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DP: A LIGHTWEIGHT LIBRARY FOR TEACHING DIFFERENTIABLE
PROGRAMMING

Abstract. Deep Learning has recently gained a lot of interest, as nowadays, many practical applications rely on it.
Typically, these applications are implemented with the help of special deep learning libraries, which inner implementations are
hard to understand. We developed such a library in a lightweight way with a focus on teaching. Our library DP (differentiable
programming) has the following properties which fit particular requirements for education: small code base, simple concepts,
and stable Application Programming Interface (API). Its core use case is to teach how deep learning libraries work in principle.
The library is divided into two layers. The low-level part allows programmatically building a computational graph based on
elementary operations. In machine learning, the computational graph is typically the cost function including a machine learning
model, e.g. a neural network. Built-in reverse mode automatic differentiation on the computational graph allows the training of
machine learning models. This is done by optimization algorithms, such as stochastic gradient descent. These algorithms use the
derivatives to minimize the cost by adapting the parameters of the model. In the case of neural networks, the parameters are the
neuron weights. The higher-level part of the library eases the implementation of neural networks by providing larger building
blocks, such as neuron layers and helper functions, e.g., implementation of the optimization algorithms (optimizers) for training
neural networks. Accompanied to the library, we provide exercises to learn the underlying principles of deep learning libraries
and fundamentals of neural networks. An additional benefit of the library is that the exercises and corresponding programming

assignments based on it do not need to be permanently refactored because of its stable API.
Keywords: Differentiable Programming; Deep Learning; Teaching; Automatic Differentiation

Introduction

Modern deep learning libraries ease the
implementation of neural networks for applications
and research. In the last few years, different types of
such libraries were developed by academic groups
and commercial companies. Examples are Theano
[1], TensorFlow [2] or PyTorch [3]. Recently, the
term “differentiable programming” emerged (see
e.g., [5]) which expresses that e.g. (Deep) Neural
Networks can be implemented by such libraries by
composing building blocks provided by the library.
The term differentiable programming also reflects
the fact that a much wider spectrum of models is
possible by using additional (differentiable)
structures (e.g. memory, stacks, queues) [12; 13] as
building blocks and control flow statements.

With the DP library, we provide a minimalistic
version of such a library for teaching purposes. The
library is designed light-weighted, focusing on the
principles of differentiable programming: How to
build a computational graph and how automatic
differentiation can be implemented.

© Herta, Christian, Strohmenger, Klaus,
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We also developed a high-level neural network
APl which allows for more convenient
implementation of neural network models by
providing predefined functional blocks, typically
used in neural networks.

The library is accompanied by many Jupyter
[25] notebooks, a de facto standard in data science
research and education [27], to demonstrate and
teach the underlying principles of a deep learning
library. We also provide many exercises that allow
students to deepen their understanding. The
exercises also include concepts of modern neural
networks, e.g., activation functions, layer
initialization, versions of stochastic gradient descent,
dropout, and batch normalization (see e.g. [5]).

Types of deep learning libraries

Different deep learning libraries follow
different concepts, and they distinguish further from
each other in various aspects. In some libraries, the
neural networks must be defined by configuration
(e.g. Caffe [4]). Other libraries provide APIs for
programming languages, e.g. for Python or R. Some
of the APIs resemble languages that are embedded
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in a host language. Typically, with these domain-
specific languages, the computational graphs are
defined symbolically. In the next step, the
computational graphs (and the corresponding graphs
for the derivatives) are translated into code for
another programming language, typically C++ or
CUDA [12]. Subsequently, the program is compiled
and can be executed. Sometimes the term static
computation graph is used here which reflects the
fact that the graph is defined once declaratively and
cannot be changed dynamically.

Contrary to this symbolic approach is the
imperative approach. Here, the computation graph is
built up implicitly by executing the program line by
line. The forward computation is done directly, and
the computation of the derivatives can be done at the
end, e.g., by recursion. With each execution of the
program, control structures in the program can
change the structure of the computation graph. In
this case the term dynamic computation graph is
used.

