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In this article, a theoretical analysis of the flows arising in the cross sections of fluid and gas flows is per-
formed. Such flows are subdivided into secondary flows and coherent structures. From experimental studies it is
known that both types of flows are long-lived large-scale movements (LSM) stretched along the flow. The rela-
tive stability of the vortices is traditionally explained by the fact that the viscous friction forces that inhibit the
rotation are compensated by the intensification of the swirl when moving slowly rotating peripheral layers to
the center of the vortex due to longitudinal tension. An analysis of this mechanism made it possible to develop a
relatively simple model of vortex structures in which the viscous friction forces and axial expansion are consid-
ered to be infinitesimal. Under these assumptions, one can use the equations of motion of an ideal fluid in the
variables “stream function - vorticity”. It is shown that under certain assumptions these equations take the form
of a wave equation, and the boundary conditions are the condition that the stream function on the solid walls of
the flow equals zero. The obtained solutions of the wave equation describe the following special cases:
Goertler’s vortices between rotating cylinders, secondary flows in a pipe with a square cross section, swirling
flow in a round pipe, paired vortex after bend of the pipe. The physical sense of more complex solutions of the
wave equation has become clear relatively recently. Very similar structures were found in experimental studies
using orthogonal decomposition (POD) of a turbulent pulsations field. This may mean that the eigenfunctions in
the POD correspond to coherent structures that really arise in the flow. The results obtained confirm the hy-
pothesis that secondary flows and coherent structures have a common nature. The solutions obtained in this pa-
per can be used in processing the experiment as eigenfunctions for the orthogonal decomposition method. In
addition, they can be used in direct numerical simulation (DNS) of turbulent flows.
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1. Introduction

The study of the structure of turbulent flows is
one of the most important problems of fluid mechan-
ics. Many semi-empirical turbulence models have
been developed, but all of them have limited applica-
tions. In significant cases, the results of computer
simulation of fluid and gas flows ought to be verified
by experiment. Rational turbulence models can not
only increase the accuracy of modeling, but also es-
sentially accelerate the calculation process.

Understanding the structure of turbulent flows
can help in finding ways to reduce hydraulic re-
sistance, or to intensify heat and mass transfer in tech-
nological equipment.

Turbulence models are important in calculating
two-phase flows. In liquid-vapor systems, they allow
one to determine the areas of appearance and collapse
of bubbles. In systems "gas-solid particles™ they help
to predict the speed and zone of deposition of dust
particles.

A number of studies prove the close relationship
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between secondary flows and coherent structures. The
transition to turbulence can begin with the uprise of
secondary flows, continue as the formation of increas-
ingly complex coherent structures, and finally, lead to
the appearance of developed turbulence, where it is
difficult to distinguish ordered structures.

Enhancement of the theoretical models of sec-
ondary flows and coherent structures seems to be an
urgent task.

2. Literature Review

Secondary flows were discovered experimentally
and described in [1]. The essence of the phenomenon
is that if the main flow moves parallel to the x axis,
then flows with closed streamlines (eddies) arise in
the cross section yOz, the dimensions and shape of
which are determined by the boundary conditions.

According to the Prandtl classification, secondary
flows of the first kind arise in the cross sections of
pipes or channels under the action of mass forces [2].
Their classic example is the twin vortex that arises in
a bent round tube under the influence of centrifugal
force.

Secondary flows of the second kind arise in the
channels of a non-circular cross section, apparently
due to the uneven distribution of the shear stresses on
the wall. Secondary flows of the third kind arise near
bodies oscillating.

Structures that have many features in common
with secondary flows arise in a number of cases in the
process of transition from the laminar mode of motion
to turbulent one. Some of the most characteristic ex-
amples are Taylor vortices between rotating cylinders
and Goertler vortices on a curved surface [3].

