Показать сокращенную информацию
dc.contributor.author | Dmitrishin, Dmitriy | |
dc.contributor.author | Gray, Daniel | |
dc.contributor.author | Stokolos, Alexander | |
dc.contributor.author | Tarasenko, Iryna | |
dc.contributor.author | Дмитришин, Дмитро Володимирович | |
dc.contributor.author | Тарасенко, Ірина | uk |
dc.date.accessioned | 2023-11-30T12:42:45Z | |
dc.date.available | 2023-11-30T12:42:45Z | |
dc.date.issued | 2023 | |
dc.identifier.citation | An Extremal Problem for Odd Univalent Polynomials / D. Dmitrishin, D. Gray, A. Stokolos, I. Tarasenko // Computational Methods and Function Theory. - 2023. - P. 1-16. | en |
dc.identifier.issn | 1617-9447 | |
dc.identifier.uri | 10.1007/s40315-023-00487-3 | |
dc.identifier.uri | http://dspace.opu.ua/jspui/handle/123456789/14181 | |
dc.description.abstract | For the univalent polynomials F(z)=∑j=1Najz2j-1 with real coefficients and normalization a1= 1 we solve the extremal problem minaj:a1=1(-iF(i))=minaj:a1=1∑j=1N(-1)j+1aj. We show that the solution is 12sec2(π2N+2), and the extremal polynomial ∑j=1NU2(N-j+1)′(cos(π2N+2))U2N′(cos(π2N+2))z2j-1 is unique and univalent, where Uj(x) is a Chebyshev polynomial of the second kind and Uj′(x) denotes the derivative. As an application, we obtain an estimate of the Koebe radius for odd univalent polynomials in D and formulate several conjectures. © 2023, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. | en |
dc.language.iso | en_US | en |
dc.publisher | Springer Science and Business Media Deutschland GmbH | en |
dc.subject | Chebyshev polynomials | en |
dc.subject | T-folded Koebe function | en |
dc.subject | Koebe one-quarter theorem | en |
dc.subject | Odd univalent polynomials | en |
dc.title | An Extremal Problem for Odd Univalent Polynomials | en |
dc.type | Article in Scopus | en |
opu.citation.journal | Computational Methods and Function Theory | en |
opu.citation.firstpage | 1 | en |
opu.citation.lastpage | 16 | en |
opu.staff.id | dmitrishin@op.edu.ua | en |