Another aspect is the granularity of the
computational operations in a deep learning library.
With some libraries, the computational graph can be
constructed with elementary tensor operations, e.g.
matrix multiplication. In other libraries, the
operations may correspond to whole layers of a
neural network.

Our library DP is a finely granular, imperative
deep learning library for Python, based on NumPy
[16]. The focus of the library lies in teaching the
principles of a deep learning library and the
implementation of neural network models and
algorithms. Therefore, we designed the library as
simple as possible, and we restrict the tensor order to
two, i.e. matrices. So, the code base of DP is
significantly smaller and easier to understand as of
libraries with much more functionality like
autograd [8].

Another problem is that most common deep
learning libraries are still subject to frequent changes
in their API, which is a big drawback when used for
exercises. We are developing exercises for advanced
deep learning, e.g., Bayesian neural networks [9] or
variational autoencoders [10]. For educational
reasons (didactic reduction), we provide all
boilerplate code so that the students can focus on the
learning objective. The boilerplate code includes
implementation against a deep learning library. If
then a new version of the used library is released and
its usage changes, exercises have to be adjusted
accordingly to work correctly.  Typically,
universities do not have the personal resources to
keep the teaching materials and exercises

permanently up-to-date. The minimalistic approach
of our library and the strict focus on teaching allows
us to keep its API stable and therefore eliminates the
need for permanent maintenance of the exercises.

Overview on the principles

In deep learning libraries, a machine learning
model is built up as a computational graph. A
computational graph is a directed graph. The
structure of the graph encodes the order of the
computation steps. At each inner node, an
elementary computation is executed. The inner
nodes of the graph are elementary mathematical
operations  (including elementary  functions).
Examples of elementary operators are +, - or dot-
product and elementary functions are e.g., exp,
tanh or ReLU. A computational graph corresponds
to a mathematical expression. The input nodes are
the parameters of the model or data values. In
machine learning, the output nodes of the graph
usually correspond to the prediction values or cost
values. Typically, the computational graph is built
up in a computer program which allows different
programming techniques such as looping, branching,
and recursion.

Computational graphs enable automatic
differentiation. For each computational node the
derivative of the operation must be known. Local
derivative computations are combined by the chain
rule of calculus to get a numerical value for the
derivatives of the whole computational graph for
given input values. In deep learning libraries this is
typically implemented as reverse-mode automatic
differentiation [6].

With reverse-mode automatic differentiation,
all partial derivatives of the output w.r.t. to all inputs
can be calculated efficiently. This feature is very
important for machine learning. In the training
process of a machine learning model, all partial
derivatives of the cost function w.r.t. all parameters
of the model must be computed. In neural networks,
these parameters are the neuron weights.

The computational graph for the training of a
model corresponds to the cost function which should
be minimized in the training procedure [19]. The
cost loss(8) is a function of the parameters 8 of the
model. During the optimization, the parameters are
adapted to minimize the cost value. This
optimization is typically realized by variants of
stochastic gradient descent (SGD) [11]. In each step
of SGD all partial derivatives of the cost w.r.t. the
parameters must be computed.

Before the appearance of deep learning
libraries, a symbolic expression for the partial
derivatives for new models was done by the
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researcher in a pen-and-paper solution. For an
example see e.g. [13]. This manual procedure is
error-prone, time consuming and nearly impossible
for large complex models.

By building up the model in a deep learning
library the build-in feature reverse automatic
differentiation  deliberates the researcher or
developer from this work.

Theoretical automatic
differentiation

In the following we describe the theoretical
background of reverse mode  automatic
differentiation in a semi-formal way. For a more

rigorous formal explanation, see e.g. [15].

background of

Notation

In the theoretical description, we use the
following mathematical notation. Lower-case Latin
letters, e.g. a, denote scalars or vectors. Upper-case
Latin letters, e.g. A, denote matrices or more
structured objects like graphs. Python variables
corresponding to a mathematical object are denoted
as lower-case letter in a sans-serif fond, e.g. a,
independent of the type.

