Applied Aspects of Information Technology 2020; Vol.3 No.3: 145-153

DOI: 10.15276/aait.03.2020.3
UDK 004.75

REDUCTION OF THE HARMFUL EFFECT OF CRITICAL MODES IN THE
OPERATION QUEUE ENVIRONMENT FOR AUTHORIZATION PROTOCOLS
FOR LARGE REQUESTS

Sergii S. Surkov
Odessa National Polytechnic University, Odessa, Ukraine
ORCID: http://orcid.org/0000-0001-9224-7526

ABSTRACT

An essential part of web security is keeping the payload intact from changes. The data during transmission could be changed, where
the encryption is not used, or the data gets decrypted in the middle of the transmission. In our previous researches, the “chunking”
method was introduced, which was compared with the “Buffering to file” method. The comparison showed the reduction of recourse
consumption. In a multithreading environment, to manage resources efficiently, it is vital to distribute the workload among processor
cores. A decent solution for using multithreading efficiently is operation queues. However, if too many operations are accumulated in
the operation queue, the system falls into the critical mode. It is characterized by the increase of memory consumption, which may
cause the instability of the system. In the course of the study, the main parameters were determined, influencing the data processing
speed, and insignificant ones were excluded from the calculation. Earlier, a method was developed for determining the conditions for
the falling of a system to a critical mode. It was used as a starting point for the experimental research. A new method based on the
method of identifying critical modes in the operation queue is proposed. It differs from existing ones by the ability to simulate critical
modes at a given workload, which allows predicting critical modes in order to reduce their negative effect. A series of experiments
were carried out, and the results were used to study the dependences of memory consumption on the number of connections and
writing speed in critical modes. From the study, three types of critical modes were determined. This made it possible to establish the
patterns of the emergence of critical modes in information systems and their impact on the available memory. The formulas are
obtained that approximate the experimental data: the dependence of the used memory on the number of connections and the write
speed. The research results can be used in the development of information systems and the analysis of failures.
Keywords: digital signature; authorization; large payload; operation queues; network requests; verification

For citation: Surkov S. S. Reduction of the harmful effect of critical modes in the operation queue environment for authorization
protocols for large requests. Applied Aspects of Information Technology. 2020; Vol.3 No.3: 145-153. DOI: 10.15276/aait.03.2020.3

INTRODUCTION

Modern security of web sites uses Al in areas
without mandatory registration, where the emphasis
is on determining whether a user is a “bot” or a real
person. After authenticating the user, the primary
security aspect shifts to the authorization of requests
from the user to the server. Data transmission can
occur through many network nodes that are trusted,
but in some nodes, certificates may be substituted, or
data is transmitted in an unencrypted form. It makes
it necessary to verify the request payload for video
streaming, document storage, database services with
complex data center infrastructure [1], etc. During
the payload verification process, operation queues
may experience critical modes leading to the
unstable work of the information system.

browsers because of their simple and straightforward
structure. The generally accepted solution is to use
the TLS protocol [5-6] to verify the encryption and
integrity of the data.
However, there are wvulnerabilities on the data
transmission path, such as ordinary, transparent, or
reverse proxies [7-9], which remove encryption or
replace TLS certificates [3; 10-11]. They are
considered to be trusted and managed by data
centers or the companies in which the user works.
Attacks such as MITM (Man in the Middle)
[12-15] make it necessary to verify the payload,
since not all authorization protocols guarantee data
immutability during transmission. The main
authorization protocols only check the request
headers [16-22]. Hence the request payload is not
authorized in any way. The change of the request
payload during transmission can occur if no
encryption is used or the data is decrypted during

LITERATURE REVIEW

A crucial part of web security is keeping the
payload intact from changes [2]. The generally
accepted protocols for communication between
clients and servers are HTTP and HTTP/2 [3-4],
which are now widely used not only in web

© Surkov S. S., 2020

transmission.

The HMAC method is used to prevent
modification of the request payload [23]. It is used by
authorization protocols such as OAuth 1.0a [24] and
HAWK [25-27]. However, the existing protocols are
great for authorizing small payload sizes.

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

DOI: 10.15276/aait.03.2020.3 145

http://orcid.org/0000-0003-2366-1920

Applied Aspects of Information Technology 2020; Vol.3 No.3: 145-153

Authorization protocols use payload
verification methods for checking the integrity of the
payloads of requests. The generally accepted method
is “filling the buffer” with its sub-types of “buffering
to memory” and “buffering to file” for large and
small payloads. We developed the “chunking”
method [28-29], which was recognized as the most
promising. The conclusion was made using the
method of ranking the implementations of payload
signatures [30].

In a multithreaded environment, it is
appropriate to distribute the workload across the
processor cores to manage the resources efficiently.
Operation queues are a suitable solution for this
[31]. Operation queues provide efficient operation in
a multithreaded environment, allowing large
payloads to be authorized.

However, during the overflow of the operation
gueue, the system goes into critical mode. In the
critical mode, memory consumption increases,
which may cause system instability? Earlier, a
method for identifying critical modes was developed
[30], which allows increasing the speed and
reliability of the system by identifying the critical
workload of the system. The workload on the system
can be limited by using the method of migration
from a single server to a server cluster.

