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COMPUTATIONAL ASPECTS OF LARGE-LENGTH CYCLE SEARCH
ALGORITHMS FOR NONLINEAR DISCRETE SYSTEMS

“Drailleurs, ce qui nous rend ces solutions périodiques si
précieuses, c’est qu’elles sont, pour ainsi dire, la seule bréche
par ou nous puissions essayer de pénétrer dans une place
jusqu’ici réputée inabordable”

Henri Poincaré-Les méthodes nouvelles de
la mécanique céleste, Tome 1, (& 36), 1892.

IM. Cxpunnux, J.B. Imumpuwun, O.M. Cmokonoc, LE. Hxo6. O6uncII0BaIbHI aCHeKTH aJrOPHTMIB HOUIYKY HHKJIIB BeTHKHX
JNOBKHMH JUISl HEMIHIHUX AMCKPETHUX cucTeM. /[MHAaMiKa HaBiTh HANMPOCTIIINX HETiHIHHUX TUCKPETHHUX CHUCTEM € JOCHThH CKJIAJHOIO.
Bona Britouae B cede, sk nepioguuHi pyxy, Tak i KBazinepiognyHi a00 peKypeHTHi. Y TaKHX CHCTeMaX Maibke 3aBXKIM NPHCYTHI XaOTHUYHI
aTPaKTOPH, MPUPOJA SIKUX Ha CHOTOIHI JOCHTH JOOpE BUBYEHA, a came, A MIMPOKOTrO KJIAaCy MOACIBHHX PIiBHAHB. Y 6araTOX BHIAAKax
XaOTUYHI aTPAKTOPU MOKHA MOJEIIOBATH 3a JIONMOMOIOK MEPIOAMYHUX PYXIiB 3 BEMMKUMH Iepionamu. [lomryk Takux aTpakTopiB i
MiHIMaJbHUX iHBAapIaHTHUX MHOXHH Ha HUX € BaXIMBUM 3aBJaHHAM MPHKIAJHOI MATEMATHKH — PIIICHHS BUKOPHUCTOBYIOThCS B (Di3HYHHX,
XIMIYHUX, EKOHOMIYHUX HayKax, B T€Opii KOIyBaHHs, Nepenayi curHaiis i iH. [Ipore MaTemMaTHyHi pe3ybTaTh, 3aCHOBaHI Ha KOMI'TOTEPHUX
0OYHMCIICHHX, BUMAraloTh peTeNbHOT NepeBipkyu Ha BepuQiKalilo, TaK SK camMi OOYMCIIEHHS MTPOBOASATHCS HAOIMKEHO, a XAOTHYHI CUCTEMH
Jy’Ke 4yTIMBi 10 noxu6ok obuucieHs. OAMH 3 MiAXOAIB BUPIIICHHS 3aBAaHb IOIIYKY i BepuQikalii IMKIIIB 3aCHOBaHUH Ha 3aCTOCYBaHHI
MeToniB crabimizamii nux mukiiB. L{i MeToqu MOKHA PO3AUIMTH HA JIBI TPYIH: KOHTPOIb i3 3ali3HEHHSM, SIKHH BUKOPHCTOBYE 3HAHHS MPO
TOTepeIHI CTAaHU CHCTEMH, 1 MPOTHO3YE KOHTPOJIb, SIKMH BUKOPHCTOBYE MallOyTHI 3HAUEHHS CTaHy CHCTEMH NPH BiJCYTHOCTI YIpaBIiHHS.
Mera po6oTH — moKa3aTH e()eKTHBHICTH METOLY YCEPEIHEHOrO MPOrHO3YIOYOro KOHTPOINIO IMOIIYKY LUKIIB Ha JESKUX IOIYJIIPHHX B
TEXHIYHIN JiTepaTypi TUHAMIYHHX CHCTEMax. A TakoX c(popMyTroBaTH HEOOXiTHI YMOBM TOroO, IO 3HaiilieHa OpOiTa € MIHCHO LUKIOM.Y
CTaTTi PO3BHUBAIOTHECS METOIM MPOTHO3YKOUOTO KOHTPOJIO: BUKOPHCTOBYETHCS YCEPEOHCHHIl MPOrHO3YIOUHH KOHTPOIb, i MPOMOHYIOTHCS
ITOPUTMH TIOIIYKY IMKJIB, 3aCHOBaHI Ha BIIACTHBOCTSAX TAKOI'O KOHTPOJNIIO. Bim3HawaroTecs pi3HI 0COOMHMBOCTI POOOTH aNrOPHTMIB B
3aJI©KHOCT] BiJl BJIACTHBOCTEH BHXIJHOI JUCKPETHOI CHCTEMH. 3alpONOHOBAHO METOAM BepHDikalii NUKIIYHUX TOYOK y BUIVIALL TPHOX
HEOOXITHMX YMOB LMKJIYHOCTI TOYKHM: TIE€PEBipKa Majuoi HEB’s3KW, NEpeBipKa MEpiOAMYHOCTI I HepeBipKa JIOKAJIbHOI aCHMITOTHYHOL
crifikocti mmKiry. [y gemMoHcTpanii poOOTH aNropuTMy 1 YMCEIBHOIO MOJCTIOBAaHHS OyiH oOpaHi BiZIOMi ABOBHMIpHI JUCKPETHI CUCTEMH,
taki sk Lozi, Henon, Ikeda, Elhadj-Sprott, Multihorseshoe, Prey-Predator. JIo icTOTHUX OCOGIMBOCTEN [UX CUCTEM BiIHOCATHCS HASBHICTH
LUKITIB BEIMKHX OBXHH 3 [OMIHYIOYMM MYyJIBTHUIUIIKATOPOM, TOOTO B [BOBUMIPDHOMY BHIIA[Ky 3 OAHHUM BEIHKHM MO MOJIYIIO
MYJIBTUILTIKATOPOM, @ JPYTUM II0 MOXYJII0 MEHIIUM ONWHHLI. [ Takoro Kjiacy CHCTEM 3allpOIIOHOBAHHMH aJTOPHTM IIPAIIOE OCOOIHBO
edexruBHO. PO3pobneHnii METON MOXKHA BHKOPHCTOBYBATH 1 UISL JOCIIDKCHHS 3aJI€KHOCTI TOMONOTIYHHX BIACTHBOCTEH IHUCKPETHUX
IMHAMIYHAX CHCTEM BiJl 3MiHH apaMeTpiB, BUBUCHHs HAsSBHOCTI GiypKariiii i iX THITIB.

