi-
dent that (29) is the IFT of sequence c( fn). In the
receiver, the signal is recovered via the DFT on each
temporal interval [iTs, (i + 1)Ts]:

(30)

where r(t) = s(t) * hc + ξ(t) is the convolution of the
input signal and the pulse response of the communica-
tion channel mixed with an additive Gaussian white
noise.

h n( ) * * h n( ) 1
2
--- H1 N k–( ) H2 k( ) H2 N k–( )+[ ]{⇔

+ H1 k( ) H2 k( ) H2 N k–( )–[ ] },

s t( ) 1/Ts( ) c f n( ) j2π f nt( ),exp
n 0=

N 1–

∑=

d
i∑

ĉ f n( ) r t( ) j2π f nt–( ) t,dexp

iTs

i 1+( )Ts

∫=

In practice, most OFDM systems use the inverse and
direct discrete FTs (IDFT and DFT) or the inverse and
direct fast FTs (IFFT and FFT) [1, 12]. In this case, the
temporal interval [iTs, (i + 1)Ts] is split into N equal seg-
ments and expressions (29) and (30) take the forms

(31)

(32)

Although the idea of OFDM based on the IFFT and
FFT is rather simple, its implementation is impeded by
certain factors. Since OFDM exhibits its advantages at
N of about several thousands, computational algorithms
(31) and (32), which involve complex arithmetical
operations, are rather complex despite that the FFT
algorithm requires only about  arithmetical
operations [1].

Permutation of input data is another procedure that
is difficult to implement. Permutations are necessary
for the following reason. Even if an original input sig-
nal is real, its FT is complex. In practice, it is more con-
venient to deal with real data arrays. These are formed
via intricate permutations of the original array. The cor-
responding procedure can be described as follows [1].
Let {am} and {bm} be two real sequences (of length M)
of a complex signal of a discrete argument. A new
sequence of the length N = 2M is determined such that

(33)

The signal formed exhibits complex-conjugate sym-
metry. Therefore, upon applying the IFFT, the signal is
real owing to the well-known properties of the FT [1].
However, the permutation procedure necessitates a
considerable additional amount of RAM. In addition,
implementation of OFDM based on the FFT and IFFT
is hampered by the difference in the direct and inverse
algorithms.

Let us show that the use of the HT in OFDM sys-
tems not only is adequate for the use of the FT but also
has certain advantages. A multifrequency signal can be
represented as

(34)

s k( ) 1/N( ) c n( ) j2πnk/N( )exp
n 0=
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=  DFT r 0( ) r 1( ) … r N 1–( ), ,,{ }.

N N2log

c n( ) a m( ) jb m( ),+=

n N /2 m– 1, m+ 1 2 … N /2,, , ,= =

c n( ) a m( ) jb m( ),–=

n N /2 m, m+ 1 2 … N /2., , ,= =

s t( ) c f n( ) 2π f nt( ).cos
n 0=
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∑=



JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS      Vol. 50      No. 12      2005

MODIFIED SIGNAL-PROCESSING ALGORITHMS BASED ON THE HARTLEY TRANSFORM 1371

Let us introduce the phase shift π/4 and the scaling

factor  into Eq. (34). This yields

(35)

Obviously, the factor  changes only the amplitudes
of harmonics and the phase shift π/4 does not distort
frequency division multiplexing. If the trigonometric

identity cos(π/4 – z) = cos(z) + sin(z) = cas(z) is
taken into account and expressions (34) and (35) are
used, the expression for multifrequency signal s(t) can
be represented in the form

(36)

It follows from (1) that expression (36) is the HT.
The orthogonality of channels can be proved easily by
using the integral

Expression (36) describes group signal s(t) with fre-
quency division into N channels and cas-type orthogo-
nal carrier frequencies. In order to recover the signal
c( fn) on the temporal interval [iTs, (i + 1)Ts], it is neces-
sary to use expression (2). In that case, we obtain

(37)

Thus, expressions (36) and (37) imply that a signal
is transmitted using the real kernel of the HT rather than
the complex kernel of the FT as a carrier. The real ker-
nel of the HT provides for computations that involve
arithmetical operations with only real numbers and
allows performance of direct and inverse transforma-
tions according to the same algorithm. When the HT is
applied in the case of a real input data array, it is not
necessary to form a special array by way of (33)
because the Hartley spectrum remains real.

It follows from (36) that Hartley-basis transmission,
combined with quadrature processing, necessitates one
real summation operation and two real operations of
multiplication by the corresponding function for each
data-transmission channel. It is evident that the use of
the FT involves two real summations and four real mul-

2

s t( ) 2 c f n( ) π/4 2π f nt–( ).cos
n 0=

N 1–

∑=

2

2

s t( ) c f n( )cas 2π f nt( )
n 0=

N 1–

∑=

=  c f n( ) 2π f nt( )cos 2π f nt( )sin+[ ].
n 0=

N 1–

∑

c f i( )c f j( )cas 2π f it( )cas 2π f it( ) td

iTS

i 1+( )TS

∫ 0, i j.≠=

ĉ f n( ) r t( )cas 2π f nt( ) t.d

iTs

i 1+( )Ts

∫=

tiplications. Thus, for one channel, two multiplications
and one summation are saved. This is equivalent to a
computational gain of 2N real multiplications and N
real summations for the algorithm on the whole.

Let us apply the DHT to construct transceivers. This
technique allows application of the FHT. To this end,
we split the temporal interval [iTs, (i + 1)Ts] into N
equal subintervals and represent (3) and (4) as

(38)

(39)

The FHT is described in [2, 4, 7]. As in the case of
the FFT, the computational complexity of the FHT can
be assessed by quantity . However, this quan-
tity corresponds to the number of real rather than com-
plex arithmetical operations. Thus, the FHT ensures a
gain of approximately two as compared to the FFT, all
other factors being the same. In addition, it follows
from expressions (38) and (39) that both the transmitter
and receiver use the same FHT algorithm; hence, the
transceiver can be unified.

Thus, in this paper, modified algorithms have been
developed for calculation of digital convolutions, cross-
correlation functions, and autocorrelation functions in
the spectral domain. These algorithms allow reduction
of the computational work and required RAM by a
third. This gain is obtained owing to the fact that the
proposed algorithms necessitate only calculation of the
Hartley spectra of the functions to be convolved and
linear combinations of these spectra instead of direct
calculation of the components involved in the HT in the
conventional algorithm. A multifrequency data-trans-
mission technique based on HT has been proposed.
With this technique, the computational complexity of
the algorithms used to form channels with orthogonal
functions in existing OFDM systems is nearly halved.
This result is attainable because all operations in the
transceiver are performed in the real Hartley basis
rather than the Fourier exponential-function basis. The
use of the HT in OFDM offers certain additional advan-
tages. Thus, intricate permutations of the input array
become unnecessary in the case of real input data and
the direct and inverse transforms are performed accord-
ing to the same algorithm. Since the Hartley basis is
orthogonal, this data-transmission technique is equiva-
lent to the existing OFDM.

s k( ) N 1– c n( )cas 2πnk/N( )
n 0=

N 1–

∑=

=  FHT c 0( ) c 1( ) … c N 1–( ), ,,{ },

ĉ n( ) r k( )cas 2πnk/N( )
k 0=

N 1–

∑=

=  FHT r 0( ) r 1( ) … r N 1–( ), ,,{ }.

N N2log
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