The means of identifying and preventing critical
modes don't get rid of them completely. The study of
critical modes makes it possible to predict their
impact on equipment and thereby increase the
reliability of the system and reduce their harmful
effect.

The behavior of the critical modes for
authorization protocols for large requests isn't
researched well, and their study is an actual task.

THE PURPOSE OF THE ARTICLE

The purpose of this paper is to improve the accuracy
of predicting the transition of the system to the
critical mode to reduce its harmful effect. Within the
article, a method is developed to study the impact of
critical modes on the consumption of system
memory.

To accomplish the goal, the following tasks
were defined:

1) Analyze the critical modes in the operations
queue environment for authorization protocols that
process large requests.

2) Develop a method for studying the impact of

critical modes on the consumption of system
memory.
3) Study the effect of the number of

connections and writing speed on the falling of the
system into the critical mode.

4) Extend the technique and investigate the
impact on the system memory.

5) Analyze the dependence of memory
consumption on the number of threads and write
speed in critical modes.

MAIN PART.

OVERVIEW OF CRITICAL MODES IN
THE OPERATIONS QUEUE ENVIRONMENT
FOR AUTHORIZATION PROTOCOLS THAT

PROCESS LARGE REQUESTS

There are several payload verification methods. The
first method is “filling the buffer”, the principle of
which is to fill the buffer during the downloading the
payload [28-29]. The method is shown in Fig. 1.

IMMUTABLE
DATA

CHUNK
FINISHED

AUTHORIZE PROCESS

Fig. 1. Buffer filling method

It comes in two variants — “buffering to
memory” and “buffering to file”. The first is
designed for authorizing a small payload size, the
second for a large payload size. It should be noted
that for the “buffering in memory” method, the
allocation of large blocks of memory is very
resource-intensive for the CPU [1; 32-34], and can
lead to unnecessary delay in request processing.

For the large payload size, the “chunking” was
established as the most promising. The advantage of
the “chunking” method is that it processes chunks
that are in the computer's RAM, and that's why the
payload is read once. Worth noting that due to file
caching by the operating system, the results between
“chunking” and “buffering to file” may not differ
significantly for small payloads.

The chunking method is shown in Fig. 2.

Socket Stream
(-1

Update digital signature

[L
[

FILL
MUTABLE
BUFFER

File Stream

-]

Fig. 2. “Chunking Method”

146

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Applied Aspects of Information Technology 2020; Vol.3 No.3: 145-153

By serving many requests at the same time,
multithreading has an enormous advantage if the
HTTP request data is being archived or encrypted in
the process. Operation queues are used to process
data sequentially while maintaining the benefits of
multithreading. With the arrival of each new chunk
of data, an operation is created, which is added to
the parallel queue and then executed sequentially.

Processing chunks of data (OP) in the operation
gueue is shown in Fig. 3.

OP

Enqueue

OoP

OP

OoP

OP

Dequeue
R3 R1
R2

OoP OP OoP

! L

OP OoP

L

OoP

Fig. 3. Processing chunks in the operation queue

HTTP requests R1, R2, R3 are processed
sequentially in their operation queues before they are
processed in parallel.

However, queued operations may accumulate if
the system does not have time to process them,
which makes the system fall to the critical mode.
Critical mode increases memory consumption,
which can lead to system instability.

In the previous paper [31], the method of
identifying critical modes was developed. While
developing that method, it was intended to reuse its
elements to study the critical modes themselves.

THE METHOD FOR THE STUDY OF THE
IMPACT OF CRITICAL MODES ON THE
SYSTEM'S MEMORY

The basis of our queueing system is libdispatch [35],
which provides comprehensive support for
concurrent code execution on multicore hardware.
The framework is available for Apple and Linux
platforms.

A new method for studying the impact of

critical modes on the system's memory in the
operation queue environment is proposed, based on
the method of identifying critical modes [30] and
simulation of asynchronous operations.

This method differs from the existing ones by
the ability to simulate critical modes at a given
workload, which makes it possible to increase the
accuracy of predicting the transition of the system to
the critical mode to reduce their harmful effect.

The difference is provided by the fact that the
new method uses operation queues directly to
process input data. With a specified workload, this
allows us to investigate the tendency of critical
modes.

The method includes the following steps:

1) initiate the launch of a predetermined
number of connections at the same time;

2) add to the operation queue chunks of data
with a given rate;

3) measure the rate of data processing in the
operation queue environment;

4) measure the amount of memory occupied by
the server process every selected time interval;

5) display the results of measurement.

For methods of ranking payload verification
implementations and identifying critical modes,
BenchmarkChunking and BenchmarkFileBuffering
classes were created. They are inherited from
BenchmarkBase class [31]. For the new method of
studying the impact of critical modes on the payload
verification implementations in the operation queue
environment, a new class BenchmarkCriticalModes
is created.