Kniouosi cnoea: HeniHiliHI AUCKPETHI cHCTEMH, CTa0iTi3allis MEPiOAMIHHX PillleHb, aITOPHUTMH TTOIIYKY IUKJIIB BETMKUX JOBXHH

I. Skrynnyk, D. Dmitrishin, A. Stokolos, I.E. lacob. Computational aspects of large-length cycle search algorithms for nonlinear
discrete systems. Even the simplest nonlinear discrete systems dynamics is very complex. It includes both periodic movements and quasi-
periodic or recurrent ones. In such systems, almost always present are the chaotic attractors, whose nature is currently well studied, at least for a
wide class of model equations. In many cases, chaotic attractors can be modeled using periodic motions characterized with large periods. Such
attractors’ and minimal invariant sets’ search represents an important task of applied mathematics, with respect to that the solutions are used in
physical, chemical, economic sciences, in coding theory, signal transmission theory and so on. However, mathematical results based on computer
calculations require a careful verification, since these calculations themselves are carried out approximately, and the chaotic systems are very
sensitive to calculation errors. One of the approaches to solving the cycles search and verification problem is based on the application of these
cycles’ stabilization methods. These methods can be divided into two groups: delayed control, that uses knowledge on system’s previous states,
and predictive control, which uses the future values of system state in the absence of control. This study purpose is to demonstrate the

DOI: 10.15276/0pu.2.58.2019.08

© 2019 The Authors. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

INFORMACION TECHNOLOGY. AUTOMATION


mailto:dmitrishin@opu.ua

70 . . . . ISSN 2076-2429 (print)
[Mpani Opecbkoro nojitexHiyHoro yHiBepeutety, 2019. Bur. 2(58) ISSN 2223-3814 (online)