From the context, it should be clear which
objects are referenced by the corresponding letters.

Definition of a computational graph

A computational graph G is a directed acyclic
graph. A directed acyclic graph is a set of nodes V
(with a node n© in V) and a set of edges E, i.e. pairs
of nodes (n®,n")) € E. jrespectively /is the index
of the node. Further we assume that the
computational graph G is topologically ordered, i.e.
for each edge (n¥,n?) holds i < j.

We define the leaves of the graph as the nodes
with no incoming edges. Each node n® has a
corresponding variable v¥. The dimensionality of
variable v® is d®. Leaf nodes correspond directly
to inputs for the computation and the value of the
variable v® is directly the input value. Non-leaf
nodes n¥) have a corresponding operator 0). The
operator 0¥ takes as input the variables v of all
nodes with an outgoing edge to the node n. For
the concatenation of all variables v® with an edge
to nU) we write w®). The concatenation is done in
topological order.

For a consistent definition we can define the
operator for leaf nodes as the identity which takes as
input the (external) input to the (leaf) node.

In summary, a computational graph is a
directed acyclic graph where each node has an
internal structure. The nodes n® consists of a

variable v® and an operator 0. The input to the
operator is determined by the edge structure of the
graph.

Forward propagation algorithm

The forward propagation algorithm computes
the values of all non-leaf nodes. The values of the
leaf nodes are the input to the algorithm. In
topological order all non-leaf nodes nU’ are
computed by the corresponding operator 0 and the
variables of the nodes n¥ which have an edge to the
node n)_ Note that the variable values of all n are
already known. Either because they are leaf nodes or
they have a lower order index and are already
computed by the algorithm.

Reverse mode automatic differentiation

Reverse-mode automatic differentiation is a
two-step procedure. In the first step, the variable
values of each inner node of the computational
graph are computed by the forward algorithm. The
computed values of all variables are stored in an
appropriate data structure.

The second step is based on the chain rule of
calculus. Here we assume that we have only one
node with no outgoing edges. This node has the
highest order index m. We call the node the output
node. In machine learning, the value of the node is
typically the cost value and the computational graph
computes the cost function. The cost value is a
scalar, i.e. the dimensionality of the output variable
v js dm = 1,

In general, the node variables in the
computational graph can be tensors of any order.
However, for compact indexing we assume that they
are flattened to vectors for this theoretical analysis.
So, there is only one index for each variable and the
variables of the nodes are d® dimensional vectors.

We are interested in partial derivatives of the
output node variable v with respect to the leaf
(m)
node variables v @, i.e. a""(i) .

o,

On the right side of the equation each summand
is a dot-product of Jacobians. j is the index of all
nodes which have an edge to node n(™), ie.
(nD,nMm) € E.

The Jacobian which corresponds to an edge in
the computational graph (here from n@ to n(™) is
called a local Jacobian (matrix).

For each variable with index the chain rule can
be applied again:

aU(J) aU(J)
av(L) ] [av(k)

av(k)
617(")]'
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kis the index of all nodes which have an edge to
node n¥, i.e. (n®,n\)) € E.

Note, that for different nodes j the sum is over
different nodes with indices k depending on the
graph structure. Repeated application of the chain
rule by respecting the graph structure shows that we
can compose a global Jacobian from local Jacobians.
It can be shown [23] that the dot products of all local
Jacobians on all paths from the leaf node n®® to the
output node n‘™ must be summed up to get the
global Jacobian.

