Показать сокращенную информацию
dc.contributor.author | Dmitrishin, D.![]() |
|
dc.contributor.author | Gray, D.![]() |
|
dc.contributor.author | Stokolos, A.![]() |
|
dc.contributor.author | Tarasenko, I.![]() |
|
dc.date.accessioned | 2025-05-17T14:33:57Z | |
dc.date.available | 2025-05-17T14:33:57Z | |
dc.date.issued | 2024 | |
dc.identifier.citation | Dmitrishin D. An Extremal Problem for Odd Univalent Polynomials / D. Dmitrishin, D. Gray, A. Stokolos, I. Tarasenko // Computational Methods and Function Theory, 24(1), 2024. - 83-100. | en |
dc.identifier.uri | http://dspace.opu.ua/jspui/handle/123456789/15204 | |
dc.description.abstract | For the univalent polynomials F(z) = P N j=1 aj z 2j−1 with real coefficients and normalization a1 = 1 we solve the extremal problem min aj : a1=1 (−iF(i)) = min aj : a1=1 X N j=1 (−1)j+1aj. We show that the solution is 1 2 sec2 π 2N+2 , and the extremal polynomial X N j=1 U ′ 2(N−j+1) cos π 2N+2 U ′ 2N cos π 2N+2 z 2j−1 is unique and univalent, where the Uj(x) are the Chebyshev polynomials of the second kind and U ′ j (x) denotes the derivative. As an application, we obtain the estimate of the Koebe radius for the odd univalent polynomials in D and formulate several conjectures. | en |
dc.language.iso | en_US | en |
dc.subject | Chebyshev polynomials | en |
dc.subject | odd univalent polynomials | en |
dc.subject | Koebe one-quarter theorem | en |
dc.title | An Extremal Problem for Odd Univalent Polynomials | en |
dc.type | Article | en |
opu.citation.firstpage | 83 | en |
opu.citation.lastpage | 100 | en |