effectiveness of the cycles search averaged predictive control method on some dynamical systems widely referred to in technical reference
sources. Another important goal we aimed onto is to formulate the necessary conditions at which the orbit found actually represents a cycle. The
article exposes the elaboration of predictive control methods: the averaged predictive control is used, at that the cycles search algorithms based on
such control properties are offered. Noted are various features of algorithms’ functioning that depend on the original discrete system properties.
Proposed are the cyclic points’ verification methods in the form of three necessary conditions of point’s cyclicity: checking the smallness of the
residual, checking the periodicity and checking the cycle local asymptotic stability. Well-known two-dimensional discrete systems such as Lozi,
Henon, lkeda, Elhadj-Sprott, Multihorseshoe, Prey-Predator have been chosen to demonstrate the algorithm and numerical simulation. These
systems’ essential features include the presence of large lengths cycles with a dominant multiplier, i.e. when two-dimensional case one multiplier
has larger modulus, and another’s modulus is less than one. With this class of systems, the proposed algorithm operates particularly efficiently.
The developed method can also be used to study the discrete dynamical systems’ topological properties dependence on changes in parameters, as
well as to study the presence of bifurcations and their types.
Keywords: nonlinear discrete systems, periodic solutions stabilization, search algorithms for large-length cycles

Introduction

The exposed study represents a continuation of the work [1]. Even the simplest nonlinear discrete
systems’ dynamics is very complex. Such systems are often characterized by extremely unstable mo-
tions in phase space, defined as chaotic ones [2]. That is why the study of such systems properties is a
very difficult task. Due to its theoretical significance and engineering applicability much attention was
paid to this problem in various fields and studies [3, 4]. With the advent of powerful computers, it be-
came possible to study the dynamic systems’ properties by numerical methods. New hyperbolic struc-
tures of systems, such as strange attractors, can be determined using these methods. However, the pos-
sibility to confirm numerical results by rigorous mathematical proofs is limited to only some special
cases. Computer proofs require the use of special interval arithmetic analysis [5 — 7], complex by its
nature and also applicable not to every case occurring. However, there appear humerous studies in the
field of chaotic dynamical systems theory, which are published without a careful verification of the
obtained numerical results reliability [8]. And even in the cases of the simplest dynamical systems,
even at real possibility to choose a very high accuracy of calculations, we can never say with certainty
what we have found: a long cycle, a pseudo cycle, or a strange attractor. Chaotic dynamical systems
are very sensitive to initial conditions and to rounding errors in calculations, that is after a few steps
the results can vary greatly depending on the chosen calculations accuracy, and long-term prediction is
impossible at all, so we are facing the so-called “butterfly effect”.

Thus, the development of new methods for finding chaotic or strange attractors and their minimal
invariant sets is an important and urgent task of applied mathematics, those solutions being used in
physical, chemical, economic sciences, in the coding and signal transmission theories, etc.

Analysis of recent publications and problem statement. It is assumed that the dynamical system
has a strange attractor that contains a countable set of unstable cycles at different periods. These cycles
define the attractor skeleton, and knowing them we can determine the dynamical system properties.

If using the control action we locally stabilize a cycle, the system trajectory will remain in its
neighborhood, i.e., we shall observe regular movements in the system, and the cycle will be known.

To solve the stabilization and search problems, various control schemes have been proposed [9, 10],
which can be divided into two large groups: direct and indirect. Indirect methods either use T iteration
of the original map or build a system whose order T is several times greater than the original one (T —
the desired cycle length). And further one of fixed point search methods is applied. The most common
among them is the Newton-Raphson relaxation method and its modifications [11, 12]. Having found
all the fixed points, it is necessary to choose from this set of fixed points the periodic ones.

In direct methods all points of a cycle are searched at once, i.e. the cycle as a whole is stabilized.
In this case, the original system is closed by control based on the feedback principle: delayed [13 — 16]
or predictive [1, 17, 18]. The advantages and disadvantages of such controls are exposed in [19 — 21].

In contrast to interval analysis methods and cycle shadow theory, the cycle search methods based
on cycles’ stabilization allow us to verify more efficiently our calculations authenticity.