The benchmark method of each instance of the
BenchmarkCriticalModes object runs on a separate
thread. During the initialization of each instance of
the class, the following variables passed through the
constructor during initialization (Fig. 4)

FILE* file;
std::string filePath;
dispatch_queue_t queue;

Fig. 4. Variables initialized in the constructor of
the BenchmarkCriticalModes class

For the asynchronous test, all the chunks are
submitted to the queue sequentially with the delay of
ChunkTransmissionTimeMs, which simulates
network transfer speed. After all the chunks are
processed, the statistics are displayed.

In the new method, measuring the speed and
time of the processing of a chunk is similar to the
method for identifying critical modes. In the method,
to achieve many connections, thread per connection
pattern is used to emulate concurrent connections.

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

147

Applied Aspects of Information Technology 2020; Vol.3 No.3: 145-153

The implementation of the queuing system for

the technique in C++isin Fig. 5.
virtual void benchmarkQueue() {
dispatch_semaphore_t s =
dispatch_semaphore_create(0);
for (ssize_t i = @; 1 < NChunks; i++) {
__block uint8_t* data =
(uint8_t *) malloc(ChunkSize);
dispatch_async(queue, "~{
auto writeMs = benchmarkChunk(data);
updateTotalTime<false>(writeMs);
free(data);

1N
sleep_us(timeDiff);

¥

dispatch_async(queue, ~{
dispatch_semaphore_signal (s);

3

dispatch_semaphore_wait(s, DISPATCH_TIME_FOREVER);

fclose(file);

printStatsForThread();

remove (filePath.c_str());

Fig. 5. Function of measuring the impact of
the critical modes on the system’s memory

STUDYING THE IMPACT OF THE NUMBER
OF CONNECTIONS AND WRITING SPEED
ON THE TRANSITION OF THE SYSTEM TO
CRITICAL MODE

Since our newly developed method uses operation
gueues, the system may fall into critical mode. It
may happen because the stack of operations is
growing over time.

In case if the server process will use more
memory than possible, then the operating system
will shut down the process. It is sufficient to reduce
the amount of RAM to the top point of the graphs
from the experiments to have the server process
terminated.

The following equipment was used for the tests:

OS: Ubuntu 18.04 LTS

CPU: Core i7 8700K

RAM: 32G

SSD: Samsung 960 Evo 512G

Two series of experiments were carried out to
study the critical modes. The first series of
experiments assume a client speed of 100 Mbps.
According to the method of identifying critical
modes, from 32 to 48 connections were selected.

Each line in the graph is an experiment showing
memory consumption with a given number of
connections. The more connections, the more
memory the system needs to process data in critical
mode. Observing the plot, the critical mode each line
has 3 types: in the beginning there is a linear growth.
This happens because drive can't keep up with
incoming data.

The second type is when server's drive is able to
keep up with incoming data.

The third type is when no data is coming and
the entire buffer is being flushed to the drive.

Due to libdispatch uses ARC (Automatic
Reference Counting) mechanism, the decrease of
used memory is discrete.

The results for the series of experiments for
input bandwidth of 100 Mbps per client are in
Fig. 6.

9.0

6.75

4.5

Memory Consumption (GB)

2.25

0.0

Time (Seconds)

Fig. 6. Critical mode for the input bandwidth of
100 Mbps per client

For the second series of experiments, a
connection speed of 1 Gbps was chosen. According
to the method of identifying critical modes, from 5
to 10 connections were selected.

The results for the series of experiments for 1
Gbps are in Fig. 7.

Having conducted the series of experiments, the
data needs to be processed to find the number of
threads, from which the system goes into the critical
mode.

ANALYSIS OF THE DEPENDENCY OF
MEMORY CONSUMPTION ON THE
NUMBER OF THREADS AND WRITE SPEED
IN CRITICAL MODES

To summarize the data in Fig. 8 and Fig. 9,
summary graphs were built showing the dependence
of the maximum memory consumption on the
number of threads. The dots on the graph show the
experimental data, the calculation by the formula is
shown by the solid line.

The experimental and theoretical results for the
100 Mbps series of experiments is in Fig. 8.

148

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Applied Aspects of Information Technology 2020; Vol.3 No.3: 145-153

Memory Consumption (GB)

Time (Seconds)

Fig. 7. Critical mode for the input bandwidth of
1 Gbps per client

10

7.5

2.5

Memory consumption (GB)
(4]

0
28 32 36 40 44 48 52 56 60 64

Number of connections

Fig. 8. Maximum memory consumption for the
series of experiments for 100 Mbps (12.5 MB/s)

The experimental and theoretical results for 1
Ghbps series of experiments is in Fig. 9.

As can be seen from Fig. 8 and Fig. 9, the
dependence of the maximum memory consumption
on the number of threads can be described by the
hyperbola equation:

x=—£+a-y+b.
y

For the convenience of calculations, it is
advisable to obtain an inverse relationship y(x).

10

7.5

Memory consumption (GB)
(&)

1234567 8 9101112

Number of connections

Fig. 9. Maximum memory consumption for the
series of experiments for 1 Gbps (125 MBY/s)

Solving the quadratic equation gives the
following formula:

y_—(b—x)+\/(b—x)2+2-a-c
- .