The classical model of a stationary vortex is
known, the attenuation of which, due to the forces of
viscous friction, is compensated by the intensification
of the swirl associated with the extension of the vortex
along the axis [4]. This analysis allowed to suggest
that if we neglect simultaneously the forces of viscous
friction and the axial extension of the vortex, then we
can obtain a rather simple but close to reality model of
secondary flows [5, 6].

Simplified theoretical models of secondary flows
arising in the channels of prismatic [5] and circular [6]
cross sections are obtained. The streamlines and sec-
ondary current velocities are calculated. In [6], it was
suggested that the obtained models of secondary flows
can arise in pipes during the transition from the lami-
nar flow regime to the turbulent one. But in 2003,
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there was no experimental evidence for this assump-
tion.

In recent years, in experimental studies of turbu-
lent flows, significant progress has been achieved as-
sociated with the use of the sPIV method — stereo-
scopic particle image velocimetry [7, 8]. The essence
of the method is that a lot of hollow glass balls with a
size of about 10 um are added to the turbulent flow.
The average density of the balls is almost equal to the
density of the liquid, which provides neutral buoyan-
cy. Using high-resolution cameras, images of the flow
are obtained, which, using computer processing, make
it possible to obtain a three-dimensional field of in-
stantaneous fluid velocities in the cross section being
studied.

Next, the search for coherent structures war per-
formed by the method of snapshot proper orthogonal
decomposition (POD). The large-scale motions (LSM)
and very large-scale (VLSM) motions were distin-
guished. It was noted that these motions are closely
related to secondary flows, as well as to coherent
structures that occur during the transition to turbu-
lence [9].

According to the results of the POD analysis, the
most energy-efficient coherent structures were synthe-
sized. Fluctuations in the longitudinal velocity and
streamline of the secondary flows in the cross section
were visually presented in [10-12].

This article shows that secondary flows and
large-scale coherent structures, distinguished by pro-
cessing the experimental data, are in good agreement
with the wave model developed by us.

3. Equations describing secondary flows

Most secondary flows are long-lived vortices,
elongated in the direction of the main stream.

Let us consider a steady flow in a channel stabi-
lized along the x axis. This means that the flow rates
do not change along the x axis, but only pressure
changes due to irreversible loss of potential energy. In
this case, the Navier-Stokes equations are written in
the form

2 2
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This system of equations is closed by the conti-
nuity equation

ou
—H%:O.. (4)

oy oz
Equation (4) allows using the stream function v
in the cross section of the flow, while the continuity
equation is automatically satisfied [3, 4].
If we consider the flow as two-dimensional (flat),
then only the projection of the vorticity of the flow
onto the x axis makes sense:
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oy o
Since u, :aa_\lf and u, =—%V , We can write
z
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We consider mass forces to be potential. Differ-
entiating equation (3) with respect to y, and (2) with
respect to z, and subtracting the results, we obtain
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In view of (5), we obtain the equation in the vari-

ables “stream function — vorticity”:
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And finally, neglecting the viscosity, we obtain:
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On the left side of equation (8) is the functional
determinant (Jacobian) of the functions y and Q. The
equality of this determinant to zero means that be-
tween v and Q there is a functional dependence inde-
pendent of the coordinates y and z.

To get specific solutions, suppose this relation-
ship is linear:

Q=Cy,
where C is a constant.

Thus, there is a subset of solutions of equation
(8) that satisfy the equation

Viy =Cy. )

Equation (9) is known in mathematical physics as

the Helmholtz equation, the Mathieu-Weber equation,

or the plane wave equation. It describes standing wa-

ves of various nature, for example, membrane vibra-
tions, an electron in a potential well, etc.

Below we consider some solutions of equation
(9) and find out their hydromechanical sense.