The presented study goal is to show the effectiveness of cycles search averaged predictive con-
trol method [1] with some dynamical systems popular in the technical reference sources. Another im-
portant goal we aimed onto is to formulate the necessary conditions at which the orbit found actually
represents a cycle.
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Algorithm mathematical foundation
We consider a nonlinear discrete system, which in the absence of control has the form

Xns1 = f (%), o €R™, n=1, 2, ..., (1)
where f(x) is the differentiable vector function of corresponding dimension. It is assumed that sys-
tem (1) has an invariant convex set A, i.e., if E< A, then f(§) e A also will be not necessarily mini-
mal. It is also assumed that there are one or more unstable T-cycles {n, ... , nr} in this system, where
all vectors n, ... , nr are distinct and belong to an invariant set A, i.e. nj.=f(n;), j=1 ..., T-1

m = f(nr). The considered unstable cycles’ multipliers are defined as the eigenvalues of Jacobi ma-

T T
trices H f'(mr-j«1) products having dimensions mxm at the cycle points. The matrix H f'(Mr-ja)
=1 j=1

is called the Jacobi matrix of cycle {n, ... , nr}. As a rule, the system (1) cycles {n, ... , nr} are not

T
known a priori. Therefore, unknown is the matrix H f'(Mr-j+1) spectrum {u,...,un}. The spectrum
j=1
set elements are called cycle multipliers. Further, we assume that we know some estimate of the cycle
multipliers localization set M.
Now we shall consider the control system

Xna1 = F(Xn), (2)

where F(x)=i31f<<rm+1>(x), fOX)=f(x), FOX)=FFeDX) k=2 ..., (N=DT +1.

j=1

Numbers 3, ..., 9y are real. It is easy to verify that at iS,— =1 the system (2) also contains the cy-
j=1

cle {ms, ..., v}

The parameter N and coefficients 9,..., 3y are chosen so that the system (2) cycle {m, ... , nr}
would be locally asymptotically stable. It is also desirable [23] to fulfill the additional condition: the
invariant convex set A of system (1) must be invariant for system (2) as well. This requirement will be
met, for example, if 0<9; <1, j=1,...,N.

The mathematical basis for the choice of coefficients 9y, ..., 9y is laid by the following statement.

Theorem [1]. Let f eC! and the system (1) have an unstable T-cycle with multipliers
{u, ..., um}t. Then this cycle will be a locally asymptotically stable cycle of system (2) if

uilr(m)]l"eD, j=1 ..., m,

N
where D ={zeC:|z|<1} is the open central unit circle, r(u)=>9; pi* .
j=1
To be noted is that instead of system (2), another control system can be considered

N
Xout = f [Slxn +)9; f G (xn)J . (3)
j=2

N
When ZS,- =1 in system (3) the cycle {n, ... , nr} is maintained. In addition, this cycle Jacobi
j=1
matrices for systems (3) and (4) are the same. The advantage of the control system (3) over the system
(2) is a smaller number of calculations for the function f(x) values getting.
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Algorithm
If the multipliers of system (1) are known exactly, then N =m+1 and coefficients 3, ..., Snu

m+1 m
can be chosen from the condition r(u) = ZS,— pi-t Z%H(H—Mk) . Then from the theorem

[[a-w)*
k=1
we obtain
Consequence. Let f e C! and system (1) have an unstable T-cycle with multipliers {w, ..., umn},

and coefficients 94, ..., 9n1 are found as above. Then this cycle will be a locally asymptotically sta-
ble cycle of systems (2) and (3). Moreover, if the initial point belongs to the cycle basin of attraction,
all multipliers of the cycle {n, ..., nr} at systems (2) and (3) are equal to zero, and the convergence to
the cycle is superlinear.

So, if we know exactly or approximately the cycle multipliers, then the problem of this cycle lo-
cal stabilization is solved.

Now we consider the case where the multipliers location on the complex plane is unknown. Us-
ing the ideas from the theorem’s corollary, we can propose the following scheme of T-cycle stabiliza-
tion. In this case, the coefficients $; will not necessarily be constants.

a) find the matrix: f'(x),
b) find the vectors: f®)(x), s=1,...,T -1,
c) now we find the matrix: f'(fT-9(x))-...- f'(f(x))- f'(x),

m+1

d) and find the characteristic polynomial of this matrix: ZS,— (X) pit,

j=1
m+1
e) normalize the characteristic polynomial: M;ZS,-(X) pit,
2.9
j=1
f) build a control system:
Xni1 = F(Xn)y
1 m+1 .
where F(x)=————> 9;(x) f G2TD(x) or

2,900

=t

F(x)= f mﬂ;[sl X+ 39,001 «i—l)T)(x)J .
So00 L

In general, applying the method to the stabilization of chaotic motion characterized with property
of mixing, one can expect that after a certain iterations number the trajectory will reach the stabilized
cycle basin of attraction. Then the convergence to the cycle will be superlinear.