The coefficients in this equation are calculated
by multivariate optimization to achieve the least sum
of squared deviations.

These coefficients
physical interpretation:

a — how fast the system goes into critical mode

b — number of threads, from which system goes
into critical mode;

¢ — the growth of memory before the system
falls into critical mode;

X —number of threads;

y — maximum memory consumption.

The unbiased estimate of the standard deviation
(o) is calculated using the formula:

received the following

For the best match with the experimental
points, for each series of experiments, the following
coefficients were determined:

(100 Mbps or 12,5 MB/s)
a=5,148,b=39,58,c =112,
¢ =0,1002 GB

(1 Gbps or 125 MB/s),
a=168b=4,7¢c=0,112,

0 =0,1199 GB.

The analysis of the coefficients shows that the
critical mode starts with 39 active connections (for

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

149

Applied Aspects of Information Technology 2020; Vol.3 No.3: 145-153

100 Mbps per client) and with 4 active connections
(for 1 Gbps per client). Such values of the unbiased
estimate of the standard deviation (o) indicate the
acceptable accuracy of the approximation.

The connection speed (S) is multiplied by the
number of connections at which the system goes to
critical mode (b) to find the maximum concurrent
write speed (Pw).

To calculate the required parallel write speed
(Rw), the connection speed (S) multiplies by the
number of connections (C) from the experiments:

Pw = b * S,
RW =C*S.
The results the series of experiments of 100
Mbps (12.5 MB/s):

Pw = 12,5 * 39,58 = 494,75 MBJ/s,

Rw=12.5* 60 = 750 MB/s.

The results for the series of experiments of 1
Gbps (125 MB/s):

Pw =125* 4,7 =587,5 MBI/s,

Rw=125* 10 = 1250 MBI/s.

The deviation of the maximum parallel write
speeds between the series of experiments is 100
MB/s. With very different required parallel write
speeds, it is concluded that the maximum parallel
write speed is weakly dependent on the number of
connections in the operation queue environment.

To confirm this assumption, we need to
investigate the dependence of the maximum used
memory in the critical mode on the overall speed.
Based on the results above, a series of experiments
were carried out, in which the incoming speed
varies from 400 to 640 MB/s. The number of
compounds in all experiments was 16.

The results of the experiment are in Fig. 10.

900

o
J
(&)

Maximum Memory Consumption (MB)
N
o
o

N
N
(&

0
400 430 460 490 520 550 580 610 640
Total Speed (MB/s)

Fig. 10. Maximum memory consumption for the
series of experiments for 100 Mbps (12.5 MB/s)

The experiment showed that at the total write
speed of 520 MB/s the server process goes into
critical mode. From this point, a sharp increase in
memory consumption begins. With the connection
speed per client from 25 to 37.5 MB/s (200 to 300
Mbit/s) with the same number of threads, the
experiment confirms that in the operation queue
environment, the total speed plays a more significant
role than the number of connections.

From the conducted research, the following
statements are made:

1) If the system does not have time to process
operations in the queue, the system may go into
critical mode.

2) There may be a regime of “stable
consumption” when the incoming speed is
approximately the same as writing speed.

3) If the system managed to process the
accumulated data, the server process returns into the
normal mode.

4) Limiting upload speed across all threads
generally eliminates falling of the system into the
critical mode.

5) The research carried out in this article can be
useful in designing an information system and
adjusting its parameters in order to avoid the system
falling into a critical mode.

CONCLUSIONS

A new method was developed to study the
influence of critical modes on the payload
verification implementations in the operation queue
environment. A series of experiments were carried
out using this method. The results of them were used
to investigate the dependence of the used memory
on the number of connections and the write speed in
critical modes.

From the study, three types were determined.
It's become possible to establish the patterns of the
emergence of critical modes in information systems
and their impact on the available memory. The
formulas are obtained that approximate the
experimental data on the dependence of the used
memory on the number of connections and write
speed. The research results can be used in the
development of information systems and the
analysis of failures.

The new method and the conducted research
provide an increase in the accuracy of predicting the
transition of the system to the critical mode. Thus,
the set goal of the study has been achieved.

150

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Applied Aspects of Information Technology 2020; Vol.3 No.3: 145-153

REFERENCES

1. Surkov, S. & Martynyuk, O. “Method of Migration from Single Server System to Server Cluster”. In
Proceedings of the 2015 IEEE 8th International Conference on Intelligent Data Acquisition and Advanced
Computing Systems: Technology and Applications (IDAACS’2015). Warsaw, Poland: 2015. DOI:
10.1109/IDAACS.2015.7341415.

2. Kizza, J. M. “Computer Network Security and Cyber Ethics Fourth Edition”. Jefferson, NC, United
States: Publ. McFarland. 2014. 240 p.

3. Fielding, R. & Reschke, J. “ Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing,
IETF RFC 7230”. Available from: https://tools.ietf.org/html/rfc7230. [Accessed 12th August 2020].

