eONPUIR

An Extremal Problem for Odd Univalent Polynomials

Показать сокращенную информацию

dc.contributor.author Dmitrishin, D.
dc.contributor.author Gray, D.
dc.contributor.author Stokolos, A.
dc.contributor.author Tarasenko, I.
dc.date.accessioned 2025-05-17T14:33:57Z
dc.date.available 2025-05-17T14:33:57Z
dc.date.issued 2024
dc.identifier.citation Dmitrishin D. An Extremal Problem for Odd Univalent Polynomials / D. Dmitrishin, D. Gray, A. Stokolos, I. Tarasenko // Computational Methods and Function Theory, 24(1), 2024. - 83-100. en
dc.identifier.uri http://dspace.opu.ua/jspui/handle/123456789/15204
dc.description.abstract For the univalent polynomials F(z) = P N j=1 aj z 2j−1 with real coefficients and normalization a1 = 1 we solve the extremal problem min aj : a1=1 (−iF(i)) = min aj : a1=1 X N j=1 (−1)j+1aj. We show that the solution is 1 2 sec2 π 2N+2 , and the extremal polynomial X N j=1 U ′ 2(N−j+1) cos π 2N+2 U ′ 2N cos π 2N+2 z 2j−1 is unique and univalent, where the Uj(x) are the Chebyshev polynomials of the second kind and U ′ j (x) denotes the derivative. As an application, we obtain the estimate of the Koebe radius for the odd univalent polynomials in D and formulate several conjectures. en
dc.language.iso en_US en
dc.subject Chebyshev polynomials en
dc.subject odd univalent polynomials en
dc.subject Koebe one-quarter theorem en
dc.title An Extremal Problem for Odd Univalent Polynomials en
dc.type Article en
opu.citation.firstpage 83 en
opu.citation.lastpage 100 en


Файлы, содержащиеся в элементе

Этот элемент содержится в следующих коллекциях

Показать сокращенную информацию