eONPUIR

Research and Development of a Modern Deep Learning Model for Emotional Analysis Management of Text Data

Показать сокращенную информацию

dc.contributor.author Bashynska, I.
dc.contributor.author Sarafanov, M.
dc.contributor.author Manikaeva, O.
dc.date.accessioned 2025-05-17T14:16:07Z
dc.date.available 2025-05-17T14:16:07Z
dc.date.issued 2024
dc.identifier.citation Bashynska I. Research and Development of a Modern Deep Learning Model for Emotional Analysis Management of Text Data / I. Bashynska, M. Manikaeva, O. Manikaeva // Applied Sciences (Switzerland), 14(5), 1952, 2024. - 1-26. en
dc.identifier.uri http://dspace.opu.ua/jspui/handle/123456789/15202
dc.description.abstract There are many ways people express their reactions in the media. Text data is one of them, for example, comments, reviews, blog posts, messages, etc. Analysis of emotions expressed there is in high demand nowadays for various purposes. This research provides a method of performing sentiment analysis of text information using machine learning. The authors trained a classifier based on the BERT encoder, which recognizes emotions in text messages in English written in chat style. To handle raw chat-style messages, authors developed an enhanced text standardization layer. The list of emotions identified includes admiration, amusement, anger, annoyance, approval, caring, confusion, curiosity, desire, disappointment, disapproval, disgust, embarrassment, excitement, fear, gratitude, grief, joy, love, nervousness, optimism, pride, realization, relief, remorse, sadness, and surprise. The model solves the problem of multiclass multilabel text classification, which means that more than one class can be predicted from one piece of text. The authors trained the model on the GoEmotions dataset, which consists of 54,263 text comments from Reddit. The model reached a macro-averaged F1-Score of 0.50704 in emotions prediction and 0.7349 in sentiments prediction on the testing dataset. The presented model increased the quality of emotions prediction by 10.2% and sentiments prediction by 6.5% in comparison to the baseline approach. en
dc.language.iso en_US en
dc.subject BERT en
dc.subject emotions prediction en
dc.subject General Language Understanding Evaluation (GLUE) en
dc.subject GoEmotions en
dc.subject sentiment analysis en
dc.title Research and Development of a Modern Deep Learning Model for Emotional Analysis Management of Text Data en
dc.type Article en
opu.citation.firstpage 1 en
opu.citation.lastpage 26 en


Файлы, содержащиеся в элементе

Этот элемент содержится в следующих коллекциях

Показать сокращенную информацию