As already stated, we want to compute (nearly)
all global Jacobians, i.e. all global Jacobians w.r.t.
(nearly) all leaf variables v®. The principle idea for
an efficient computation is to reuse the partial

results [ 5@

]for all non-leaf variables v®). Note

that [a @ )] is again the sum of the dot products of

all local Jacobians on all paths from the node ¥ to

the node n™). So, regrouping of the nested sums is
equivalent to send backward signals. A backward
signal at a current node is the sum of dot products of
the local Jacobians of all paths from the current node
to the output node. To compute the backward signal

of a new node v(@ it is sufficient to sum up all dot
] of all

nearby upstream nodes v® with the local Jacobians

av®1].
[av(q)]'
gy Ov(m)
V(Q)] [ U(p)
pis the index of all nodes with an edge from

node n@ to n®, i.e. (n@,n®) € E.

The algorithm starts at the output node n(™.

e . . ap(m .
The initial backward signal is [—] =1, i.e. an
v(m)

. v(m
products of the backward signals [ 5

av(p)
v(q)]

identity matrix with dimension d™ x d™). Then,
the backward signals at the nodes which have an
edge to v(™ are computed as described above. This
procedure is repeated until all wanted global
Jacobians are computed.

In the context of neural networks, reverse mode
automatic  differentiation is  also  called
backpropagation.

Implementation

For the implementation in a computer program
we chose as programming language Python, because
(scientific) Python is the most common

programming language for machine learning. Our
library is based mainly on the tensor library NumPy.

Basic (low-level) part

With the basic low-level part of the library the
user can build the computational graph (implicitly)
imperatively. On such a computational graph the
global Jacobians of the output node can be computed
efficiently by reverse mode automatic differentiation
with the help of the library.

The low-level part consists mainly of the Node
class. Each instantiation of the Node class
corresponds to the creation a node for the
computational graph. To keep the implementation
small and clear, the node variables are restricted to
tensors of order 2 and the output node variable v
must be a scalar, i.e. d™ = 1. In machine learning,
the value of the output node is typically the cost
value. So, that is not a severe restriction.

Fig. 1. Example of a computational graph. The
leaf nodes are A and B. The output node is the
rightmost node (sum over all elements). We denote
in topological order, the non-leaf variables C
(element-wise product), D (exponentiation) and E
(sum of all elements)

In the following, we show how the
computational graph of figurelcan be build up in the
DP-library. Leaf nodes can be instantiated directly
by calling the constructor of the Node class, e.g. by

a
b

Node(np.array([[1,1,1],
Node(np.array([[1,2,3

Here, two leaf nodes a (with name A) and b
(with name B) are generated. Both nodes have got
an explicit name given by the optional second
argument of the constructor. For all nodes with
names the Jacobians (also called gradients) are
computed by reverse mode automatic differentiation,
see below.

The first node is a, i.e. v» = A4 and the second
v® =B, The node variable A is 2x3 matrix.
However, note that the node variables described in
the theoretical part are formulated as vectors and
that the Jacobian indices refer to such vector indices.
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As an example, for the correspondence to the matrix
A note that the element A, is equivalent to v, (1) , and
the total number of elements of the variable v(l) is
d™ = 6. For the flattened / vector version of A we
write a.

Non-leaf nodes are generated by methods (or
overwritten python operators) of the Node class. The
methods correspond to the mathematical operator,
e.g., the element-wise multiplication in figure 1 can
be done with the API by

c=a*bh.

Here, a Node instance of a non-leaf node is
generated by the binary operator ‘“element-wise
multiplication” and the instance is assigned to the
Python variable ¢ (mathematical notation: C).

Note, that the shape of A (2x3 matrix) and
B(1x3 matrix) respectively b (vector of dimension
3) are different. The DP-library supports
broadcasting [20] for such element-wise operations.
As result of broadcasted element-wise
multiplication, c has the same shape as a.

The completion of the computational graph of

Fig. 1 is done by the following code,
d = c.expQ
e = d.sum() # output e is a scalar.