Note that if instead of 3; we use |8,-|, it is possible to stabilize the cycles of system (1) with
multipliers lying in the region M =D u{u:Re(u) <0}, i.e. with real negative multipliers or lying in
the unit circle. At that case the convex invariant sets of system (1) will remain the same for systems
(2), (3). In addition, these systems” multipliers corresponding to those multipliers of system (1) that lie
in the unit circle become closer to zero.

Now we consider the case when system (1) has one dominant multiplier of T-cycle, and the re-
maining multipliers lie in the central unit circle of the complex plane. Such situations happen quite
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often, for example, at many popular two-dimensional and three-dimensional mappings [24], i.e. a set
of localization multipliers M =D u{u*}, |u*|>1.

If we assume that the dominant multiplier is negative, we can choose the following control
scheme:

) 1
Xpsr =T | —X +—— T (x) |, 4
' (1+9 TR )j )
where the value 3 shall be chosen from the condition:
9 1 T
—t——nu | | <1, 5
" (1+9 1+9H ) ©)

from where 9> 0.
Let we denote p=—p*, u>1 Suppose that u<27. Such a restriction for the cycle multipliers is

typical of the cycles appearing as a result of period-doubling bifurcations. In order to satisfy the condi-

tion (5), it is necessary and sufficient to fulfill the inequality i—ip <l from where

1+9 1+9 2
1(—1+2u)<.9<1+2u. Since &>3, then, by choosing 9=a3¢, k=1 2,...
3 (12w

O<a< %(—1+ 2u), it is easy to make sure that some K we have 9 e (%(—H 2u), 1+ ij that entails

the fulfillment of condition (5).

Thus, by iterating over no more than T values of the control parameter 3 in the system (2) or (3),
it is possible to locally stabilize the system T-cycle (1). Note that the problem of large multipliers is
not the main one for the considered task of cycle stabilization. The main problem refers to the long
cycles’ small basins of attraction. Therefore, it is necessary either to take a dense grid for initial values
or to use rather large iterations number that the point x, would get to the necessary basin of attraction.

Numerical results verification

Thus, the proposed numerical methods implemented on computers theoretically do solve the
problem of determining the dynamical system orbits. However, due to the chaotic dynamics in the
original system, following questions remain open: Can we rely on these numerical solutions? How to
verify the numerical results? What accuracy of calculations should be chosen?

We shall consider the original system (1) at m=2, and the system with control

xn+1=if(xn)+if(m>(xn) (system (4) consideration leads to similar results). Let the se-
1+9 1+9

quence {x,}, be the solution of a system that includes control. We want to control the residual
Un =|Xu2 = f ()|, if the sequence {x,} tends to solve the system (1), then the sequence {U,} tends
to zero. Let the control parameter be of order p, i.e. 9 ~10P. For large lengths cycles one can expect

that p shall be large enough. Then the residual U, can be estimated as U, =ﬁ||f(m> (%)= f(x))|-
+

In general case, if the sequence {x,} does not tend to solve system (1), the residual will be of order
10-7, i.e. U, ~10-?. To understand that the residual tends to zero necessary is to choose the calcula-
tions accuracy p;, where p; there should significantly exceed p. Then the first point of control will
be the condition

Un~10", n>n. (6)
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The next check point is the verification T periodicity of the obtained numerical solution:
[¥nsr = Xa|| ~20-7, n>ny. (7

Of course, in addition it is necessary to check that T is the minimum number for which the condi-
tion (7) is satisfied.
The third check point is verification of the conditions of theorem 1, i.e.:

(8,1 a
MilTrg 1o gt

.
where w, p, are the T-cycle multipliers, i.e. the eigenvalues of matrix Hf'(xnz,,-) at some
j=1

<11 j:1121 (8)

n>mn+T.
Conditions (6), (7), (8) are necessary that the found sequence {x,} would be a T-cycle of the sys-

tem (1). To be noted is that conditions (6) and (7) are not equivalent: the T-cycle of system (2) or (3)
may not be the solution of system (1) at all.

The effectiveness of these necessary conditions is due to the fact that they are simple enough to
verify.

