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Abstract. In this paper it is considered and generalized hypothesis about existence of 3 classes of pro-

cesses: physical, mental and mathematical. It is shown that in all nonlinear dynamical systems the key factor 

in determining their quantitative and qualitative characteristics is the information about fixed points of dy-

namical systems and their orbit properties.  
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Introduction 

Systems of physical, mental, and mathematical 

spaces contain numerous complicated processes of 

effective management that represent the necessary 

condition for the successful evolutionary develop-

ment of human society. It is known that the creation 

of effective control methods in all known forms is 

possible upon the condition that information on the 

laws of evolutionary development does exist and 

available [11, 13]. The existence of information is a 

necessary, but insufficient requirement for its use. 

There is need for technology of obtaining, analyzing 

and processing information. The combination of 

such methods is developed on the basis of modern 

information technologies. The accumulation, pro-

cessing and analysis of information, as a rule, is a 

stochastic nature of the laws of its processing and 

application [14]. One of the most common for-

mation, processing and analysis systems is self-

organized nonlinear dynamic systems. Research of 

such systems is one of the mathematical methods of 

obtaining and further application in information 

technologies, which is currently actively developing 

in all known directions of modern science. Modeling 

of stochastic processes based on the theory of dy-

namic systems is currently a prerequisite for the 

development of information technology [15, 16]. 

Simulation of stochastic processes is an im-

portant direction in mathematics, which is also used 

in such fields as dynamical systems simulation, 

functional analysis, function theory, cryptography, 

etc. Relevant processes are used to generate numeric 

sequences. The resulting sequences are widely used 

in various example tasks such as, for example, the 

theory of machine learning for the learning and test 

sequences [1], and others.  

Various methods for generating numerical se-

quences are based on chaotic nonlinear processes. 

Currently there is no precise and constructive axio-

matic meaning of the notion of chance. Computer 

generators of numerical sequences are deterministic, 

respectively, modeling a pseudo-random variable 

with a definite degree of approximation to random-

ness by a given order distribution. Thus, the genera-

tors of pseudorandom numbers are a way to deter-

mine the formal concept of cascade, which is im-

portant and necessary in modern probability theory, 

the theory of random processes, and others. The 

problem of the pseudorandom sequence sequence 

(PRS) approaching the ideal [2] is set because the 

ideal random sequence is a mathematical model, 

which is a completely non-predicted, and therefore 

non-periodic, infinite posteriori, and, accordingly, 

does not allow to receive its representation in com-

puter systems. 

The notion of randomness finds its application 

in game theory in the definition of such a concept as 

"rational-flail behavior". Suppose there is a certain 

set of agents that interact with each other and each 

agent influences the results of others. Each agent has 

a set of arbitrary strategies to determine further ac-

tions. The question arises: "What set of separate 

strategies will be rational behavior of the entire 

group of agents?". It is proved that a set of strategies 

for individual agents will produce the best result if 

none of the agents can improve their results in the 

transition to another strategy by having information 

about the strategies of other participants. Intuitively, 

an arbitrary selection of optimal strategies by agents 

allows us to obtain a universal notion of rational 

behavior. However, the problem of true randomness 

and the non-resolution of the question of the formal 

definition of chance appears again. In the Kolmogo-

rov axiomatic, truly random sequences were left 

beyond the bounds of the theory, and only general 

approaches were proposed for the definition of ran-

domness, for example, von Mises' approach. 

However, although the exact definition of ran-

domness does not exist yet, the above-recognized 

application problems can be solved with the help of 

pseudo-packet variables representing values 

satisfying a certain set of requirements. An example © G. Vostrov, A. Khrinenko, 2018 

209



ISSN 2221-3805. Електротехнічні та комп’ютерні системи. 2019. № 30 (106) 

Моделювання динамічних систем 

of such a task is the Monte Carlo method, which 

raised the question whether or not it is really neces-

sary to use true chance or can it be replaced by an 

appropriate deterministic procedure for the solution? 

The theorem is proposed in [3], provided that any 

settlement problem is difficult to solve, randomness 

does not allow to improve algorithmic efficiency. 

Each probabilistic algorithm can be replaced by a 

deterministic algorithm with the same degree of 

efficiency. The key to the proof of this theorem is 

the construction of generators of pseudo-

randomness, forming sequences, not distinguishing 

from random sequences when used by their respec-

tive algorithms. The question arises whether it is 

possible to effectively form such sequences that 

would be close to random by means of deterministic 

methods. This problem can be solved both in terms 

of mathematics and in terms of computer science. 

The proof that the deterministic systems and struc-

tures satisfy the conditions of randomness is carried 

out by methods of the theory of numbers, algebras, 

and others. While computer methods begin with the 

definition of necessary properties and subsequent 

attempts to effectively form structures with specified 

properties. Such analytical and synthetic approaches 

are usually combined to improve the end result. 