For the variable d each element of c is

exponentiated. For the variable e all elements of the
variable d are summed up to a scalar. e is the output
variable of the computational graph.
By reverse mode automatic differentiation, the
Jacobians of the node e w.r.t. node a and b can be
computed. This is done by the method grad(.) with
argument 1 on the output node,

grads = e.grad Q).

The return value is a Python dictionary with an
entry for each leaf-variable with a name, here

{'A': array([[2.7, 14.78, 60.26],
[7.39, 109.20, 1210.29]11),

'B': array([[ 17.50, 116.59, 826.94]1]1)}.

Exemplarily, we describe the implementation of the

element-wise multiplication operation. The internal
implementation is given by the following code:

def __mul__(self, other):
if isinstance(other, numbers.Number) or
isinstance(other, np.ndarray):
other = Node(other)
ret = Node(self.value *

def grad(g):
g_total_self = g * other.value
g_total_other = g * self.value

other.value)

x = Node._set_grad(self, g_total_self,
other, g_total_other)
return x

ret.grad =
return ret.

grad

The method generates and returns a hew node
ret for the element wise multiplication operator.
The node instance ret has no name. The inner
function definition grad implements how the
backpropagated signal g is combined with the local
Jacobians for both operands, i.e. in our
computational graph a and b. How this
implementation is related to the theory (see above) is
not obvious. In the implementation, there is no
(explicit) dot-product of Jacobians. In the following
this relation is explained for the variable a. We
assume in the analysis, that the variable b was
internally broadcasted, so that a and b resp. v and
v® have the same dimension dV = d® = 6:
Here, the output node is e, ie. and the

(m)
backpropagated signal is at the node ¢ [ v (p)] Zi]

(given to the inner function grad as argument g. To
get the global Jacobian w.r.t. the node a the dot

product with the local gradient [%] must be
calculated and combined with the backpropagated

T EEE

or explicitly (with Jacobian) indices:
5, =2,

Note, that the first index of [a ] resp [ae]l is

always a 1 because of the scalar output of the
computational graph. The local Jacobian for the
element-wise multiplication is

ac] -6 b
da kj Ak

8y is the Kronecker-Delta, i.e. 6,; = 0
fork # jand §;; = 1fork = j. So, we have

D A R
daly; dclyy ki D acly;

Therefore, the combination of the Jacobians by
the dot-product is here equivalent to an element-wise
multiplication of the Jacobians. The dimension of
the Jacobians (indexed by 1) need not to be
considered in the shape of the Jacobian variables in
the implementation.
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Neural network library (high-level) part

Additionally, to the low-level part, the library
includes different building blocks and helper
functions which ease the implementation of neural
networks.
For teaching purposes, we restrict the provided
building blocks to simple fully connected layers (see
Fig. 2). With these layers fully connected feed-
forward networks can be implemented.
A hidden or output layer consists of an affine
transformation given by a weight matrix W® and a
bias vector b® and a (non-linear) activation
function act( ). Typical activation functions for
hidden layers are, e.g. element-wise ReLU or tanh.
For classification tasks, the activation function of the
output (last) layer is typically the logistic (two
classes only) or the softmax function.

A layer can be described mathematically by

R = act(W® - pO + p®),

Here, the superscript is the layer index. The
input to the network is therefore AV = x.
For training of a neural network, a set of training
examples must be provided,

D {Train}

= {(x®,y®),(x@,y@), ., (x®,y ™)},

Each pair (x@,y®) is a training example with
an input x® and a label (target value) y®. The
superscript is the index of the example. n is the total
number of training examples.

On the training data set, the learning
corresponds to minimizing a cost function. Here, we
neglect for simplification generalization [7] which is
very important in practice. The cost (and the
prediction) is computed typically on (mini) batches.
The inputs of many examples are concatenated in a
design matrix X, i.e. each row of the matrix
corresponds to an input vector x(. Each layer of the
neural network outputs a matrix H with a hidden
representation h for each example as row vectors of
the matrix.

