eONPUIR

Application of a Nine-Variate Prediction Ellipsoid for Normalized Data and Machine Learning Algorithms for Keystroke Dynamics Recognition

Показать сокращенную информацию

dc.contributor.author Prykhodko, S.
dc.contributor.author Trukhov, A.
dc.date.accessioned 2025-05-17T15:11:02Z
dc.date.available 2025-05-17T15:11:02Z
dc.date.issued 2024
dc.identifier.citation Prykhodko S. Application of a Nine-Variate Prediction Ellipsoid for Normalized Data and Machine Learning Algorithms for Keystroke Dynamics Recognition / S. Prykhodko, A. Trukhov // CEUR Workshop Proceedings, 3933, 2024. - 51-64. en
dc.identifier.uri http://dspace.opu.ua/jspui/handle/123456789/15205
dc.description.abstract Keystroke dynamics recognition is a crucial element in enhancing security, enabling personalized user authentication, and supporting various identity verification systems. This study offers a comparative analysis of a nine-variate prediction ellipsoid for normalized data and machine learning algorithms specifically, autoencoder, isolation forest, and one-class support vector machine for keystroke dynamics recognition. Traditional methods often assume a multivariate normal distribution. However, real-world keystroke data typically deviate from this assumption, negatively impacting model performance. To address this, the dataset was normalized using the multivariate Box-Cox transformation, allowing the construction of a decision rule based on a nine-variate prediction ellipsoid for normalized data. The study also includes The results revealed that the application of the Box-Cox transformation significantly enhanced both the accuracy and robustness of the prediction ellipsoid. Although all models demonstrated strong performance, the nine-variate prediction ellipsoid for normalized data consistently outperformed the machine learning algorithms. The study highlights the importance of careful feature selection and multivariate normalizing transformations in keystroke dynamics recognition. Future studies could benefit from broader datasets that include a wider range of user behaviors, such as variations in environmental factors and longer key sequences. en
dc.language.iso en_US en
dc.subject keystroke dynamics en
dc.subject multivariate normal distribution en
dc.subject Box-Cox transformation en
dc.subject machine learning en
dc.title Application of a Nine-Variate Prediction Ellipsoid for Normalized Data and Machine Learning Algorithms for Keystroke Dynamics Recognition en
dc.type Article en
opu.citation.firstpage 51 en
opu.citation.lastpage 64 en


Файлы, содержащиеся в элементе

Этот элемент содержится в следующих коллекциях

Показать сокращенную информацию