Examples

Here we illustrate how the averaged predictive control method works for finding large lengths
cycles on several model examples of two-dimensional dynamical systems. System (4) was taken as the
control system. We succeed to find a significant number of cycles for all considered T; at different ini-
tial conditions and different values of parameter 3 separate cycles are found. Numerical calculations
show that with a sufficiently dense grid of initial values, all cycles of a given length can be found. In
this case, however, necessary is to ensure that the point x, remains in the invariant set otherwise it
usually escapes to infinity.

The Lozi mapping [25] will be considered in more detail as the simplest from the computational
side. Next, numerical simulation results and corresponding graphs for Henon [26], Ikeda [27], El-
hadgj-Sprott [28], Multihorseshoe [29] mappings will be presented. For all these mappings, a large
number of cycles with a dominant length multiplier up to T =1001 was found. Once again, essential is
that the loop length was not the main obstacle to cycle searching much more restrictions were associ-
ated with the need to increase the calculations accuracy, that exponentially increased the calculation
time. For the Lozi and Henon maps, given are heuristic considerations on the possibility to introduce
additional steps in the algorithm which, apparently, can allow finding cycles of Giga and Tera lengths,
if sufficiently powerful computers are used for calculations.

The Predator-Prey mapping revealed to be somewhat problematic [30]. Apparently, this is due to
the fact that a significant number from among the large lengths cycles have two large multipliers, and
the proportion of cycles with a dominant multiplier is not high. However, this hypothesis requires to
be confirmed. It was possible to find cycles of lengths only up to T =325.

1. Lozi mapping

Xn+]_:1+a|Xn|+byn, yn+]_=Xn, a=_1.7, b:O.S. (9)
To find the T =1001 length cycle, we take the value of control parameter at system (4) 3 =107,
and determine the calculations accuracy 6=10-%%. We start from the initial point x, =0.5, y, =0,

after a little more than 3000 steps, we determine that the residual value within the specified accuracy
is zero, i.e. U, ~ & at n>3500. Residual graphs for intervals n e[2000, 4000] and n [3500, 4000]

are presented in Figure 1.
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Fig. 1. Residual graphs U, at different intervals of the variable n in the plane (n, U,) :
n €[2000, 4000] (a); ne[3500, 4000] (b)

Now we check the periodicity condition |X, — Xs.r|+|ys — Ynir|~ &, n>3500 (the computer pro-

T
duces zeros). We calculate the multipliers, i.e. the Jacobi matrix eigenvalues HJ(X5000_J-, Y5000-j ) »
j=1

alx|/x b . .
where J(X, y) :[ |1|/ Oj' We obtain p; ~—8.1-10%°?, u, ~10-??, and now are convinced that the

conditions (8) are fulfilled. Thus, there is reason to believe that the orbit found really represents a cy-
cle of length 1001. In Fig. 2 blue color shows the cycle, gray color shows the attractor.

Let we expose the coordinates of that 1001-cyclic point (rounded to the tenth sign for clarity):
Xas00 = —0.0089836476 ... Yas00 =—0.6850989482 ...

If we take another initial point, for example, X =0, y, =0, we can find another cycle of length
1001. Here with the same parameter 3 value, conditions (6) and (7) will be executed after 50 steps.
To understand that the found cycle differs from the previous one, it is enough to compare the multipli-
ers: in the second case they are equal: =~ —6.5-1022, p, ~-10-22.

As a result of numerous computational experiments, an interesting phenomenon was discovered

that allows quickly finding the desired value for the control parameter. Namely, some parameter value
is taken and a sufficiently large number of iterations are performed. Suppose that conditions (6), (7)

n

are not satisfied. However, the eigenvalues of the matrix HJ(XN,,-, yn-j) are computed, where N is
=1

a sufficiently large number. Of course, these eigenvalues are not equal to the multipliers. In all the

cases considered, one eigenvalue was large by its modulus the other was close to zero. The dominant

eigenvalue modulus was taken as the new value of the control parameter. After the iterative procedure

was run again, the sequence {x,} converged to a loop.

Now we’ll consider an example for calculating a loop of length 1111. Take, as in the previous
example, the value of the parameter 3 =102 and the initial point x =0, y, =0. We choose the ac-

curacy of 8=10-%5. Now we carry out 7000 iterations. There is no convergence to the cycle. Next, we
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T

calculate the corresponding matrix HJ(xmoo_,-, Y7o00-j) eigenvalues, the dominant being equal to
j=1

2.83-10%%4, the second is close to zero. Now assuming 3 =3-10%*, we run the iterative procedure

again. This time conditions (6), (7) will be fulfilled after 50 steps already. The cycle multipliers are

equal: pw;~-3.3-10%*, n,~-10-%, conditions (8) also hold. This means that the cycle of T =1111

length is found: shown in blue at Fig. 3.

