eONPUIR

‎Development of a solution search method using an improved locust swarm algorithm

Показать сокращенную информацию

dc.contributor.author Tyurin, Vitalii
dc.contributor.author Bieliakov, Robert
dc.contributor.author Odarushchenko, Olena
dc.contributor.author Yashchenok, Volodymyr
dc.contributor.author Shaposhnikova, Olena
dc.contributor.author Lyashenko, Anna
dc.contributor.author Stanovskyi, Oleksandr
dc.contributor.author Melnyk, Borys
dc.contributor.author Sus, Sviatoslav
dc.contributor.author Dvorskyi, Mykola
dc.date.accessioned 2025-05-24T14:27:02Z
dc.date.available 2025-05-24T14:27:02Z
dc.date.issued 2023
dc.identifier.citation Tyurin, V., Bieliakov, R., Odarushchenko, O., Yashchenok, V., Shaposhnikova, O., Lyashenko, A., Stanovskyi, O., Melnyk, B., Sus, S., Dvorskyi, M. (2023). Development of a solution search method using an improved locust swarm algorithm. Eastern-European Journal of Enterprise Technologies, Volume 5, Issue 4 (125), P. 25-33. en
dc.identifier.issn 17293774
dc.identifier.uri http://dspace.opu.ua/jspui/handle/123456789/15289
dc.description.abstract The object of the research is decision support systems. The subject of the research is the decision-making process in management problems using the locust swarm algorithm and evolving artificial neural networks. A solution search method using an improved locust swarm algorithm is proposed. The research is based on the locust swarm algorithm for finding a solution regarding the state of an object. For training locust agents (LA), evolving artificial neural networks are used. The method has the following sequence of steps: - input of initial data; - processing of initial data taking into account the degree of uncertainty; - initial setting of LA in the search area; - determination of the initial speed of the LA movement; - a search vector is generated taking into account the degree of uncertainty; - calculation of the change in the value of the LA fitness function; - training of LA knowledge bases. The originality of the proposed method lies in the arrangement of LA taking into account the uncertainty of the initial data, improved procedures of global and local search taking into account the degree of noise of data about the state of the analysis object. Also, the originality of the research is avoiding the concentration of LA on the current best positions, reducing the probability of premature convergence of the algorithm and maintaining a balance between the convergence rate of the algorithm and diversification. The peculiarity of the proposed method is the use of an improved procedure for LA training. The training procedure consists in learning the parameters and architecture of individual elements and the architecture of the artificial neural network as a whole. en
dc.language.iso en en
dc.publisher Technology Center en
dc.subject swarm intelligence en
dc.subject decision support systems en
dc.subject hierarchical systems en
dc.subject locust swarm algorithm en
dc.title ‎Development of a solution search method using an improved locust swarm algorithm en
dc.type Article in Scopus en
opu.citation.journal Eastern-European Journal of Enterprise Technologies en
opu.citation.volume 5 en
opu.citation.firstpage 25 en
opu.citation.lastpage 33 en
opu.citation.issue 4 (125) en


Файлы, содержащиеся в элементе

Этот элемент содержится в следующих коллекциях

Показать сокращенную информацию