eONPUIR

Information system for the intellectual assessment customers text reviews tonality based on artificial neural networks

Показать сокращенную информацию

dc.contributor.author Rudnichenko, Mykola
dc.contributor.author Рудніченко, Микола Дмитрович
dc.contributor.author Antoshchuk, Svitlana
dc.contributor.author Антощук, Світлана Григорівна
dc.contributor.author Vychuzhanin, Volodymyr
dc.contributor.author Вичужанін, Володимир Вікторович
dc.contributor.author Ben, Andrii
dc.contributor.author Бень, Андрій Павлович
dc.contributor.author Petrov, Igor
dc.contributor.author Петров, Ігор Михайлович
dc.date.accessioned 2025-03-06T15:49:11Z
dc.date.available 2025-03-06T15:49:11Z
dc.date.issued 2020
dc.identifier.citation Rudnichenko, M., Antoshchuk, S., Vychuzhanin, V., Ben, A., Petrov, I. (2020). Information system for the intellectual assessment customers text reviews tonality based on artificial neural networks. CEUR Workshop Proceedings, Volume 2711, P. 371-385. en
dc.identifier.issn 16130073
dc.identifier.uri http://dspace.opu.ua/jspui/handle/123456789/14995
dc.description.abstract This article presents the results of the concept development and software information system for assessing text data tonality implementation by users based on artificial neural networks. The main problems in this topic are identified, the features of using deep machine learning for the text data mining problems are presented. An information system project has been developed, the preprocessing procedure and data filtering algorithms have been described, the specifics of data normalization for formalizing artificial neural network models are formalized. The options for using the information system, the block structure, the interface prototype and the procedure for user interaction with the software application are developed. The training effectiveness study results and the use of an artificial neural network model to solve the tasks are presented, the most suitable values of hyperparameters that have a primary impact on the model quality are identified and selected. en
dc.language.iso en en
dc.publisher CEUR-WS en
dc.subject machine learning en
dc.subject big data en
dc.subject data mining en
dc.subject data science en
dc.subject neural networks en
dc.subject deep learning en
dc.subject nature language processing en
dc.title Information system for the intellectual assessment customers text reviews tonality based on artificial neural networks en
dc.type Article in Scopus en
opu.citation.journal CEUR Workshop Proceedings en
opu.citation.firstpage 371 en
opu.citation.lastpage 385 en


Файлы, содержащиеся в элементе

Этот элемент содержится в следующих коллекциях

Показать сокращенную информацию