In the case of PRS generators or dynamic sys-

tems, it is necessary to consider and analyze the 

properties of the iterative functions that determine 

the length of the iteration process period, which is 

one of the main properties of the generators, as well 

as the internal structure of the data of the iterative 

processes. At the same time, the power of the set of 

numbers on which the data are determined, iterative 

functions are given much less attention. In this mat-

ter, there is a direct connection with number theory. 

Prime numbers are of considerable interest because 

they are used in a wide range of applications. For 

example, in the RSA cryptosystem, in the first stage, 

there is a selection of primes that require verification 

to match the conditions of reliability of their theoret-

ic-numeric properties. 

In accordance with previous statements, the 

purpose of the work is to model nonlinear iterative 

processes, analyze them in accordance with the 

properties of functions, analyze the effects of fixed 

points and the internal structure of the cycles on the 

degree of randomness, as well as the set of primes 

using statistical and structural methods. 

1. Nonlinear dynamic systems and its itera-

tive processes 

To investigate and analyze previously stated 

problems this paper considers the processes ob-

served in a group of nonlinear maps that represents 

behavior of nonlinear dynamical systems. The fol-

lowing maps are considered: “Tent”, “Asymmetric 

tent”, “Sawtooth” map and multiplicative order map. 

Real functions RRf :  are considered. Then nf

denotes the nth iteration of the function f , i.e. nf is 

a n-fold composition of the function f  with itself. If 

Rx0  , then an orbit or a trajectory for 0x is some 

sequence that can be represented as 

 ),(,),(, 0
n

n010 xfxxfxx  . An important role 

is played by fixed points when considering dynam-

ical systems. An initial point 0x is defined as a fixed

point if 00 xxf )( . It is obvious that the fixed point

orbit represents a constant sequence ,,, 000 xxx . An 

analogue of a closed orbit for differential equations 

is determined by periodic fixed points. These are the 

points 0x for which 0nxxf 00
n  ,)( and, as well 

as closed orbits, periodic orbits repeat themselves: 

 01n0 xxx ,,  .Periodic orbits of period n are also 

called n-cycles (periods). 

The maps that were chosen for an investigation 

and analysis of iterative fixed point and inner struc-

ture of sequences, obtained on the basis on these 

maps have next representation: 
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Graphical representation for 
n

1t contains 1n2  tents 

with n12  width. The distance between adjacent n-

cycles is no more than n22  . For any compact subin-

terval [,]],[ 10ba   there exists a constant c(a, b) in-

dependent from n, so that the distance between adja-

cent n-cycles satisfies the condition 
-nn 2ceisd2с  tan . For the map (1) special atten-

tion is drawn to the fact that it shares many proper-

ties with the logistic map )()( x1x4xg   in the 

process of iterating. This special feature indicates 

their conjugation. If we assume that I and J represent 

some interactions for maps JJ:g I,I :f   then 

we can say that the maps f and g are conjugated if 

there is a homeomorphism JIh : , that h satisfies 

the conjugation equality hgfh   . Conjugation 

compares orbits f to orbits g. This follows from the 

fact that ))(())(( xhgxfh nn   for all Ix  such that h 

matches the nth point of the orbit for f from x to nth 
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point of the orbit g from h(x). In paper [4], it is 

proved that the “Tent” map is topologically linked to 

a logistic map. 

Transitioning from a formal model to a com-

puter calculation, the question whether the results 

obtained during the calculations can be considered a 

solution to the problem arises, since the computer 

system operates in calculations with computer num-

bers, while mathematics operates with numbers of 

infinite length and these circumstances lead to mis-

takes when working with fractional numbers. Under 

the computer numbers the set nQ is understood to 

mean numbers whose entries contain no more than n 

digits for the record of the whole and the fractional 

part of the number (this number can be large, but 

always limited). In this case, the set nQ is closed 

with respect to arithmetic operations. In the end, the 

aforementioned circumstance creates a problem of 

reliability and gives false conclusions about process-

es in dynamic systems due to the fact that one of the 

properties of any dynamic system is sensitivity to 

initial conditions [5]. In the computer calculation of 

the iterations of reflections, the results show that all 

orbits are eventually fixed to 0, which does not cor-

respond to reality and raises the question of the tran-

sition to an integer form. In order to reduce this cir-

cumstance to a minimum, the transition to integer 

maps presented in the following form is completed: 
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were p is prime number. It is important to note that 

the maps 4-6 are continuous functions, whereas the 

map 7 is defined only on the integer set. It is also 

worth noting that the map 
n

1t  is algebraically con-

gruent to the map 
n

4t  on the set of integers, that is, 

the lengths of the cycles for all prime numbers coin-

cide.  

