eONPUIR

On C. Michel's hypothesis about the modulus of typically real polynomials

Показать сокращенную информацию

dc.contributor.author Dmitrishin, Dmytro
dc.contributor.author Дмитришин, Дмитро Володимирович
dc.contributor.author Smorodin, Andrii
dc.contributor.author Смородін, Андрій Вячеславович
dc.contributor.author Stokolos, Oleksandr
dc.contributor.author Стоколос, Oлександр Михайлович
dc.date.accessioned 2025-05-13T12:10:17Z
dc.date.available 2025-05-13T12:10:17Z
dc.date.issued 2023
dc.identifier.citation Dmitrishin, D., Smorodin, А., Stokolos, O. On C. Michel's hypothesis about the modulus of typically real polynomials. Journal of Approximation Theory 2023, 289, 105885. en
dc.identifier.issn 00219045
dc.identifier.uri http://dspace.opu.ua/jspui/handle/123456789/15173
dc.description.abstract Extremal problems for typically real polynomials go back to a paper by W. W. Rogosinski and G. Szegő, where a number of problems were posed, which were partially solved by using orthogonal polynomials.Since then, not too many new results on extremal properties of typically real polynomials have been obtained.Fundamental work in this direction is due to M. Brandt, who found a novel way of solving extremal problems. In particular, he solved C. Michel’s problem of estimating the modulus of a typically real polynomial of odd degree. On the other hand, D. K. Dimitrov showed the effectivity of Fejér’s method for solving the Rogosinski–Szegő problems.In this article, we completely solve Michel’s problem by using Fejér’s method. en
dc.language.iso en en
dc.publisher Academic Press Inc. en
dc.title On C. Michel's hypothesis about the modulus of typically real polynomials en
dc.type Article in Scopus en
opu.citation.journal Journal of Approximation Theory en
opu.citation.volume 289 en


Файлы, содержащиеся в элементе

Этот элемент содержится в следующих коллекциях

Показать сокращенную информацию