Fig. 2. 1001-cycle of the-system (9) Fig. 3. 1111-cycle of the-system (9)
on plane (x», yn) in the plane (X, Ya)

A similar rule works exactly the same for Henon mapping. For other mappings, the rule had to be
applied several times.

In the article [8] the examples of found mega and giga cycles for Lozi and Henon systems were
given with indication to the difficulties of these cycles calculation. In particular, due to both: algorithms
imperfection and insufficient computational power of computers. Unfortunately, the values of these cy-
cles” multipliers were not given therein as well as not specified is the used accuracy of calculations.

The algorithm given in this article with the phenomenological rule of control parameter choice al-
lows us to hope for the possibility of finding a large number of giga and even tera cycles. One of the
algorithm’s significant advantages refers to its insensitivity to rounding errors (due to the cycle’s local
asymptotic stability).

2. Henon mapping

X1 =1+axZ +VYn, Yoau=bX,, a=-14, b=0.3. (10)
Choose T =1001, 9=5-10"%, 3=10"%, % =0, yo=0. Now we determine that when
n>1100 the residual value U, ~& and |X, — Xa.7|+|Yn — Yo7 |~ & . The residual graphs for the inter-
vals ne[200, 1400] and n [2000, 4000] are shown in Fig. 4.
Multipliers py ~—4-10'"*, u, ~—-10-2*, and conditions (8) are satisfied.
1001-cyclic point: Xs00 = —0.6343046101 ... Ya000 =—0.188573545 ... In Fig. 5 blue color shows
the cycle, gray color shows the attractor.
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Fig. 4. Residual graphs U, at different intervals of the variable n in the plane (n, U,) :
n €[200, 1400] (a); n [2000, 4000] (b)

M Yn |
0.2]

0.1

Fig. 5. 1001-cycle of the-system (10) in plane (Xa, Yn)

3. Ikeda mapping
Xns1 =1+ U (X, COSTh — Y SINTh), Yni1 =U (X SINTy + Yo COSTh), (11)
6
1+X3+y2
Choose T =1001, 3=3.8-10%%, 3=10%°, % =0, Yyo=0. Now we determine that when
n>1100 the residual value U, ~& and |X, — Xa.t|+|Yn — Yot |~ & . The residual graphs for the inter-
vals ne[600,1500] and n [1500, 2100] are shown in Fig. 6.

where u=0.9, 1, =0.4-
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Fig. 6. Residual graphs U, at different intervals of the variable n in the plane (n, U,) :
n €[600, 1500] (a); n €[1500, 2100] (b)

Multipliers p, ~—4.8-10%%%, n, ~10-%°, and conditions (8) are satisfied.
1001-cyclic point: Xu000=1.387200773... Ya00= 0.4458626040 ... In Fig. 7 blue color shows
the cycle, gray color shows the attractor.

* e *
Yn -l + *

Fig. 7. 1001-cycle of the-system (11) in plane (X, Ya)

4. Elhadj-Sprott Mapping
Xon =1+asinX, +byn, Yo =X, a=—-4.0, b=0.9. (12)
Choose T =1001, 3=15-10%", 8=103%5, x =0, Yyo=0. Now we determine that when
n>500 the residual value U, ~8 and |X, — Xn.|+|Yn — Yait| ~ 8 . The residual graphs for the intervals
n €[50, 500] and n<[270, 290] are shown in Fig. 8.
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Fig. 8. Residual graphs U, at different intervals of the variable n in the plane (n, U,) :
n €[50, 500] (a); n €[270, 290] (b)

Multipliers p; ~—1-10%", u, ~ 0, and conditions (8) are satisfied.
1001-cyclic point: xsoo =12.6040804877 ... Ys00=10.2905345783... In Fig. 9 blue color shows
the cycle, gray color shows the attractor

Yo
25] -

20

25 x,

Fig. 9. 1001-cycle of the-system (12) in the plane (Xn, Yyn)