HED = act(w® . HO + p®),

The neural network layer building blocks are
internally composed from Node class objects. In
Fig. 2 such a building-block, internally structured by
Node objects, is shown.

Layer

Ho {1

Fig. 2. One neural network Iayer represented as
computational graph with activation function, here
RelLU. Note, that such a layer is only a part of the

full computational graph

Neural Network

Layer 1 H Layer 2 }—P

Fig. 3. A complete neural network composed of
multiple layers. Each layer is internally composed of
Nodes objects as shown in Fig. 2

A complete feed forward network is composed
of stacked layers, see Fig. 3.

For training, the computational graph of the
neural network is augmented with a cost function
and an additional node for the provided labels Y of
the mini batch. An example of a building block for
the cross-entropy cost is show in Fig. 4.

In the next few sections we show how each layer is
implemented with our library.

The input layer consists only of input data, also
called features, and is represented as a leaf node x in
the computational graph. In Python, the input data
are typically given as NumPy arrays, so we just need
to convert this input array into a node object to
enable backpropagation. With the DP-Library the
conversation is done via

input = Node(X) # X is a NumPy 2d-array.

Note, that the optional name argument is
omitted as the Jacobian w.r.t. x is not needed for the
optimization. After converting the data into a Node
object, we can use all operators and functions
implemented in the Node class, including automatic
differentiation.

For the hidden layers, our library contains a
class called NeuralNode, which initializes a weight
matrix W® and a bias vector b, Both are leaf-
nodes (see Fig. 2) with unique names given to the
Node constructor. Since the most common used
activation function is ReLU we implemented also a
RelLU layer besides a pure linear layer. The pure
linear layer can be used together with any activation
functions specified by the user with the Node class,
e.g. leakyRelLU, tanh, logistic etc.
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Stacking many of these layers results in a fully
connected neural network, see Fig. 3. We call the
output of the last layer 0. 0O is automatically
produced by sending the input X forward through
the network (forward propagation).

The training of the neural network is done by
minimization of the cost. The cost is a function of
the parameters 6 of the neural network. The
parameters 6 are the weight matrices and bias
vectors:

6= {Ww®, p®, w®, p®, . wom, pom)

m is the number of layers in the network.
The cost function is implemented as part of the

computational graph. Therefore, is consists of
structured Node objects, see Fig. 4.

° Cost

Fig. 4. Calculation of the loss value [ using a cost
function, here cross entropy represented as
computational graph. The labels Y must be provided
in one-hot encoding. O is the output of the neural
network (last Node object of the last layer)

The final output from the cost (sub-)graph will
be a scalar [. So, the gradient of the cost (loss) with
respect to all model parameters 8 can be calculated
by the DP-library. This gradient is then used to train
the network via an update rule, to tune the network
parameters to lower the loss [. The full calculation
pipeline of [ is shown in Fig. 5.

Fig. 5. Neural network with corresponding cost
function. The X input is mapped to the output via the
neural network (see Fig. 3). The output of the neural

network and the labels Y are mapped to the cost

value via cost block

To ease the implementation of a neural
network, we provide a mode1 class. The user has to
derive from the model class a concrete model. The
layers must be defined as instance variables.
Additionally, the user has to define a loss method
and a forward pass method.

The following code shows an example of a
neural network for MNIST classification:

class Network(Model):
def __init__(self):
super(Net, self).__init_Q
self.hl = self.ReLu_Layer(784,500,"h1")
self.h2 self.ReLu_Layer(500,200,"h2")
self.h3 = self
.Linear_Layer(200,10,"h3")

def loss(self, x, y):
if not type(y) == Node:
y = Node(y)
out = self.forward(x)
Toss = -1 * (y * out.log())
return Toss.sum()

def forward(self, x):
if not type(x) == Node:
X = Node(x)
out= self.h3(self.h2(self.h1(x)))
.softmax()
return out

In the constructor code two ReLU layers and a
linear layer are defined as instance variables. The
linear layer is later complemented with a softmax
activation function, since this network deals with
multiclass classification (10 disjunct classes).

