Показать сокращенную информацию
dc.contributor.author | Dmitrishin, Dmitriy | |
dc.contributor.author | Дмитришин, Дмитро Володимирович | |
dc.contributor.author | Hagelstein, Paul | |
dc.contributor.author | Stokolos, Alex | |
dc.date.accessioned | 2022-06-01T07:56:35Z | |
dc.date.available | 2022-06-01T07:56:35Z | |
dc.date.issued | 2022 | |
dc.identifier.citation | Dmitrishin D. Sharp Weak Type Estimates for a Family of Soria Bases / D. Dmitrishin, P. Hagelstein, A. Stokolos // Journal of Geometric Analysis. - Vol. 32, № 5. - P. 1-10. | en |
dc.identifier.issn | 10.1007/s12220-022-00903-5 | |
dc.identifier.uri | http://dspace.opu.ua/jspui/handle/123456789/12643 | |
dc.description.abstract | Let B be a collection of rectangular parallelepipeds in R3 whose sides are parallel to the coordinate axes and such that B contains parallelepipeds with side lengths of the form s,2Ns,t, where s, t> 0 and N lies in a nonempty subset S of the natural numbers. We show that if S is an infinite set, then the associated geometric maximal operator MB satisfies the weak type estimate |{x∈R3:MBf(x)>α}|≤C∫R3|f|α(1+log+|f|α)2,but does not satisfy an estimate of the form |{x∈R3:MBf(x)>α}|≤C∫R3ϕ(|f|α)for any convex increasing function ϕ: [0 , ∞) → [0 , ∞) satisfying the condition limx→∞ϕ(x)x(log(1+x))2=0. © 2022, Mathematica Josephina, Inc. | en |
dc.language.iso | en_US | en |
dc.publisher | Springer | en |
dc.subject | Covering lemmas | en |
dc.subject | Weak type inequalities | en |
dc.subject | Differentiation basis | en |
dc.subject | Maximal functions | en |
dc.title | Sharp Weak Type Estimates for a Family of Soria Bases | en |
dc.type | Article in Scopus | en |
opu.citation.journal | Journal of Geometric Analysis | en |
opu.citation.volume | 32 | en |
opu.citation.firstpage | 1 | en |
opu.citation.lastpage | 10 | en |
opu.citation.issue | 2 | en |
opu.staff.id | dmitrishin@op.edu.ua | en |