eONPUIR

Mathematical modeling of formation processes of sequences with fractal elements of periodical chaotic dynamical system trajectories

Показать сокращенную информацию

dc.contributor.author Vostrov, Georgii
dc.contributor.author Востров, Георгій Миколайович
dc.contributor.author Khrinenko, Andrii
dc.contributor.author Хріненко, Андрій Олегович
dc.date.accessioned 2025-03-03T06:18:53Z
dc.date.available 2025-03-03T06:18:53Z
dc.date.issued 2020
dc.identifier.citation Vostrov, G., Khrinenko, A. (2020). Mathematical modeling of formation processes of sequences with fractal elements of periodical chaotic dynamical system trajectories. CEUR Workshop Proceedings, Volume 2711, P. 93-106. en
dc.identifier.issn 16130073
dc.identifier.uri http://dspace.opu.ua/jspui/handle/123456789/14992
dc.description.abstract This paper considers problems that arise during number sequence generation based on nonlinear dynamical systems. Complex systems can depend on many parameters analysis and examination of one-dimensional maps was performed since these maps are dymanical systems. Dependence of iterative fixed points for nonlinear maps on the properties of functions and function domain numbers was investigated. Several approaches to randomness evaluation and, accordingly, methods for estimating the degree of randomness of a particular sequence were considered. The properties and internal structure of sequences obtained on the basis of nonlinear maps were also examined in accordance to their influence on the degree of randomness. en
dc.language.iso en en
dc.publisher CEUR-WS en
dc.subject chaos en
dc.subject pseudorandom sequences en
dc.subject nonlinear maps en
dc.subject prime numbers en
dc.title Mathematical modeling of formation processes of sequences with fractal elements of periodical chaotic dynamical system trajectories en
dc.type Article in Scopus en
opu.citation.journal CEUR Workshop Proceedings en
opu.citation.firstpage 93 en
opu.citation.lastpage 106 en


Файлы, содержащиеся в элементе

Этот элемент содержится в следующих коллекциях

Показать сокращенную информацию