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Mathematical modeling of critical phenomena in multicomponent solid solutions of
semiconductors was carried out on the basis of the theory of phase transitions and the theory of
catastrophes. A mathematical method is proposed for calculating the spaces of coexistence of
phases in solid solutions of semiconductors of Il — VI groups of the periodic system. An
algorithm for calculating the zero contours of the free energy function of the system, critical
spaces and spaces of phase coexistence is presented. For calculating spaces of coexistence of
phases of order two in ternary solid solutions based on semiconductors of II — VI groups of the
periodic system the differential topological approach was used. The calculations were carried
out in the framework of the regular solution model. Interactions both of the first and the second
nearest neighbor pairs of atoms and also the temperature dependence of the interaction
parameter were considered additionally. Modern methods of computer simulation are used for
analyzing processes of occurrence of self-organizations ordered structures. Multicomponent
phase diagrams, taking into account the possibility of existence of bifurcation spaces and
critical spaces and spaces of coexistence of phases of different orders were obtained. The
positions of the spaces of coexistence of second-order phases for the Zn-Cd-Te system are
calculated using the mathematical method proposed in this work. Multicomponent phase
diagrams have been obtained, taking into account the possibility of the existence of bifurcation
spaces, critical spaces and spaces of coexistence of phases of different orders, makes it possible
to predict the processes of loss of stability in three-component semiconductor solutions based
on compounds Il - V and groups of the periodic system with different modes of their synthesis
and operation.

Keywords: Computer simulation, phase diagrams, solid solutions, alloys, semiconducting 11—
VI materials.

Introduction

The development of modern methods of computer modeling led to the possibility of
predicting the properties of multicomponent semiconductor materials. One of the promising areas
is the mathematical modeling of processes leading to degradation of the properties of
semiconductor compounds. Some progress has been made in this area; however, some directions
in the modeling of processes in semiconductors remain poorly studied. In particular, there are
practically no papers related to the modeling of spaces in which two or more phases can coexist
simultaneously in solid solutions of semiconductors. This circumstance is a significant omission,

since in many solid solutions, for example, obtained on the basis of A,B, semiconductor

compounds [1-5], metastable states associated with the formation of phases of coexistence spaces
are observed. The problem of creating and investigating A,B, materials, which has optimal

properties for tasks of electronics, is increasingly important today. Moreover crystal properties
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play the most important part for characteristic of created devices. The researches of A,B,

multicomponent materials received have shown that homogeneous solid solutions of
semiconductors occur unstable. This leads to spinodal ordering and forming periodical structures
with modulated composition. The loss of thermodynamic stability with respect to composition
fluctuations, which is possible in a multicomponent solid phase, can lead to the appearance of
metastable or unstable states of multicomponent solid solutions. The appearance of critical
phenomena in unstable solid phases leads to the degradation of the properties of optoelectronic
devices. However, the problem of predicting the possibility of appearing spaces of the coexistence
of fazes in A,B; solid solutions was studied not enough. In this paper, a thermodynamic model is

considered in which the temperature dependences of the interaction parameter between the atoms
of the first two coordination spheres are taken into account. One of the promising solid solutions
based on A,B; is zn,Cd, ,Te. On the basis of the model considered and using a differential

topological approach, a spaces of coexistence of phases of order two for the Zn-Cd-Te system is
obtained.

Main part

Modern computer models describe the properties of semiconductor compounds based on
A,B, quite correctly. In [6] within the framework of the polyassociative model, a satisfactory

description of the phase diagram was obtained and the thermodynamic functions of the
dissociation of complexes in the Cd-Hg-Te system were found. A good agreement with the
experimental data was obtained in the modeling of phase equilibrium for the Zn-Cd-Te system in
[7]. Attempts are made [8, 9] to construct models for explaining intrinsic ferromagnetism in
Zn, Cr,Te. The first steps have been taken to model the appearance of an additional geometric