4. Belshe, M. & Peon, R. “Hypertext Transfer Protocol Version 2 (HTTP/2), IETF RFC 7540”.
Available from: https://tools.ietf.org/html/rfc7540. [Accessed 12th August 2020].

5. Liu, Q., Zhang, L. & Fan, A.. “Scheme to authenticate requests for online banking based on identity-
based mediated RSA”. Jiefangjun Ligong Daxue Xuebao/Journal of PLA University of Science and
Technology (Natural Science Edition). 2015; Vol.16: 29-33. DOI: 10.7666/j.issn.1009-3443.20140929001.

6. Sanae, H. “Security Requirements and Model for Mobile Agent Authentication”. Smart Network
Inspired Paradigm and Approaches in 10T Applications Singapore: Republic of Singapore. 2019. p. 179-
189. DOI: 10.1007/978-981-13-8614-5_11.

7. Rash, M. “Linux Firewalls: Attack Detection and Response with iptables, psad, and fwsnort”. San
Francisco, CA, United States: Publ. No Starch Press. 2007. 336 p.

8. Fjordvald M. & Nedelcu C. “Nginx HTTP Server — Fourth Edition: Harness the power of Nginx to
make the most of your infrastructure and serve pages faster than ever before”. Birmingham, United
Kingdom: Publ. Packt Publishing. 2018. 400 p.

9. Blokdyk, G. “Apache Web Server A Complete Guide — Edition”. Brisbane, Australia: Publ.
5STARCooks. 2020. 238 p.

10. Saini, K. “Squid Proxy Server 3.1: Beginner's Guide Paperback”. Birmingham, United Kingdom:
Publ. Packt Publishing. 2011. 332 p.

11.Wessels, D. “Squid: The Definitive Guide”, Sebastopol, CA, United States: Publ. O'Reilly Media.
2010. 472 p.

12. Eugene, F., John, O.R. & Kevin, C. “Security evaluation of the OAuth 2.0 framework”. Information
and Computer Security. 2015; Vol.23(1): 73-101. DOI: 10.1108/ICS-12-2013-0089.

13. Cheol-Joo, Chae Ki-Bong & Han-Jin Cho. “A study on secure user authentication and
authorization in OAuth protocol”. Springer Cluster Computing. 2019; Vol. 22(2). DOI: 10.1007/s10586-017-
1119-6.

14. Farooqi, S., Zaffar, F., Leontiadis, N., et al. “Measuring and mitigating OAuth access token abuse
by collusion networks”. In Communications of the ACM. New York, NY, United States: 2020. p. 103-111,
DOI: 10.1145/3387720.

15. Feng, Y. & Sathiamoorthy, M. “A security analysis of the OAuth protocol”. In IEEE Pacific Rim
Conference on Communications, Computers and Signal Processing (PACRIM). Victoria, BC, Canada: 2013.
p. 271-276. DOI: 10.1109/PACRIM.2013.6625487.

16. Seung, J. & Souhwan, J. “Personal OAuth authorization server and push OAuth for Internet of
Things”. International Journal of Distributed Sensor Networks, Thousand Oaks, CA, United States: 2017,
Vol.13. DOI: 10.1177/1550147717712627.

17. Se-Ra, O. & Young-Gab, K. “AFaaS: Authorization framework as a service for Internet of Things
based on interoperable OAuth”. International Journal of Distributed Sensor Networks. Thousand Oaks, CA,
United States: 2020; Vol.16(2): 1-15. DOI: 10.1177/1550147720906388.

18. Hossain, N., Hossain, M. A., Hossain, M., et al. “OAuth-SSO: A Framework to Secure the OAuth-
based SSO Service for Packaged Web Applications”. In Proc. of 17th IEEE International Conference On
Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On
Big Data Science And Engineering (TrustCom/BigDataSE), New York, NY, United States: 2018. p. 1575—
1578. DOI: 10.1109/TrustCom/BigDataSE.2018.00227.

19. El-hajj, M., Fadlallah, A., Maroun, C., et al. “A Survey of Internet of Things (IoT) Authentication
Schemes”. Sensors — Open Access Journal. Basel, Switzerland: 2019; Vol.19: 1-17. DOI:
10.3390/s19051141.

ISSN 2617-4316 (Print) 151
ISSN 2663-7723 (Online)

https://tools.ietf.org/html/rfc7230
https://tools.ietf.org/html/rfc7540

Applied Aspects of Information Technology 2020; Vol.3 No.3: 145-153

20. Hardt, D. “The OAuth 2.0 Authorization Framework, IETF RFC 6749”. Available from:
https://tools.ietf.org/html/rfc6749. [Accessed 26th Jule 2020].

21. Jones, M. & Bradley, J. “JSON Web Token (JWT) IETF RFC 7519”. Available from:
https://tools.ietf.org/html/rfc7519. [Accessed 18th Jule 2020].

22. Richer, J. “User Authentication with OAuth 2.0”. Available from:
https://oauth.net/articles/authentication/. [Accessed 17th Jule 2020].