5. Multihorseshoe mapping
Xns1 = Xn €3°080-02yn -y =y (0.2%, + 0.8y, )eb-02%0-08n g=3 bh=3. (13)
Choose T =1001, 3=15-10%", 8§=10%%, % =0, Yo=0. Now we determine that when

n> 2500 the residual value U, ~8 and |X, — Xu.t|+|Yn — Ynr |~ 8. The residual graphs for the inter-
vals n e[1000, 3000] and n e[2500, 3500] are shown in Fig. 10.
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Fig. 10. Residual graphs U, at different intervals of the variable n in the plane (n, U,):
n €[1000, 3000] (a); n e[2500, 3500] (b)

Multipliers p; ~—6.9-10%6 , p, ~—2-10-%, and conditions (8) are satisfied.
1001-cyclic point: Xps00 =1.75599557836 ... Y2500 =1.70868429528 ... In Fig. 11 blue color
shows the cycle, gray color shows the attractor.

Yn+
12+

10+

Fig. 11. 1001-cycle of the-system (13) in plane (X, Ya)

6. Predator-Prey mapping
Xns1 = Xn Xp(a(l—Xy) —byn), Xn1 =X (L—exp(-cyn)), a=3, b=5, ¢=5. (14)

This mapping differs in its properties from the mappings discussed above. Along with dominant
multiplier, containing cycles, it also has cycles whose both multipliers are large. And, judging by the
numerical results, their share is significant. Therefore, to find long cycles with a dominant multiplier,
the control parameter 8 grid has been assigned and 8000 iterations were checked for each parameter
value on the grid. In such a way, size cycles up to T =325 have been found.
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Let T=325, 9=3.8-10%, 8=10%°, X =1, Yo=0.05. When n>2600 the residual value
Un ~8 and |X, —Xp.t|+|Yn — Ynit|~ 8. The residual graphs for the intervals ne[600, 2000] and

n €[2000, 3500] are shown in Fig. 12.

Un U,
1.2x107%
2x107%
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1.5x107% 8x107%
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4x1074
5x107%
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r— - 0 ....|LILJ.1... i1, Ly,
600 800 1000 1200 1400 1600 1800 n 2600 2800 3000 3200 3400 n

a b

Fig. 12. Residual graphs U, at different intervals of the variable n in the plane (n, U,):
n €[600, 2000] (a); n €[2000, 3500] (b)

Multipliers p; ~-2.5-10%, p, ~0.009, and conditions (8) are satisfied.
1001-cyclic point: Xpe00 =0.23346669403 ... Yae00= 0.05537511191... In Fig. 13 blue color
shows the cycle, gray color shows the attractor.
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Fig. 13. 325-cycle of the-system (14) in the plane (X, Y»)

Conclusions
The article demonstrates the efficiency of large-length cycles searching method based on the sta-

bilization of unstable and a priori unknown periodic orbits of these systems, using several well-known
examples of nonlinear systems with discrete time. The averaged predictive control method was chosen
as a stabilization method [1], which embodies the development of the predictive feedback method first

proposed for discrete systems in [17].
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To improve the numerical results’ reliability there were introduced the three criteria necessary for the
found orbit actually was a T-cycle of the original dynamical system. These criteria are easily verifiable.

The proposed algorithm can be recommended for the study of the discrete dynamical systems’
topological properties dependence on the change of parameters, as well as for the study of bifurcations
presence and their types. Of particular interest [31] is the question about the presence of long cycles
with small modulus multipliers (or even stable cycles). The averaged predictive control is particularly
effective when searching for long cycles with large modulo multipliers. However, numerical simula-
tion shows the possibility of strengthening the averaged predictive control method through synthesiz-
ing it with the method of averaged delayed control [32].

Also interesting is the problem of finding periodic orbits of continuous systems. For such sys-
tems, examples of the predictive control method application can be found in [18, 33].

Our research was mainly focused on the Lozi system, which represents one of the most studied
models of systems with a strange attractor. Despite the triple control of numerical results, their relia-
bility question, generally speaking, can never be solved definitely without ambiguity. First of all, be-
cause of computer technology imperfection, given the need to use ultra-high accuracy of data repre-
sentation and very large parameters. Therefore, there is a need to test the method on supercomputers.
The method correctness being confirmed, it will be interesting to find tera cycles with both large and
small multipliers.
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