phase in semiconductor systems with a strong spin-orbit coupling [10, 11]. The static model of
the formation of an exciton condensed phase with allowance of the nonequilibrium effects in a
two-dimensional system is presented in [12, 13]. Modeling based on the variational approach
makes it possible to study the influence of the magnetic field on the energy of the ground state of
exciton-donor complexes [14]. Mixing models for studying the effective dielectric permittivity of
alloys was considered in [15]. A model was proposed [16] that allows one to explain the
characteristic features of the photoluminescence spectra of single quantum dots of
CdMnSe/ZnSe. A model is obtained for studying the process of self-assembly of tetrahedral cells
in alloys [17]. Attempts were made to construct models for explaining ferromagnetism in ZnMnO
on the basis of assumptions about its intrinsic nature [18] or as a consequence of some metastable
phase [19]. A model is known [20] that quantitatively describes the processes of passivity of
defects in a polycrystalline CdTe:Cl. The article [21] describes a model based on a completely
microscopic theory, which allows one to demonstrate the effect of high-order optical
nonlinearities in the coherent control signal for ZnSe. The [22] proposed a model that allows one
to explain of laser shock waves impact on a defect system in narrow-gap HgCdTe alloys.
Modelling proposed in the article [23] provides calculations of internal tensions in the ZnBeSe
alloys. A model has been developed [24] that makes it possible to describe the
photoluminescence spectra of localized excitons of CdS, ,Se,S with a hexagonal structure and
alloys in which regions with a hexagonal structure and a structure with stacking faults coexist.
Work continues on improving the models that explain the mechanism of the transition from 2D to
3D growth in the CdSe / ZnSe system [25]. There are contradictory models on the basis of which
attempts are made to describe the growth of ZnO films on GaAs substrates by pulsed laser
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deposition [26 — 30]. Model representations [31] make it possible to better understand the
photoluminescence spectra of an (Cd,Mn)Te in the presence of a spin-polarized two-dimensional
hole gas and can now be useful in elucidating certain properties of the magnetic phase in a
quantum well.

Thermodynamic modeling of critical phenomena in solid solutions of A,B;

semiconductors. Simulation of the process of formation of critical spaces and spaces of
coexistence of phases in multicomponent and multiphase systems may be carried out on the basis
of a differential topological approach [32, 33, 37 — 42]. According to Maxwell's principle, the
space of coexistence of phases arises when two (or more) global minima of potential functions of
system have the same depth. The appearance of such a space corresponds to the classical phase
transition of the first kind. At some points in this space, the existing phase may become unstable,
creating a bifurcation subspace. Two phases in some space may be identical under certain
conditions, creating a critical space of the second order. When there is three or four identical
phases having critical spaces of third order or fourth respectively.

Modeling of critical phenomena for 4,B, we will show on an example of Zn-Cd-Te system

that is of great interest as a buffer material in the formation of heterostructures strictly matched
for a period of crystal lattices for infrared devices and X-ray sensors To obtain a thermodynamic
model to predict of the ordering in a triple system, it is necessary to construct an expression for
the free energy of the system as a potential function dependent on the system parameters. In the
framework of this paper, the expression for the free energy of a Zn,Cd, ,Te solid solution was

constructed as a function of the component concentrations and temperature of the system
F=F(X4zX4c, T), where X,z and X ¢ are understood to mean the concentration of atomic pairs
Zn—Te and Cd —Te in a quasi-binary approximation. To analyze the existence of a stable phase
need conditions [32] under which the first derivative of the free energy of the system by the
concentrations of the corresponding components x will be equal to zero, and the second
derivative will have positive values:

dF _

d?F
P - >
dx

0;
dx?

