eONPUIR

Candlestick Pattern Recognition in Cryptocurrency Price Time-Series Data Using Rule-Based Data Analysis Methods

Показать сокращенную информацию

dc.contributor.author Uzun, I.
dc.contributor.author Lobachev, M.
dc.contributor.author Kharchenko, V.
dc.contributor.author Schöler, T.
dc.contributor.author Lobachev, I.
dc.date.accessioned 2025-05-16T18:09:52Z
dc.date.available 2025-05-16T18:09:52Z
dc.date.issued 2024
dc.identifier.citation Uzun I. Candlestick Pattern Recognition in Cryptocurrency Price Time-Series Data Using Rule-Based Data Analysis Methods / I. Uzun, M. Lobachev, V. Kharchenko, T. Schöler, I. Lobachev // Computation, 12(7), 132, 2024. - 1-22. en
dc.identifier.uri http://dspace.opu.ua/jspui/handle/123456789/15190
dc.description.abstract In the rapidly evolving domain of cryptocurrency trading, accurate market data analysis is crucial for informed decision making. Candlestick patterns, a cornerstone of technical analysis, serve as visual representations of market sentiment and potential price movements. However, the sheer volume and complexity of cryptocurrency price time-series data presents a significant challenge to traders and analysts alike. This paper introduces an innovative rule-based methodology for recognizing candlestick patterns in cryptocurrency markets using Python. By focusing on Ethereum, Bitcoin, and Litecoin, this study demonstrates the effectiveness of the proposed methodology in identifying key candlestick patterns associated with significant market movements. The structured approach simplifies the recognition process while enhancing the precision and reliability of market analysis. Through rigorous testing, this study shows that the automated recognition of these patterns provides actionable insights for traders. This paper concludes with a discussion on the implications, limitations, and potential future research directions that contribute to the field of computational finance by offering a novel tool for automated analysis in the highly volatile cryptocurrency market. en
dc.language.iso en_US en
dc.subject cryptocurrencies en
dc.subject candlesticks en
dc.subject recognition en
dc.subject time series en
dc.subject rule-based method en
dc.subject data analysis en
dc.title Candlestick Pattern Recognition in Cryptocurrency Price Time-Series Data Using Rule-Based Data Analysis Methods en
dc.type Article en
opu.citation.firstpage 1 en
opu.citation.lastpage 22 en


Файлы, содержащиеся в элементе

Этот элемент содержится в следующих коллекциях

Показать сокращенную информацию