eONPUIR

The problem of stationary thermoelasticity for a piecewise homogeneous transversely isotropic space under the influence of a heat flux specified at infinity is considered

Показать сокращенную информацию

dc.contributor.author Kryvyi, Oleksandr
dc.contributor.author Кривий, Олександр Федорович
dc.contributor.author Morozov, Yurii
dc.contributor.author Морозов, Юрій Олександрович
dc.date.accessioned 2025-01-29T13:14:57Z
dc.date.available 2025-01-29T13:14:57Z
dc.date.issued 2020
dc.identifier.citation Kryvyi, O. F., Morozov, Yu. O. (2020). The problem of stationary thermoelasticity for a piecewise homogeneous transversely isotropic space under the influence of a heat flux specified at infinity is considered. Journal of Physics: Conference Series, Volume 1474, Issue 1, P. 1-8. en
dc.identifier.issn 17426588
dc.identifier.uri http://dspace.opu.ua/jspui/handle/123456789/14862
dc.description.abstract An exact solution to the problem of thermoelasticity about interfacial circular inclusion, which is in complete adhesion with different transversely isotropic half-spaces, is constructed.Analytical dependencies are obtained between the parameters of the linear displacement of the inclusion and the characteristics of the force and temperature fields. The order of the singularity of surges and displacements near the inclusion is determined. Expressions are obtained for the stress intensity factor at the inclusion boundary, as well as the numerical dependences of these coefficients on the polar angle, temperature, and load. en
dc.language.iso en en
dc.publisher Institute of Physics Publishing en
dc.title The problem of stationary thermoelasticity for a piecewise homogeneous transversely isotropic space under the influence of a heat flux specified at infinity is considered en
dc.type Article in Scopus en
opu.citation.journal Journal of Physics: Conference Series en
opu.citation.volume 1474 en
opu.citation.firstpage 1 en
opu.citation.lastpage 8 en
opu.citation.issue 1 en


Файлы, содержащиеся в элементе

Этот элемент содержится в следующих коллекциях

Показать сокращенную информацию