0. (1)

The space of instability that is bifurcation space is calculated on the conditions of zero first
and second derivatives, and the positive value of the third derivative:

dF _d*F __  d°F

_— : >0. 2
dx  dx? dx® @)

The condition for the existence of a critical space of the second order is the correspondence
with the zero values of the first, second and third derivatives simultaneously and the positive
value of the fourth derivative:

OF_d'F_dF_ (. 0'F

>0, 3
dx dx®> dx® dx* ®)

In formulas (1-3) there are complete derivatives, which in the case of Zn,Cd, ,Te alloy

means differentiation by X,z and X .
Thus, for calculating the positions of the boundaries of phase stability, it is necessary to
construct an analytical expression for free energy. The application of the above mathematical
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procedures will allow analytically obtain the position of the boundaries of the critical spaces of
the required order. At the same time, the expressions (2) correspond to the spinodal curves
indicating the thermodynamic position of a completely unstable state of the phase. To calculate
the positions of the boundaries of the metastable states (binodals of decay), it is necessary to
compare the expressions (1) that need to be written for each of the coexisting phases.

Thermodynamic modeling of free energy of a solid phase of Zn—Cd —Te system. The
free energy of the triple zinc system can be looked at as the sum of free energy contributions for
pure binary solids components, i.e., zinc and cadmium systems, the free energy of the ideal
mixture, without taking into account the interaction between the components and the component
taking into account the deviation of the value of the free energy from the energy of the ideal
solution [34, 35]:

2 .
F=Y R +F+aF”, @

i=1

where F, is the free energy for pure binary components with F,, ;. and F., ;. constituents;
F' s the free energy of the ideal mixture without taking into account the interaction between

the components; AF* — deviation of the value of free energy from the energy of the ideal
solution. The Bethe grid, taking into account the interaction of the first and second nearest
adjacent atoms, is depicted in Fig. 1. For convenience, different types of atoms, i.e. atomTe, Zn,
and Cd , are indicated by the numbers 1, 2 and 3, respectively. Mark 2, 3 denotes the location of
an atom of type 2 or 3.

Fig. 1. Bethe grid for a triple Zn, Cd, , Te solid solution. The number 1 denotes the atomTe, 2 is
the atom Zn , and 3 is the atom Cd

Then, taking into account the interactions of the atoms of the first and second coordination
spheres, the components of free energy for pure binary constituents can be represented as:

z
I:12 = {le + 2_2(W121 +W;2 )} J (5)

1
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z
Fy= {Wm + 2_2(W131 + Wy, )} , (6)
1
where w,, is the binding energy between atoms Te and Zn, provided that they are the first
closest neighbors. Accordingly, w,; denotes the binding energy between the nearest adjacent
atoms of Te andCd . The denotations w’ and w., in (5) and (6) correspond to the binding

energy between the second nearest neighboring atoms of Te on the condition that atom of Zn or
atom of Cd is located between them respectively. Accordingly, w;, and wi, is the binding

energies between the second nearest neighboring atoms of Zn and atoms of Cd on the condition
that the Te atom is between them. Constants z; and z, in (5) and (6) are respectively the number
of nearest neighboring atoms for each of the atoms (z;=4) and second nearest neighboring atoms
(z=12) in a zinc grid. It should be noted quite complicated problems associated with the
calculation of energy connections, but in the process of obtaining derivatives, already at the stage
of finding the second derivative, in connection with the linearity of expressions (5) and (6) this
part of the expression (2) is completely degenerate and does not affect the verification of
conditions (2) — (3).

The free energy for a mixture of ideal components of a solution, that is, the second term in
(4) can be found by the classical expression:

Fid =_Tsid ’

where S is the entropy of an ideal solution, in which the atoms are randomly located. The
value of the configurationally entropy S' can be expressed in terms of the total number of
atoms in the solution N, and the concentration parameter x:

S =—R-((1-x)Inx+ xInx), (7)

where R - gas constant. Taking into account the connection of the concentration parameter x with
the number of pairs of atoms N,, and N, :

X=N, /N,
1-x=Ny /N,

and the number of pairs of atoms with corresponding moles of X,, and X, :

N12 = ZlNOXlZ
Nl3 = ZlNOXl3

the expression (7) can be represented as:

S :_ZlR'(Xlzlnxlz+x13|nx13)- (8

The formula (8) is most convenient for differentiation.
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The deviation of the value of the free energy from the energy of the ideal solution is
expressed by the difference between the configuration entropy and the entropy of the ideal
solution, the temperature and the mixing energy:

F*=-T(S -S")+4E. 9)

According to the theory of simple solutions, the mixing energy AE can be expressed
through the interaction parameter and mole fractions of the solution components in the form:

where a,, ,, — interaction parameter. In the approximationS = S' , the expression (4) taking into
account (9) takes the form:

2
F=) F-TS“+4E. (10)

i=1

Note that for the analysis of higher derivatives in terms of composition concentrations starting
from the second one, in the framework of the regular approximation it suffices to consider only
two last terms in (10):

~TS"™ + AE = z,TR(X,,InX, + X ,InX , )+

The interaction parameter o, ,, within the framework of work was considered as a function of
temperature T [37]:

Ghregnreca = (17230—14,83T) J/Mole.

Prediction of critical phenomena in ternary system Zn—Cd —Te. In order to analyze
the probability of occurrence of critical spaces and spaces of coexistence of phases in the
system Zn —Cd —Te, the analytical expressions of higher derivatives according to the order
parameters X, for the free energy of the system were obtained and investigated. Derivatives by

concentrations from the first to fourth inclusive for the free energy (4) of the solid solution
Zn,Cd, ,Te were calculated using the methods of matrix-vector differentiation of
multidimensional systems. To obtain matrices of higher derivatives, the method of direct sums
[34] was used. The algorithm for calculating the higher derivatives of free energy consisted of
successive calculations of components of derivatives by corresponding concentrations,
compilation of matrices from components of derivatives, calculation of their determinants and
calculation of positions of zero contours. As a result of calculating the first derivative of free

energy (4), components of the derivative F, (i = 1, 2) of the function of two variables was
obtained as two partial derivatives by X,, and X, :
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where F, and F, are partial derivatives of free energy by X, and X,;, respectively. The

obtained analytical expressions were used to calculate the components of the second derivative of
the free energy of the investigated system:

F. F
F :(F“ F”] , (12)
21 22

where the element of the matrix F; is the analytic expression of the partial derivative of F, by
X, concentration, F, is the corresponding derivative of F, by X, ; concentration, F,, is the
derivative of F, by X,, concentrations and F,, is the derivative of F, by X,,. The analytical

expression of the determinant of the second derivative was obtained for the components of the
matrix (11) and its value was calculated according to the concentration parameter x with the
given step forx €(0;1). The values found were used to obtain the null contours of the second
derivative and to analyze the stable phases of the Zn—Cd —Te system in accordance with (1). To

obtain the highest free energy derivatives, the Maxima system’s calculation tools were used [43].
The results of calculations are shown in Fig. 2.

m_.
.2
3001 a f_ = ]
dx~
=]
e -+
g MO
100
0 0.2 0.4 0.6 0.8 1

ZnTe, Mol. part

Fig. 2. The cross section of the existence of solid solutions phase diagram of Zn—Cd —Te
system. The results of numerical calculations of the zero contour of the second derivative of the
free energy of the system are shown

The points satisfying the condition detF, =0 were reflected on the cross section for the

existence of solid solutions of the state diagram of the Zn—Cd —Te system. After that, areas
were determined in which the values of the respective determinants were positive or negative. In
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the next step, each of the elements F; of the matrix (1.3.2) differentiated by concentrations X; .

As a result of the differentiation, two matrices of partial derivatives were obtained. The first of
them consisted of the components of the F; obtained by differentiation by X, , the second one

from the components obtained by differentiation in X, :

Fijl :( Flll FlZlJ , Fij2 :( I:112 FlZZj . (12)
Fle F221 F212 F222

The expression for the determinant of the third derivative was obtained on the basis of the direct
sum method as the sum of the determinants of the matrices (12):

DetF;, = DetF;, + DetF;, . (13)

The calculations of the values of the determinants (13) were used to calculate the instability
spaces, that is, the bifurcation spaces under the conditions (2). The results of calculations of zero
contour are shown in Fig. 3.