4. Results and Discussions
4.1. Secondary flows in prismatic channels

Equation (9) in Cartesian coordinates takes the
form

2 2
8—Y+8—Y=C\y.
oy oz

Its solution in the general case is the sum of si-
nusoidal functions. Since, using trigonometric trans-
formations, the sum of sinusoidal functions can al-

ways be represented as a product, the solutions of
equation (10) can be written as

V= Aﬁsin k&,
i=1

where §&; are the auxiliary axes in the yy(z) plane; kj —
wave numbers.

The solutions of equation (10) corresponding to
specific boundary conditions were obtained as fol-
lows. Initially, several auxiliary axes were drawn per-
pendicular to the channel walls, herewith

& =ycose+zsine,

(10)

(11

(12)
where ¢ is the angle between the auxiliary axis & and
the y axis.

At the boundaries of the vortex cells, the vorticity
always equals zero [5, 6]. Therefore, the directions of
the & axes and the wave numbers k; were chosen so
that at the boundaries of the cells, and, in particular,
on the channel walls, one of the factors in expression
(11) was equal zero: sin & ki = 0 . The structure of ex-
pressions (11) was checked using computer visualiza-
tion.

4.1.1. Mathematical Model of Taylor Vortices

This flow is described by a stream function
v = Asink ysink,z. (13)

The surface described by the equation (13) is
shown as a three-dimensional graph in Fig.1. The
streamlines of the secondary flow are obtained as hor-
izontal slices of this surface.

The streamlines y=const for this flow are plotted
in Fig. 2 using the universal algorithm described in
[13]. During the plotting, the value y was changed
with a constant step Ay.
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Figure 2 — The streamlines described by
equation (13), plotted with a step Ay = 0,2

In the case under consideration, projections of the

flow velocity are
u, = Ak, sink,y cosk,z,
u, =—Ak, cosk,ysink,z.

Analyzing Fig. 2, we can conclude:

a) a common vertex can belong only to an even
number of cells, because vortices having a common
boundary should rotate in opposite directions;

b) the total number of vortices in the flow must
be even by virtue of the law of conservation of angu-
lar momentum.

If one row of vortices is selected in the resulting
flow pattern, then the similarity with the cross section
of Taylor vortices between rotating cylinders [3]
shown in Fig. 3.
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Figure 3 — Taylor vortices between rotating cylinders
according to [3]

In our opinion, similar structures in narrow chan-
nels of rectangular cross section were also observed in
experimental works [14, 15].

4.1.2. Secondary flow model in a square
cross-section pipe

This flow is described by a stream function.
¥ =sin ysinf%sin%.. (14)

The streamlines for this flow are shown in Fig. 4.
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Figure 4 — The streamlines of the flow described by
equation (14) at Ay =0,1

Comparing these streamlines with the data of
other authors [16], a significant similarity can be noted.

4.2. Secondary flows in round pipes

The equation (9) written in polar coordinates (r,
0) is:
oy loy 1y .,
— 4+ —+—=—=K"y, 15
ot ror oot T 1)
where k? is a constant.
Equation (23) is solved by separating the variab-

les [17]:
=f,(r) ,(6),
where

f,(F)=CJ, (r)+C,N, (r)+C,l,, (r)+C,K,(r), (16)
f,(6)=sin(mb+8,),

where Jn,(r) are the Bessel functions of the first kind,;
Nm(r) — Neumann functions (Bessel functions of the
second kind); 1n(r) and Ky(r) — Bessel functions of a
complex argument (modified Bessel functions); C,
C,, C3, C, are constants.

All the functions included in (16), except Jn(r),
have infinite values at r = 0. Since infinite values of y
do not have physical sense, only the first term remains
in solution (27). Thus, the final decision has the form

y=CJ, (r)sin(mo+6,), (17)
where C; is the amplitude value of the current func-
tion, m?/s; 0, — starting angle, rad.

In relative variables, expression (17) takes the
form

N~—

y(r.0

y=1J,(F)sin(mo)..
where y=y/C,.

