eONPUIR

Some extremal problems for trinomials with fold symmetry

Показать сокращенную информацию

dc.contributor.author Dmitrishin, Dmitriy
dc.contributor.author Gray, Daniel
dc.contributor.author Stokolos, Alex
dc.date.accessioned 2025-05-19T10:08:24Z
dc.date.available 2025-05-19T10:08:24Z
dc.date.issued 2022-02
dc.identifier.citation Dmitrishin D. Some extremal problems for trinomials with fold symmetry / D. Dmitrishin, D. Gray A. Stokolos // Analysis and Mathematical Physics, 2022 - 1-17 с. en
dc.identifier.uri http://dspace.opu.ua/jspui/handle/123456789/15223
dc.description.abstract The famous T. Suffridge polynomials have many extremal properties: the maximality of coefficients when the leading coefficient is maximal; the zeros of the derivative are located on the unit circle; the maximum radius of stretching the unit disk with the schlicht normalization F(0) = 0, F ′ (0) = 1; the maximum size of the unit disk contraction in the direction of the real axis for univalent polynomials with the normalization F(0) = 0, F(1) = 1. However, under the standard symmetrization method pT F(z T ), these polynomials go to functions, which are not polynomials. How can we construct the polynomials with fold symmetry that have properties similar to those of the Suffridge polynomial? What values will the corresponding extremal quantities take in the above-mentioned extremal problems? The paper is devoted to solving these questions for the case of the trinomials F(z) = z + az1+T + bz1+2T . Also, there are suggested hypotheses for the general case in the work en
dc.language.iso en_US en
dc.subject Suffridge polynomials en
dc.subject polynomials symmetrization en
dc.subject domain of univalence of trinomials with fold symmetry, extremal univalent trinomials with fold symmetry en
dc.title Some extremal problems for trinomials with fold symmetry en
dc.type Article en
opu.citation.journal Analysis and Mathematical Physics en
opu.citation.firstpage 1 en
opu.citation.lastpage 17 en


Файлы, содержащиеся в элементе

Этот элемент содержится в следующих коллекциях

Показать сокращенную информацию