4007
drF
=0
dx’
100+
[
L -1
;M0
100+
0 0.2 0.4 0.6 0.8 1

X
ZnTe, Mol. part

Fig. 3. The cross section of the existence of solid solutions phase diagram of zn—-Cd —Te system.
The results of numerical calculations of the zero contour of the third derivative of the free energy
of the system are shown

To obtain the analytical expression of the determinant of the fourth derivative of free
energy, the matrices of the partial derivatives of the components (12) were calculated:

F — ( Fllll FlleJ F — ( F1112 F1212 j F — ( FllZl FlZle
ij1 ijl2 = ij21 — !

Flel F2211 I:2112 F2212 F2121 F2221 (14)
[ F1122 F1222 j
F._ = .

= F2122 F2222
The determinant of the complete fourth derivative of free energy was obtained as the sum of the
determinants of the matrices (14):
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DetFijkI = DetFijll + DetFijlz+DetFijll + DetFij22

The results of the calculation of the zero contours of the complete fourth derivative of the free
energy of the system are shown in Fig. 4.

4007
300+
2
e -
£ 00
d 4}‘_
=0
dx
100+
1] 0.2 0.4 0.6 0.8 1

ZnTe, Mol part
Fig. 4. The cross section of the existence of solid solutions phase diagram of zn—Cd —Te system.
The results of numerical calculations of the zero contour of the fourth derivative of the free
energy of the system are shown

In order to verify the condition (3) and calculate the domains of the second-order critical
space were used the results of calculating the values of the determinants of the matrices (11), (12)
and (14), as well as the positions of the zero contours depicted on Fig.2. - 4. The region in which
the most probable occurrence of critical spaces of the second order is shown in Fig. 5:

400+
3001
o i
=]
00+

0 0z 04 06 08 1
X
ZnTe, Mol. part
Fig. 5. The cross section of the existence of solid solutions phase diagram of zn—-Cd —Te system.
The results of numerical calculations of the region of the conditions for forming the spaces of
coexistence of phases of order two are shown (the region found is indicated by the mark I1)

19



G.V. Shapovalov, A.l. Kazakov, P.P. Moskvin, D.O. Khomutenko, V.M. Petriv

Conclusion

Within the framework of thermodynamic modelling, the zero contours of the free energy
derivatives from the first to the fourth inclusive was calculated and plotted for the Zn,Cd, ,Te

solid solution on the diagrams of the state of the Zn—Cd —Te system. The space in which the
simultaneous occurrence of two kinds of solid phases is most probable was found for the
Zn—Cd —Te system. The results are obtained for temperatures in the range from 100 to 400
degrees Celsius. From the results of the calculations, it follows that the most probable region of
the concentration space in which space of coexistence of phases of the order of two can form
corresponds to concentrations in the range of 0.25 — 0.75 at temperatures of the 210-290 degrees
Celsius. The data obtained during the simulation are important from a practical point of view,
since they are related to the difficulties in the synthesis of Zn,Cd, ,Te layers and allow the
development of recommendations for the process of their growing under different conditions. The
study of the obtained positions of the zero contours of higher derivatives of free energy in the
framework of the considered model opens the possibility of estimating the occurrence of periodic
oscillations of the composition. The proposed model allows us to analyze the processes of
formation of concentration domains in the volume of material while providing the necessary
conditions for the synthesis of Zn,Cd, ,Te solid solutions.