(18)

The dimensionless radius may be chosen as
_r
r= E ‘]m,n’
where J,,, are the roots of the function Jn(r).
With this normalization, the pipe walls will al-
ways coincide with the boundaries of the vortex cells,
where y =0, and at the radius of the pipe n vortex

cells will be stacked.

In the course of hydromechanical analysis of so-
lutions (18), for different values of m and n, stream-
lines were plotted and the projections of the fluid ve-
locity were determined:

u ==--—; 19

" roe (19)
oy

U, =——-. 20

0=y (20)

Let us consider particular cases of solutions de-
scribed by equation (18) and plot the streamlines.

4.2.1. Model of a twin vortex arising in a bent
pipe

This flow is described by the stream function
(18) at n = 0. The stream function takes the form

y =1J,(F)sin®. (21)
From (19) and (20) the projection of the fluid ve-
locity are

0, =%J1(F)cose,
_ 1., s
Uy :[:Jl(r)—Jo(r)}sme.

The tangential velocity uy(z) on the z axis coin-
cides with uy. The stream lines and velocities for this
case are presented in Fig. 5.

Fig. 5 shows that the resulting flow can be
considered as a model of a twin vortex arising in a
bent pipe. Like other cases, the stream function turns
to zero on the pipe walls. However, the azimuthal ve-
locities of the liquid on the walls aren’t equal zero,

which is a common drawback of solutions based on
the ideal fluid model.
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4.2.2. Models of coherent structures in round
pipes

In [5, 6], experimental data corresponding to m>1
and n>1 were not found. However, such data appeared
nowadays.

RN

Figure 5 — The picture of the flow described by equa-
tion (18) atm=1and n =1

/

In [7, 8, 12], the structure of turbulent flows in
pipes was studied. The sPIV method was used to de-
termine the instantaneous fluid velocities at many
points. The obtained experimental values were then
“decomposed” into the basic functions using the prop-
er orthogonal decomposition (POD). While the basic
functions depending on the angle 6 were obviously si-
nusoids, dozens of functions were summed to describe
dependences of the radius r.

We want to show that the expansion in radius is
much simpler if we use functions of the form (18).

In Fig. 6, the experimental data of the work [7]
are compared with the results of calculations by for-
mula (18) at different values of m and n.

Figure 6 — Comparison of streamlines calculated according to (18) (right halves) with experimental data [7]
(lefthalves.a)m=2,n=1;b)m=3,n=1;¢c)m=4,n=1;dym=2,n=2

In [18], it was noted that the proposed model of
secondary flows can be obtained as a special case of
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swirling flows in which the longitudinal velocity is di-
rectly proportional to the vorticity. However, as can
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be seen from Fig. 6, this contradicts the experimental
data [7].

Note the orthogonality property of Bessel func-
tions, which is expressed by the equation

to(r r
ij(EJm,ijm(Eijrdr=o, n #n,

0
Thus functions

r
S(r) :\/F‘]m(ﬁ‘]m,nj'

are orthogonal on the interval (0, 1). Graphs of these

functions are presented in Fig. 7.
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Figure 7 — Graphs of functions (22) forming an or-
thogonal basis

This property shows that this system of functions
can be used as a basis for the further development of
the method of orthogonal decompositions.

5. Conclusions

This article proposes an approximate theoretical
model that considers the structural elements of turbu-
lent flows as vortex waves. This model describes most
of the known secondary flows. In addition, the struc-
tures predicted using this model are in good agree-
ment with the experimental data obtained in pipes of
rectangular and circular cross-section.

