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Abstract 

A mathematical model is developed for a grinding temperature cycle, invariant to the 
machining material properties and grinding modes with the managed dimensionless 
parameters of forced cooling, taking into account the heat exchange and grinding fluid 
temperature. The influence of these parameters on the dimensionless and dimensional 
grinding temperature is investigated. A grinding temperature cycle mathematical model 
includes the heating and cooling stages with and without grinding fluid application. The 
influence of the grinding fluid temperature and the heat transfer coefficient on the 
grinding temperature is established. Comparative studies of one- and two-dimensional 
solutions of the heat conduction differential equation that take into account the forced 
cooling during grinding have been carried out. The difference in the results of 
calculating the dimensionless temperature by the solutions of one- and two-dimensional 
mathematical models does not exceed 4.5–10.6%. The comparison of the two models is 
performed for the Peclet number with the value of more than 4 which just takes place in 
contemporary profile grinding. 

The obtained one-dimensional mathematical model with two equations (4) and (5) was 
compared with a similar two-dimensional model with equation (2) analyzed above 
which contains one equation both for heating and cooling stages. The equation (2) is 
obtained under the boundary conditions of the third kind, but with a number of 
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assumptions that allow us to take into account the non-homogeneous (discontinuous) 
boundary conditions of the real problem [19]. Thus, a one-dimensional mathematical 
model containing two equations (4) and (5) differs only in the absence of a coordinate 
Z in the direction of which the strip heat source moves at a velocityV . 

Comparative studies of one- and two-dimensional mathematical models according to 
equations (4) and (5), on the one hand, and equation (2), on the other hand, were 
performed with the following input data: a = 5·10-6 m2/s; l= 25.54 W/m·°C; αh = 36000 
W/m2·°C; V =3 m/min (0.05 m/s); Hh =1 mm (half width of the contact); 
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1.41/5 = 0.282). The dimensionless coordinate along the depth of the surface layer in 
equation (2) was taken equal to X =0, X =1, X =3 (Fig. 3). It is seen that the temperature 
fields for the one- and two-dimensional models are similar in heating and cooling 
stages. At the heating stage ( +1 -1HZ / H³ ³ ), as the magnitude X increases the 
dimensionless temperature Qdecreases. In the area of stable cooling, i.e. in the interval 
of -4 -5HZ / H³ ³ , on the contrary, as the magnitude X increases the dimensionless 
temperatureQ increases. However, according to a one-dimensional solution (interrupted 
lines in Fig. 3), the temperature at the cooling stage throughout the investigated 
range X is lower (intermittent lines are below the level of the corresponding continuous 
lines). 

Taking into account that during grinding the most dangerous are high temperatures in 
the range of -0.5 -1.5HZ / H³ ³  (the trailing edge of the source), we can conclude that the 
results of the grinding temperature calculation are closely related, to wit: in the interval 
of the argument -0.5 -1.5HZ / H³ ³  the difference in the calculation results does not exceed 
4.5-10.6%. It is known that for an overwhelming number of grinding schemes, the 
change interval for the Peclet number HH is 20 4HH³ ³  [22] and even HH ³  20 [24]. 
Moreover, the difference between the one-dimensional and two-dimensional models 
increases as the value HH approaches the lower value of this interval, i.e. at HH = 4 [22]. 
Thus, the comparison of two solutions in an unfavorable situation, e.g. at HH H= = 5 is 
methodologically justified since in the interval of HH ³ 5 the difference in the 
calculations will be less than indicated. 

The trend of contemporary grinding technology is the transition to high [10] and 
super-high [24] speeds. Consequently, the lawfulness of using a one-dimensional 
solution increases and the difference in the results of the grinding temperature 
determination decreases in terms of one- and two-dimensional solutions. 
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