The results obtained in this paper open up the possibility of studying the possibility of the
emergence in a solid solution of spaces of coexistence of phases of higher orders [40, 41], when
three or more simultaneously coexisting spaces may arise in the solid phase.
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MareMaTHueckoe MOJEIHPOBAHNE KPUTHUECKUX SIBICHUII B MHOTOKOMIIOHEHTHBIX TBEPIBIX
pacTBOpax HOJYNPOBOJHUKOB OBUIO IPOBEAEHO HAa OCHOBE TEOPHH (Pa30BBIX HEPEXOIOB U
Teopun Karactpod. B pabore pazpaboTaH MeTOJ MaTreMaTHYECKOr0 MOZEIMPOBAHUS IS
BBIYHCIICHUS TPOCTPAHCTB COCYIIECTBOBaHUS (a3 BTOPOTrO MOpSAIKa B TPOWHBIX TBEPHBIX
pacTBopax Ha ocHoBe coeauHeHuil II - V rpynn nepuopuueckoit cuctemsl. IIpencrasien
AITOPUTM pacyeTa HyJIEBBIX KOHTYpPOB (PyHKIMHM CBOOOTHOW YHEPTHH CHCTEMBI, KPUTHUECKUX
MIPOCTPAHCTB M MPOCTPAHCTB COCYIIecTBOBaHMA (ha3. HyneBrie KOHTYpHI (GyHKINH CBOOOIHOM
SHEPTHH CHCTEMBl HAXOJWIHNCh C HCIIONB30BaHWEM IH(depeHnnaIbHO-TOIO0IOTHIECKOTO
M0JIX0/1a. BBIUUCIIEHUS TONOXXKEHUI MPOCTPAHCTB COCYIIECTBOBaHMSA (a3 TPOBOAMINCH B
pamMKax IpUOIIHKEHUS PEryIIPHOTO PacTBOPa C MOMOIIBI0 CBOOOTHOTO MaKeTa KOMIBIOTEPHON
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G.V. Shapovalov, A.l. Kazakov, P.P. Moskvin, D.O. Khomutenko, V.M. Petriv

anreOpbl Maxima. MaTemMaTrueckoe MOJESIUPOBAHHE IMPOCTPAHCTB COCYIIECTBOBaHUA (a3
OBLTM BBITTOJIHEHBI B TMIPHOIMKEHUAX B3aUMOJICHCTBHUS KaK IMEPBOM, TaK U BTOPOH OJIMKAHIIINX
COCEIHMX Tap aTOMOB, a TAaKXKe TEMIIEpaTypHOH 3aBHCHMOCTH IapaMeTpa B3auMOJICHCTBUS.
Jis aHanm3a TIPOIECCOB BO3HMKHOBEHHS CAMOOPTAHM30BAHHO YIHOPSIIOYEHHBIX CTPYKTYpP
WCIIONB3YIOTCS COBPEMEHHBIE METONBl KOMITBIOTEPHOTO MOJCIHpPOBaHWA. PaccunTaHbl
MOJIOXKCHUSI IPOCTPAHCTB  COCYIIECTBOBAaHUS (a3 BTOPOTO TOpPSOKA [UII  CHCTEMEI
MOJIYIIPOBOJJHUKOB C HCIOJIb30BAHUEM IIPEUIOKEHOr0 B paboTe MaTeMaTH4ecKoro MeToja.
[lomydeHO  MHOTOKOMIIOHEHTHBIE  ()a30Bble  JUarpaMMBl C  Y4€TOM  BO3MOXKHOCTH
CyIIeCTBOBaHMs OM(YPKAIMOHHBIX MPOCTPAHCTB, KPUTHYCCKUX MPOCTPAHCTB M MPOCTPAHCTB
COCYIIECTBOBaHUS (a3 pa3IMUHBIX MOPSJIKOB, Aa€T BO3MOXHOCThH IIPOIHO3MPOBATH MPOLIECCHI
MOTEPI0 CTAOMJIBHOCTH B TPEXKOMIIOHEHTHBIX IOJNYNPOBOJIHUKOBBIX PACTBOPAaX HAa OCHOBE
coequneHuit 11 - V u rpymnn nepruouuecKoi CUCTEMBI C Pa3IHYHBIMU PEKUMaMHU UX CHHTE3a U
SKCIUTyaTaIuH.

KiaoueBble ciaoBa: MaTeMaTHYeCKOE MOJCIHPOBaHUE, (ha30BBIC IHAarpaMMbl, TBEpIbIS
pactBopHI moytipoBoHUKOB || — VI rpymm.

