eONPUIR

Sharp Weak Type Estimates for a Family of Soria Bases

Показать сокращенную информацию

dc.contributor.author Dmitrishin, Dmitriy
dc.contributor.author Дмитришин, Дмитро Володимирович
dc.contributor.author Hagelstein, Paul
dc.contributor.author Stokolos, Alex
dc.date.accessioned 2022-06-01T07:56:35Z
dc.date.available 2022-06-01T07:56:35Z
dc.date.issued 2022
dc.identifier.citation Dmitrishin D. Sharp Weak Type Estimates for a Family of Soria Bases / D. Dmitrishin, P. Hagelstein, A. Stokolos // Journal of Geometric Analysis. - Vol. 32, № 5. - P. 1-10. en
dc.identifier.issn 10.1007/s12220-022-00903-5
dc.identifier.uri http://dspace.opu.ua/jspui/handle/123456789/12643
dc.description.abstract Let B be a collection of rectangular parallelepipeds in R3 whose sides are parallel to the coordinate axes and such that B contains parallelepipeds with side lengths of the form s,2Ns,t, where s, t> 0 and N lies in a nonempty subset S of the natural numbers. We show that if S is an infinite set, then the associated geometric maximal operator MB satisfies the weak type estimate |{x∈R3:MBf(x)>α}|≤C∫R3|f|α(1+log+|f|α)2,but does not satisfy an estimate of the form |{x∈R3:MBf(x)>α}|≤C∫R3ϕ(|f|α)for any convex increasing function ϕ: [0 , ∞) → [0 , ∞) satisfying the condition limx→∞ϕ(x)x(log(1+x))2=0. © 2022, Mathematica Josephina, Inc. en
dc.language.iso en_US en
dc.publisher Springer en
dc.subject Covering lemmas en
dc.subject Weak type inequalities en
dc.subject Differentiation basis en
dc.subject Maximal functions en
dc.title Sharp Weak Type Estimates for a Family of Soria Bases en
dc.type Article in Scopus en
opu.citation.journal Journal of Geometric Analysis en
opu.citation.volume 32 en
opu.citation.firstpage 1 en
opu.citation.lastpage 10 en
opu.citation.issue 2 en
opu.staff.id dmitrishin@op.edu.ua en


Файлы, содержащиеся в элементе

Этот элемент содержится в следующих коллекциях

Показать сокращенную информацию