The constructor signature of a
instantiation is:

layer

def ReLu_Layer(number_of_inputs,
number_of_outputs, name_of_layer™).

The forward pass to generate the output O is
defined in def forward(self, x) simply by
stacking all defined layers plus an additional
softmax() as explained above.

The loss function which outputs [ is defined in
def loss(self, x, y) where self.forward(x)
is used to calculate the network output 0. Y
represents our target values, here fixed class labels
(one hot encoded) for classification. Notice, that
each time we start a calculation it is checked
whether the input is a Node object or not, and if not,
the data is converted into one.

After that, the user-defined network can be
instantiated by calling the constructor:

net = Network().

For training, we also provide different
optimizers which inherit from the basic (abstract)
optimizer class. The optimizer updates the model

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

289



Applied Aspects of Information Technology

2019; Vol.2 No.4: 283-294

Designing Information Technologies and Systems

parameter according to special update rules. The
optimizer we provide are SGD, SGD Momentum,
RMSProp and Adam [22]. An instance of an
optimizer can be initialized, e.g. by

optimizer = sGb(net,x_train,y_train).

The first parameter, net, is the network (see
above). x_train and y_train are the training data,
equivalent to X and Y. Training can be started with

loss = optimizer.train(steps=1000,
print_each=100),

steps is the number of total training loops to adjust
the model parameters. print_each is the number of
steps after which we want to receive a feedback
about the current training error, basically the loss
value, which should decrease if training succeeds.
Per default the train function will return the final
loss value which we saved into Toss in our example
above. For a more detailed analysis of the training it
is also possible to call

loss, loss_hist, para_hist = optimizer
.train(steps=1000, print_each=100,
err_hist=True).

With the parameter err_hist=True a complete
history of the loss value the model parameters will
be returned. These can be used for further analytics,
e.g. to visualize the training process.

After the network is trained, it is quite common
to test how well the network learned its task by
testing its prediction using a set x_test. Using the
network prediction from the forward pass

y_pred = net.forward(x_test),

the test accuracy of the network can be calculated.
For classification for example this means how many
labels the network predicted correctly.

For a deeper understanding on neural networks
and optimizers or for special purposes it is possible
to implement the training process from scratch. The
Model class provides the functions get_gradQ),
get_param() and set_param(). These are also
used internally called by the optimizer class. A
manually implemented training loop, using basic
gradient descent, could look like the following

net= Network()

for epoch in range(100):
# compute the loss and gradients
grad,loss = net.get_grad(x,y)

# get the current parameters
param_current = net.get_param()

# calc new parameters, actual learning
param_new = { name : param_current[name]
- 0.001 * grad[name]

for name in param_current.keys(}

# set new parameters
net.set_param(param_new).

Accompanying exercises

To make the entry into the topic of
differentiable programming as easy as possible, the
DP library is part of a differentiable programming
course and can be found, together with
accompanying exercises, on the deep-teaching
website [187] or directly at the GitLab repository
[18]. The exercises are divided into three groups.

The first group of exercises teaches the
principles of reverse mode automatic differentiation.
It is explained how the DP library itself is
implemented, i.e. how to implement the operator
methods for instantiation of a computational graph,
consisting of scalars, matrices, elementary operators
(+, -, dot-product) and functions (tanh, exp, etc.)
and how to implement automatic differentiation.
Finally, everything is combined in an object-oriented
architecture forming the DP library and therefore
enabling easy use of the low level and high-level
functionalities mentioned.

The second group of exercises is about using
the DP library to build neural networks, train them
and using them for inference. At the same time each
of these exercises is about best practices and
findings of neural network research of the last
couple of years, including batch-norm [21], dropout
[1422], optimizers (improvements of SGD, e.g.
Adam [22]), weight-initialization methods (e.g.
Xavier [24]) and activation functions.

