Показать сокращенную информацию
dc.contributor.author | Dmitrishin, Dmytro![]() |
|
dc.contributor.author | Дмитришин, Дмитро Володимирович![]() |
|
dc.contributor.author | Hagelstein, Paul![]() |
|
dc.contributor.author | Хагелстейн, Пол![]() |
|
dc.contributor.author | Khamitova, Anna![]() |
|
dc.contributor.author | Хамітова, Анна Дмитрівна![]() |
|
dc.contributor.author | Korenovskyi, Anatolii![]() |
|
dc.contributor.author | Кореновський, Анатолій Олександрович![]() |
|
dc.contributor.author | Stokolos, Oleksandr![]() |
|
dc.contributor.author | Стоколос, Олександр Михайлович![]() |
|
dc.date.accessioned | 2025-02-04T12:55:31Z | |
dc.date.available | 2025-02-04T12:55:31Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | Dmitrishin, D., Hagelstein, P., Khamitova, A., Korenovskyi, A., Stokolos, A. (2020). Fejér polynomials and control of nonlinear discrete systems. Constructive Approximation, Volume 51, Issue 2, P. 383-412. | en |
dc.identifier.issn | 01764276 | |
dc.identifier.uri | http://dspace.opu.ua/jspui/handle/123456789/14881 | |
dc.description.abstract | We consider optimization problems associated to a delayed feedback control (DFC) mechanism for stabilizing cycles of one dimensional discrete time systems. In particular, we consider a delayed feedback control for stabilizing T -cycles of a differentiable function f : R → R of the form x(k + 1) = f(x(k)) + u(k) where u(k) = (a1−1)f(x(k))+a2f(x(k−T ))+· · ·+aNf(x(k−(N−1)T )) , with a1+ · · · + aN= 1.Following an approach of Morg¨ul, we associate to each periodic orbit of f, N ∈ N, and a1, . . . , aNan explicit polynomial whose Schur stability corresponds to the stability of the DFC on that orbit. We prove that, given any 1- or 2-cycle of f, there exist N and a1, . . ., aN whose associated polynomial is Schur stable, and we find the minimal N that guarantees this stabilization. The techniques of proof will take advantage of extremal properties of the Fej´er kernels found in classical harmonic analysis. | en |
dc.language.iso | en | en |
dc.publisher | Springer | en |
dc.subject | control theory | en |
dc.subject | stability | en |
dc.title | Fejér polynomials and control of nonlinear discrete systems | en |
dc.type | Article in Scopus | en |
opu.citation.journal | Constructive Approximation | en |
opu.citation.volume | 51 | en |
opu.citation.firstpage | 383 | en |
opu.citation.lastpage | 412 | en |
opu.citation.issue | 2 | en |