MATEMATHUYHE MOJEJIOBAHHS KPUTUYHUX ABUIL Y TBEPJIOMY
PO3YMHI HAIIIBITPOBITHUKIB CITIOJIYK A,B;

I'.B. LHaHOBa.HOBl, AllL Ka3a1<0131, I1.IT. MOCKBiHZ, J1.0. XOMyTeHKOZ, B.M. l'IeTpiB2
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MaremaTinuHe MOJENIOBAHHS KPHUTHYHHUX SBHUIL y 0araTOKOMIIOHCHTHHX TBEPIUX PO3UMHAX
HAITiBIIPOBITHUKIB OYJI0 MPOBEACHO HAa OCHOBI TeOPil (pa30BHX MEpPEXOiB 1 Teopii KaTacTpod.
B poGoti po3pobiaeHo MeTo] MaTeMaTHYHOrO MOJENIOBAHHS Ul OOYHCIIEHHS HPOCTOPIB
criBicHyBaHHs (a3 Jpyroro HOpsAKy y MOTPIHHUX TBEpAMX PO3YMHAX Ha OCHOBI crosyk 11 —
VI rpyn nepiogu4soi cucremu. HajaHo anroputM oOUUCICHHS HYJIBOBHX KOHTYpPIB (DyHKIIT
BUIBHOI eHeprii CUCTeMM, KPUTHYHHUX MPOCTOPIB 1 mpocTopiB criBicHyBaHHs ¢a3. Hynbosi
KOHTYpd GYHKIII  BUIBHOI  €Heprii CHUCTEeMH 3HaXOIWJIHCh 33  BHKOPHUCTaHHSIM
JudepeHIiatbHO-TONONOTIYHOTO Mixoxy. OOYKCIEeHHS T0JI0KEHb MPOCTOPIB CIIBICHYBaHHS
(a3 MpOBOAMIIMCH Yy paMKax HAaOJIMKEHHS PEryJSIPHOTO PO3YMHY 3a JOMOMOTOI0 BUIBHOTO
NakeTy KOMIT'IOTepHOi anreOpum Maxima. Matemarnyne MOJICIIIOBaHHS  TIPOCTOPIB
chiBicHyBaHHA (a3 OyJI0 BHKOHAaHO Yy HAaOJNWKECHHSIX B3a€MOJl SIK IEPINOi, TakK i APYroi
HaOMIKYMX CYCIOHIX Tap aTroMiB, a TaKoXX TEMIIEPaTypHOi 3aJIeXKHICTh MapameTpa
B3aemonii. [yt aHai3y MporeciB BUHUKHEHHSI CaMOOPTaHi30BaHO BIOPSAAKOBAaHUX CTPYKTYD
BUKOPHCTOBYIOTHCS Cy4acHI METOAN KOMIT'IOTEPHOTO MOAENOBaHHA. OOUYHCIICHO MOJI0KEHHS
NpOCTOpiB cHiBicHyBaHHS (a3 ApPyroro MOpsSAKY JUIs CHCTEMH HaIliBIOPOBIJHUKIB 3
BUKOPDHCTaHHSIM  3allpOIIOHOBAHOTO B po0OTI MaremaruuHoro wmerony. Orpumano
0araToKOMITOHEHTHI (a30Bi Jiarpamu 3 ypaxyBaHHSM MOKIJIMBOCTI iCHYBaHHs OidypKaiiiHux
MPOCTOPIB, KPUTHIHHUX IPOCTOPIB Ta MPOCTOPIB CHiBICHYBaHHS (a3 Pi3HUX MOPSAKIB, IO
HaJla€ 3MOTy TIPOTHO3YBaTH TIPOIECH BTpAaTy CTAaOUIBHOCTI Yy TPHOXKOMIOHEHTHHX
HalliBIPOBITHUKOBUX pO3YMHaxX Ha ocHoBi cnonyk Il — VI rpym mepioamdnoi cucremu 3a
PI3HUMH peXUMaMH IX CHHTE3y Ta eKCIUTyaTallii.

KarouoBi cmoBa: wmarematnyHe MopentoBaHHs, (as3oBi JiarpamMu, TBEpAl PO3YHHHU
HaniBnposigHukiB 11 — VI rpym.
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