The systems of orthogonal functions used in this
paper can be applied to improve the methods of or-
thogonal decompositions, as well as in direct numeri-
cal simulation (DNS) of turbulent flows.
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Y cmammi suxonano meopemuunuii ananiz meuii, Wo GUHUKAIOMb 8 NONEPEUHUX NepemuHax NOmoxKie piouHu i
eazy. Taxi meuii nodinsilomvcs Ha 6MOPUHHI Mmeuii | Ko2epeHmui cmpykmypu. 3 eKcnepumMeHmanbHux O0ocui-
0diceHb 8I00MO, WO 00U08A MUNU MeYill € 008204CUBYYI BETUKOMACUMADHI BUXPU, BUMASHYMI V30084 HOMOK).
Bionocna cmabinvricme 6uxopie mpaouyitiHo NOACHIOEMbCA MUM, WO CULU 8'A3K020 Mepms, AKI 2albMYHOmMb
0bepmaHHs, KOMNEHCYIOMbCA IHMeHCUDIKayiero 3aKpymKu npu nepemiujerHi nepudepitinux wapis, sxi odep-
Mmaromvcs NOGINbHO, 00 YEHMPY BUXOPY 3ABOAKU NO3008HCHLOMY PO3MALYBAHHIO. AHANIZ Yb020 MeXaHI3MY 00-
3807118 PO3POOUMU NOPIBHAHO APOCIY MOOENb GUXPOBUX CIPYKMYP, 8 AKIll CUIU 8'A3K020 mepms i 0cboge po3-
MA2YBAHHS 88ANCAIOMBCS HECKIHUEHHO Manumu. [Ipu makux npunyweHHsax MOJ’CHA GUKOPUCIOBY8AMU DIGHSHHSL
PYXy i0eanvHOi piouHu 8 3MIHHUX «QYHKYIL cmpyMy — 3aeuxpenuicmsy. [lokasano, wo npu 0esaxKux npunyujet-
HAX Yi PIGHAHHS NPULMAIOMb 8USTIA0 X8UTLOBO2O PIGHANHS, A SPAHUYHUMU YMOBAMU € YMOBA PIBHOCMI HYLIO (Y-
HKYIT cmpymy Ha meepoux cminkax nomoxy. Ompumari pivienHss 0aH020 X8ULbOBO20O PIGHSHHS ORUCYIOMb MAK]
oxpemi eunaoxu. euxopu I epmaepa migxc yuninopamu, wo obepmaiomscs, 6mopunHi meuii 6 mpyoi 3 keaopam-
HUM NONEPEeHHUM Nepepizom, 3aKpyiena meyis 6 Kpyaiiti mpyoi, napHuil 6uxop nicjisi nogopomy mpyou. Dizuy-
HULL CeHC OInbl CKAAOHUX DIUeHb XEUNb0BO20 DIGHSIHHA CMAG 3PO3VMIIUM NOPIGHAHO HeOaeHo. Jlyoce cxoici
CMPYKMYPU 6UAGTIEHI 6 eKCNEPUMEHMANHUX OOCTIONCEHHAX UIAXOM 0pmo2oHaibHo2o poskiadanis (POD) no-
51 mypoynenmuux nyavcayitl. Lle mooice osnauamu, wo 6azucui @ynxyii 6 POD gionogioaroms kocepenmuum
CIMPYKMYPam, peaibHo SUHUKaAoms 6 nomoyi. Ompumani pesyibmamu ceio4ams HA KOPUCMb 2inomesu, ujo
8MOPUHHI Meyii | KO2epeHMHI CIMPYKMYpU Maioms CRilbHY npupody. Piwenus, ompumani 6 dawuii pobomi, mo-
2HCYMb BUKOPUCMOBYBAMUCS NPU 0OPOOYI eKCnepUMeHmy 8 IKOCMI GIACHUX QYHKYI 01 Memoody OpMO2OHALb-
Hoeo poskiaoanus. Kpim mozo, onu moscyms uKopucmogysamucs npu npsamMomy YUCEIbHOMY MOOeN08aHHI
(DNS) mypoynenmuux meuil.

Knwuogi cnosa: Bmopunni meuii; VLSM; ['ocepenmui cmpyxmypu; Memoo opmo2oHanbH020 pO3KIA0AHHS,
Bracui ¢pyuxyii
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