eONPUIR

Fejér polynomials and control of nonlinear discrete systems

Показать сокращенную информацию

dc.contributor.author Dmitrishin, Dmytro
dc.contributor.author Дмитришин, Дмитро Володимирович
dc.contributor.author Hagelstein, Paul
dc.contributor.author Хагелстейн, Пол
dc.contributor.author Khamitova, Anna
dc.contributor.author Хамітова, Анна Дмитрівна
dc.contributor.author Korenovskyi, Anatolii
dc.contributor.author Кореновський, Анатолій Олександрович
dc.contributor.author Stokolos, Oleksandr
dc.contributor.author Стоколос, Олександр Михайлович
dc.date.accessioned 2025-02-04T12:55:31Z
dc.date.available 2025-02-04T12:55:31Z
dc.date.issued 2020
dc.identifier.citation Dmitrishin, D., Hagelstein, P., Khamitova, A., Korenovskyi, A., Stokolos, A. (2020). Fejér polynomials and control of nonlinear discrete systems. Constructive Approximation, Volume 51, Issue 2, P. 383-412. en
dc.identifier.issn 01764276
dc.identifier.uri http://dspace.opu.ua/jspui/handle/123456789/14881
dc.description.abstract We consider optimization problems associated to a delayed feedback control (DFC) mechanism for stabilizing cycles of one dimensional discrete time systems. In particular, we consider a delayed feedback control for stabilizing T -cycles of a differentiable function f : R → R of the form x(k + 1) = f(x(k)) + u(k) where u(k) = (a1−1)f(x(k))+a2f(x(k−T ))+· · ·+aNf(x(k−(N−1)T )) , with a1+ · · · + aN= 1.Following an approach of Morg¨ul, we associate to each periodic orbit of f, N ∈ N, and a1, . . . , aNan explicit polynomial whose Schur stability corresponds to the stability of the DFC on that orbit. We prove that, given any 1- or 2-cycle of f, there exist N and a1, . . ., aN whose associated polynomial is Schur stable, and we find the minimal N that guarantees this stabilization. The techniques of proof will take advantage of extremal properties of the Fej´er kernels found in classical harmonic analysis. en
dc.language.iso en en
dc.publisher Springer en
dc.subject control theory en
dc.subject stability en
dc.title Fejér polynomials and control of nonlinear discrete systems en
dc.type Article in Scopus en
opu.citation.journal Constructive Approximation en
opu.citation.volume 51 en
opu.citation.firstpage 383 en
opu.citation.lastpage 412 en
opu.citation.issue 2 en


Файлы, содержащиеся в элементе

Этот элемент содержится в следующих коллекциях

Показать сокращенную информацию