The last-mentioned exercise, at which we will
have a look at for illustration purposes, teaches
about different activation functions and the so-called
vanishing gradient problem [26].

We consider a simple deep neural network, i.e.
one that consists of many layers, e.g. 10 linear
layers. The output of the first linear layer is
computed with H® = actW(WHHD +pW),
with HO =X the input, W@ the first weight
matrix, b the corresponding bias vector and
act™ the activation function. The output of the
second linear layer then is computed with H®) =
act@(WPHP +b@) and so on, until the last
layer 0 = act@(WAOHA0 + b0 Training
the network, we first calculate the loss [, i.e. the
difference of the output of our last layer O (our
predictions) and the true labels Y. This is a binary
classification tasks, i.e. there are two possible labels
(0 and 1). The output O for an example input x is
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the predicted probability for the positive class, i.e.
pe(y = 1|x). For such problems the binary cross-
entropy as cost function is typically used:

loss(8) = —(Y log (0) + (1 —Y) log (1 — 0)).

Second, we adjust the weight matrices for all
layers i by the update rule of gradient descent:

)NEW

yoLD dloss(0)
— a .

@ 7
< W aW(l)OLD'

w

dloss(0)

pRe) for

Using the chain rule to calculate
example, we get:

aH®
’ aww’

dloss(6) _ dloss(§) 90  9H1O gHO
ow T 90 9H1O 9O gH®E

For binary classification, the typical activation
function act™® of the output layer is the logistic

function o(2) = 1+e:€p_z which has the range ]0,1[.

However, a problem arises, if the logistic function is
further used as activation function act® to act(®
in intermediate layers, because the absolute value of

its derivative is at most %, which in turn leads to the

dloss(0)
aw @
smaller the more layers the network has in between,

as lim;_, o G)l =0.

The derivative of the tanh or the ReLU
function on the other hand is defined in the range of
10, 1], resp. 0,1.

The task of this sample exercise consists of (a)
building the neural network model for the
computational graph using the DP library, (b) train
and validate the network with different activation
functions while (c) visualizing the vanishing

gradient problem by plotting the sum of the absolute
dloss(0)
ow®

partial derivative becoming smaller and

values of the partial derivates

of each layer ! € {1,2,...,10}.

The third group of exercises is on using more
common, but also more complex deep learning
libraries, like PyTorch and TensorFlow. This kind of
exercises is not directly related to our DP library, but
still should be mentioned here because they are the
last step of our educational path for students on
differentiable programming, that is: (1) Learn the
principles of differentiable programming and how to
build a framework for it at the example of our
lightweight DP library, (2) learn how to use this

for all weights

library to build models, train them, validate them
and use them for inference and (3) make a transition
to using well-known but more complex frameworks.

After that, the students should then have a good
starting point for understanding the inner
implementation and  software-architecture  of
libraries, like PyTorch and TensorFlow.

Conclusion

The use of machine learning, especially of
artificial neural networks, in practical applications
has increased tremendously over the last years and
most likely will keep increasing in the near and far
future. Yet already today research and industry
suffer from a lack of specialists in this field.
Unfortunately, becoming an Al specialist has a very
flat learning curve and requires knowledge in the
fields of mathematics, computer science, statistics
and ideally in the domain, which you want to
provide with Al driven applications.

With our library for educational purpose,
teaching the fundamentals of differentiable
programming can be improved significantly by
opening the black box of deep learning libraries.

With less than 1.000 lines of code, including
about 400 lines of comments, in contrast to 3.5
million lines for TensorFlow [28], the goal of a
lightweight, clear and easy understandable library
was achieved. Following the concept of didactic
reduction [29], its use and architecture have a lot in
common with TensorFlow and PyTorch, but with a
focus on the core principles of differentiable
programming.

Lastly the stable API does not force teachers to
re-adjust their exercises and educational material
over and over again to keep them up-to-date.
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