23. Krawczyk, H. & Bellare, M. “HMAC: Keyed-Hashing for Message Authentication”. Available
from: https://tools.ietf.org/html/rfc2104. [Accessed 02th Jule 2020].

24. Leiba, B. “OAuth Web Authorization Protocol”. IEEE Internet Computing. Nicosia, Cyprus:
2012;Vol.16: 74-77. DOI: 10.1109/MIC.2012.11.

25. Hammer-Lahav E. (2010). “The OAuth 1.0 Protocol. IETF RFC 5849”. Available from:
http://tools.ietf.org/html/rfc5849. [Accessel5th August 2020].

26. Hammer, E. “OAuth 2.0 and the Road to Hell”. Available from:
http://hueniverse.com/2012/07/oauth-2-0-and-the-road-to-hell/.[Accessed 29th June 2020].

27. Hammer, E. “HAWK / HTTP Holder-Of-Key Authentication Scheme”. Available from:
https://github.com/hueniverse/hawk. [Accessed 14th August 2020].

28. Surkov, S. S. “Model and method of chunk processing of payload for HTTP authorization
protocols”. Proceedings of IEEE 15th International Conference on Advanced Trends in Radioelectronics,
Telecommunications and Computer Engineering (TCSET), Slavske, Ukraine: 2020. p. 317-321. DOI:
10.1109/TCSET49122.2020.235447.

29. Surkov, S. S., Martynyuk, O. M. & Mileiko, I. G. “Modification of open authorization protocol for
verification of request®. Electrotechnic and Computer systems. 2015; Vol. 19(95): 178-181. Odessa Ukraine:
(in Russian).

30. Surkov, S. S. “Comparison of authorization protocols for large requests in operation queue
environment”. Applied Aspects of Information Technology. Odessa, Ukraine: Publ. Nauka | Tekhnika. 2020;
Vol. 3 No.3. DOI: 10.15276/hait.03.2020.5.

31. Grosch, S. “Concurrency by Tutorials (Second Edition): Multithreading in Swift with GCD and
Operations”, McGaheysville, VA, United States: Publ. Razeware LLC. 2020. 100 p.

32. Drozd, O., Kharchenko, V., Rucinski, A., et al. “Development of Models in Resilient Computing”.
In Proc. of 10th IEEE International Conference on Dependable Systems, Services and Technologies
(DESSERT’2019). Leeds, UK. 2019. DOI: 10.1109/DESSERT.2019.8770035.

33. Drozd, A., Antoshchuk, S., Drozd, J., et al. “Checkable FPGA Design: Energy Consumption,
Throughput and Trustworthiness”. In Green IT Engineering: Social, Business and Industrial Applications,
Studies in Systems, Decision and Control. Warsaw, Poland: 2018. p. 73-94. DOI: 10.1007/978-3-030-00253-
4 4,

34. Drozd, O., Kuznietsov, M., Martynyuk, O., et al. “A method of the hidden faults elimination in
FPGA projects for the critical applications”. In Proc. of 9th IEEE International Conference on Dependable
Systems. Services and Technologies (DESSERT’2018). Kyiv, Ukraine: 2018. p. 231-234. DOI:
10.1109/DESSERT.2018.8409131.

35. Apple Inc. “Grand Central Dispatch”. [Digital Resource]. Available from: https://github.com/
apple/swift-corelibs-libdispatch. [Accessed 27th June 2020].

DOI: 10.15276/aait.03.2020.3
YJIK 004.75

SHUKEHHS HIKIUVIMBOI'O BITUBY KPUTUYHHUX PEXKAMIB Y CEPEJOBHIII
YEPT" OIIEPAIIIA JJISA ITPOTOKOJIIB ABTOPU3ALII BEJIMKUX 3AIIUTIB

Cepriii C. CypkoB
Opnechkuii HalliOHANBHUI MOJTITeXHIYHUH yHIBepcuteT. Oneca, Ykpaina
ORCID: http://orcid.org/0000-0001-9224-7526

AHOTANIA

Ba)k/IMBOIO 4acTHHOIO BeO-Oe3rekH € 30epexeH s HUTICHOCTI KOPHCHOTO HAaBaHTA)KEHHs. 3MiHA aHUX TIiJ Yac mepesadi MoXKe BUHUKHYTH,
SIKII0 HE BHKOPHCTOBYEThCS LIM(ppyBaHHs, a00 JaHi po3iir(poBYIOTECS B MPOLECI Mepenadi. Y HaIIMX MOMEepeAHiX AOCIIHKEHHIX Oyro
TIPEJICTaBIICHO «TIOPLIHHIIDY METO, KU TTOPIBHSIIA 3 METOJIOM «Oydepizamus B (aiiiny i IOBENH, 0 BiH 3MEHIIY€E CIIOKUBAHHS pecypciB. Y

152 ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc7519
https://oauth.net/articles/authentication/
https://tools.ietf.org/html/rfc2104
http://tools.ietf.org/html/rfc5849
http://hueniverse.com/2012/07/oauth-2-0-and-the-road-to-hell/
https://github.com/hueniverse/hawk

