eONPUIR

Decision-making support technologies using the CAD/CAM/CAE system design and manufacture of bone substitutes with functional properties

Показать сокращенную информацию

dc.contributor.author Panda, Anton
dc.contributor.author Панда, Антон
dc.contributor.author Dyadyura, Kostiantyn
dc.contributor.author Дядюра, Костянтин Олександрович
dc.contributor.author Prokopovych, Ihor
dc.contributor.author Прокопович, Ігор Валентинович
dc.date.accessioned 2025-04-26T16:22:29Z
dc.date.available 2025-04-26T16:22:29Z
dc.date.issued 2023
dc.identifier.citation Panda, A., Dyadyura, K., Prokopovych, I. (2023). Decision-making support technologies using the CAD/CAM/CAE system design and manufacture of bone substitutes with functional properties. MM Science Journal, Volume 2023, P. 7064-7069. en
dc.identifier.issn 18031269
dc.identifier.uri http://dspace.opu.ua/jspui/handle/123456789/15127
dc.description.abstract Currently, the use of additive technologies for the production of bone substitutes determines the effectiveness of the latest methods of treatment and prosthetics in traumatic surgery, oncology, crania-maxillofacial surgery, dentistry, etc. The introduction of additive technologies is the result of the integration of medical visualization, in particular, based on the technologies of computer imaging, and engineering CAD/CAM/CAE systems. In connection with the increase in the number and severity of various types of bone tissue injuries received as a result of wounds during military operations in Ukraine, an important issue in orthopaedics and traumatology is making informed decisions about the possibility of restoring the integrity and functions of bone tissue when using different types of composition, the strength of biopolymer composites. The scientific aim of research is the development of principles and methods for making scientifically based decisions in the design and additive manufacturing of bone substitutes based on biopolymer composites with functional properties depending on the nature of the localization of the cavity bone defect and its size. The new knowledge will become the necessary basis for making optimal decisions in practice for the introduction of the latest methods of treatment and prosthetics in trauma surgery, oncology, crania-maxillofacial surgery, dentistry, taking into account the risks of biocompatibility of biopolymer composites. The results of the research will be used to design bone substitutes with controlled composition, structure, porosity, and mechanical strength for the further selection of additive technology for its production from apatite-polymer composites, which will contribute to increasing the efficiency of treatment and prosthetics in orthopaedics and traumatology. en
dc.language.iso en en
dc.publisher MM publishing Ltd. en
dc.subject tissue engineering en
dc.subject three-dimensional (3D) en
dc.subject bone scaffold en
dc.subject computer-aided design (CAD) en
dc.subject topology optimization (TO) additive manufacturing en
dc.title Decision-making support technologies using the CAD/CAM/CAE system design and manufacture of bone substitutes with functional properties en
dc.type Article in Scopus en
opu.citation.journal MM Science Journal en
opu.citation.firstpage 7064 en
opu.citation.lastpage 7069 en


Файлы, содержащиеся в элементе

Этот элемент содержится в следующих коллекциях

Показать сокращенную информацию