Applied Aspects of Information Technology 2020; Vol.3 No.3: 145-153

6araTonoTOKOBOMY CEepEeOBHILI Uil e()EKTUBHOTO YIPABIIHHSI PECypcaMH JKHUTTEBO BAKIMBO PO3MOAUITH poOOYe HABAHTAKEHHS MDK
SIApaMH TPOLiecopa. XOPOIINM PIIICHHSM Il BUKOPHCTAHHS IiepeBar 0araTornoTo4HOCTI € depry orepaiid. OHaK [py NepernoBHeHH] Yepri
omepaiif cucremMa IepexoiuTh B KPUTHYHUK pexxuM. U1 HBOrO XapakTepHe 30UIBIIEHHs CIOXKMBAHHS MaM'SITi, IO MOXKE HPUBECTH IO
HecTabUTFHOCTI cucTeMH. B Xomi mocipkeHH s Oy BU3HaUeHi OCHOBHI ITapaMeTpH, 10 BIUTUBAIOTH Ha IIBUJIKICTE 0OpOOKM JaHMX, a He3HaTHI
Oy BHKIIOYEHI 3 po3paxyHKy. PaHime OyB po3poOieHHiI METO BH3HA4YEHHS YMOB NEPEXOAy CHCTEMH B KPUTHYHHH PEXUM, SKUi OyB
BUKOPHCTAHHH B SIKOCTI BiNPABHOI TOYKH JUSI €KCIIEPHMEHTATIBHIX JJOCIIDKEHb. 3aIpOIIOHOBAHO HOBHH METOI IOCIII[PKEHHS, 3aCHOBAHHI Ha
METOJ BW3HAYCHHSA MEPEXOdy CHUCTEMH B KPUTUYHMKA DPEXHUM 1 IMITAIIfHOMY MOJETIOBAHHI ACHHXPOHHMX orepariil. Jlanuii meron
BIIPI3HAETECA Bif ICHYIOUMX POOOTOIO 3 Yepramu orepamiil 0e3mocepeHbO, IO JO03BOJIIE MPOTHO3YBaTH KPUTHYHI PEXUMH 3 METOIO
3MEHIIMTH iX HeraTwBHUK eekT. HacTymHa cepist eKCIIepHMEHTIB, O3BOJIMIA BHBUMTH 3JIEKHOCTI CIIOKMBAHHA HaM'SATi Bil KUIBKOCTI
3'€HaHp 1 IBUIKOCTI 3alUCy B KPUTUYHUX PEXUMaX. 3a pe3yibTaraMH JOCTIDKEHHS BCTAHOBJICHO, IO ICHYe TPH OCHOBHHX THrH. Lle
JIO3BOJIMJIO BCTAHOBHTH 3aKOHOMIPHOCTI BUHHWKHEHHS KPHTHYHHX PEXMMIB B iH(OpMAIIHUX cHCTeMax i iX BIUIMB Ha JOCTYIIHY IaM'SITh.
OtpumaHo (HOpMyITH, aIPOKCUMYIOU1 eKCIIEPUMEHTAITBHI JIaHi TPO 3aJICKHICTh 00CATY CIIOKHUBAHOI TAM'SITI BT KITBKOCTI 3'€/THAHD 1 IIBUIKOCTI
3armcy. Pe3ynbraTy TociimkeHHsI MOXKYTh OyTH BUKOPUCTaHi PH po3poOili iHhopMaLiifHIX CHCTEM i Ipy aHai3i 3001B B X po0oTi.
KorouoBi ciioBa: mmdpoBuii mianmc; aBTopu3alis; BEIMKHI PO3Mip 3aIHTY; YepTH Ollepaliil; MepexeBi 3aItiuTH; BepUdiKarlis;

DOI: 10.15276/aait.03.2020.3
YK 004.75

CHMKEHUE BPETHOI'O BO3JIENCTBUS KPUTHYECKUX PEXKUMOB B CPEJIE
OYEPEJIEM OIIEPALIMU JJIs1 ITPOTOKOJIOB ABTOPU3AIIUU BOJIBIIUX 3AITIPOCOB

Cepreii C. Cypkos

Opecckuif HAIMOHAIBHBIN MMOMTUTEXHUYECKUH yHUBepcuTeT. Onmecca, YKpanHa
ORCID: http://orcid.org/0000-0001-9224-7526

AHHOTAIMA

BaxHoii yacTpio Be0-0€30IaCHOCTH SBIAETCS COXPAaHEHHE LIEJOCTHOCTH MOJE3HOI Harpy3ku. [I3MeHeHHe NaHHBIX BO BpeMs
nepesadd MOXKET BO3HUKHYTH, €CJIM HE HCIOJb3yeTcs InMQpoBaHue, WIM JaHHBIE paclin(pOBBIBAIOTCS B Ipolecce nepenadn. B
HaIIMX MPEABIIYINX HCCIESOBAaHUSAX OBLI NMPEACTABICH «IOPIHOHHBIIN» METOM, KOTOPBIH CpaBHWIM C MeTOJOM «Oydepuzanus B
¢daim» u oKazamy, 4YTO OH COKpalaeT HoTpeOlieHHMe pecypcoB. B MHoromorouHoid cpeme st 3((EKTUBHOTO YIIPaBICHUS
pecypcamMu JKM3HEHHO BaKHO paclpeiieNaTh pabodylo Harpy3ky MEXAy sOpaMy Ipoleccopa. XOpOLIMM peLIeHHeM ULt
HCIOJIb30BAaHMS TPEUMYIIECTB MHOTOIIOTOYHOCTH SIBIISIFOTCS o4epenu omneparmit. OHAKO NPH NEPEeIoJHCHUH O4epeny oneparuit
CHCTEMa IIEPEXOAUT B KPUTHUCCKUH pexuM. [l HEro XapakTepHO yBEIMYEHHE MOTPEONCHUsS MaMsATH, YTO MOXET IPUBECTH K
HECTaOMIBHOCTH CHCTEMBI. B XoJie McciieoBaHus ObUIH OIpeeieHbl OCHOBHBIC ITapaMeTphl, BIMSIOLINE Ha CKOPOCTh 00paboTKu
JIaHHBIX, @ He3HaYNTeIbHbIe OBUTH UCKIIIOYEHBI M3 pacyera. Panee ObIT pa3paboTaH METO OIIpE/IeNICHNs YCIOBHI Mepexoa CHCTEMEI
B KPUTHYECKHH PEXHM, KOTOPBHIH OBUI MCHOJNB30BaH B KauyecTBE OTIPABHOM TOYKH I DKCIEPHMEHTAJBHBIX HCCIIEIOBaHMIL.
[pemtoskeH HOBBIH METOJ HCCIEIOBAHMS, OCHOBAHHBIH Ha METOJE OIpEICNICHUs IMepexofa CHCTEMBl B KPHUTHUECKUH PEXHUM H
MMHTALOHHOM MOJIEJIMPOBAHHH ACHHXPOHHBIX orepanuii. JlaHHBI METOJ OTJIMYaeTcs OT CYHIECTBYIOIIMX paboTol ¢ odepensimMu
orneparuii HemoCPEACTBEHHO, YTO MO3BOJISIET MPOTHO3UPOBATh KPUTHYECKHE PEXKUMBI C LIETbI0 YMEHBIIUTh UX HETaTUBHBII 3(deKT.
Crienytomiasi cepus SKCIEPUMEHTOB, ITTO3BOJMIIA M3YYUTh 3aBUCHMOCTH HOTPEOICHUS MaMATH OT KOJMYECTBA COCIHHEHHH U
CKOPOCTH 3alMCH B KPHUTHYECKHUX pekuMax. 110 pe3ynpraTaM HCCIEOBaHHS YCTAHOBICHO, YTO CYLIECTBYET TPH OCHOBHBIX THIIA.
DTO MO3BOJIMJIO YCTAHOBUTH 3aKOHOMEPHOCTH BO3HHKHOBEHHUSI KPUTHUECKHX PEKMMOB B HHPOPMAIIMOHHBIX CUCTEMAaX U UX BIMSHUE
Ha JIOCTYNHYIO HaMsaTb. [loyydeHsl (OpMyIBI, ammpOKCUMHUPYIOMINE SKCHEPHMEHTAJbHBIE JAHHBIE O 3aBUCUMOCTH O0BeMa
MOTpeOIsieMOl TaMsTH OT KOJIMYECTBA COSMHEHNH ¥ CKOPOCTH 3aIicH. Pe3ynbTaTsl HCCIen0BaHus MOTYT OBITh UCTIOIB30BAHBI IPH
pa3paboTke HHGOPMAMOHHBIX CHCTEM U IIPH aHaiH3e cOOeB B MX padorTe.

KoroueBbie ciioBa: 1udpoBasi MOJNMUCH, aBTOPHU3aLKs; OONBIIONW pa3Mep 3amprioca; O4epean OIepalyii; CeTeBbIe 3alpoChl;
BepupuKanus

ABOUT THE AUTHOR
Sergii S. Surkov — PhD Student of Computer Intellectual Systems and Networks
A Department, Odessa National Polytechnic University, Odessa, Ukraine
= k1xOr@ukr.net
-y Cepriii C. CypkoB — acmipant kad). KOMIT IOTEPHUX IHTEIEKTYATbHUX CUCTEM i MEPEK,
- OpechKuii HalliOHANBHUH NOMiTeXHIYHUH yHIBepcuTeT Oneca, Ykpaina
@“ Cepreii C. CypkoB — acnupanT kad. KOMIBIOTEPHBIX HHTEJIEKTYAIBHBIX CHCTEM M

cerelt, Omecckuii HAITMOHATBHBII MOMMTEXHIUECKHI YHUBepcHuTeT, Onecca, YkpanHa

Received 08.08.2020
Received after revision 14.09.2020
Accepted 21.09.2020

ISSN 2617-4316 (Print) 153
ISSN 2663-7723 (Online)