It should also be noted that the transition to the 

integer form for given maps leads to the expansion 

of the values of the basic functions in the transition 

between prime numbers to infinity while dimension 

of prime number increases. Figure 1 shows the be-

havior of map 4 when using prime numbers of dif-

ferent dimensions, where np  - prime numbers and 

nfp  - corresponding fixed points. 

Fig. 1 – Representation of 1 iteration for map 4 and 

prime numbers 

Despite the simplicity of the above maps, their 

iteration cycles have the properties that support the 

above statements. According to them, the structure 

of iterative cycles is determined not only by the 

properties of the maps itself, but also by the proper-

ties of the numbers that are used and which have a 

significant influence on the structure and can signifi-

cantly change it. The presented nonlinear maps al-

low to divide the set of primes p into a system of 

classes based on the length of the iterative process 

for given primes [6]. We note that there is an infinite 

set of prime numbers for which the length of a peri-

od is substantially smaller than the dimension of a 

number. and the sequence obtained for this number 

forms a simple structure. The structure of this type is 

characteristic for the numbers belonging to the class 

of Fermat, Mersenne numbers and their various gen-

eralizations. At the same time, other prime numbers 

generate sequences for which the length of the peri-

od is commensurable with the dimensionality of the 

number and, accordingly, can show a greater degree 

of approximation to the randomness, but also have 

periodic components, as shown in figures 2 - 5. 

Fig. 2 – Sequence structure for p=160465519 and 

map 4 

Fig. 3 – Sequence structure for p=160465519 and 

map 5 
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Fig. 4 – Sequence structure for p=160465519 and 

map 6 

Fig. 5 – Sequence structure for p=160465519 and 

map 7 

At the same time, the sequences obtained on the 

basis of maps 4 and 7 demonstrate a better approxi-

mation to the uniform distribution law, which repre-

sents one of the requirements for pseudorandom 

sequences. 

However, considering the internal structure, it 

is necessary to introduce some similarity measure 

for the internal structures to conduct more complete 

analysis. For example, for given simple numbers in 

figures 6 - 9 it is presented an internal structure of 

the iterative processes for the maps, where the 

dashed line shows obtained sequences and the solid 

line shows the inner parts within the sequences that 

give the maximum value of similarity measure. 

Fig. 6 – Inner structure for map 4 

Fig. 7 – Inner structure for map 5 

Fig. 8 – Inner structure for map 6 

Fig. 9 – Inner structure for map 7 

As can be seen from these figures, the sequences 

obtained with the help of maps 4 and 7 for some 

subsequences give similarity measure values close to 

1, which indicate the effect of fixed points on the 

internal structure of the sequence, while map 7 

demonstrates the least measure for its subsequences. 

2. Methods of randomness measure estima-

tion 

There are several approaches to determining 

randomness and, accordingly, methods for evaluat-

ing the degree of randomness of a particular se-

quence. In [7], four algorithmic properties are dif-

fered for the description of randomness: frequency 

stability, chaotic behavior, typicality, nonpredictabil-

ity. Each of them presents its own algorithmic aspect 

of randomness, and each of them, with greater or 

lesser connotation, can claim mathematical defini-

tion of the concept of randomness. In this case, se-

quences are considered in binary format. According 

to the definition of von Mises, the sequences are 

divided into 2 groups: random and non-random. 

From a mathematical point of view, random se-

quences form a plurality of complete measure and 

all without exception satisfy all the laws of probabil-

ity theory. In this approach, the sequence is consid-

ered to be random, if the stability of the frequencies 

0 and 1 is observed both in the sequence itself and in 

any “correctly” chosen part thereof. According to 

von Mises, the admissible selection rule is that the 

decision to include a member in the subsequence 

cannot depend on the value. It is worth noting that 

the classes of “admissible” frequency-stable se-
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quences, for which the basic laws of probability 

theory have been fulfilled, have not yet been deter-

mined. It has also been proved that there are se-

quences that satisfy the von Mises requirements, but 

do not satisfy the law of a second-order logarithm.  

The approach proposed by Martin-Lof is that 

the sequence is considered to be random if it passes 

a set of statistical tests. The essence of testing is to 

verify the "zero hypothesis" in relation to the 

sequence being studied. The statistical test T for 

binary sequences of length l can be considered as a 

Boolean function ,01V:T l },{  that divides the set 

of sequences lV into a set of "non-random" 

sequences l,0V (usually small) and a set of random

sequences 1lV , . The probability pr that randomly 

chosen sequence of length l is rejected by the test is 

equal to l
0l 2Vpr  || , . Typically, pr  in tests has a 

small value, 010pr . . Since some of the necessary 

properties can be analytically proven only for some 

classes of sequences, a wide range of different 

statistical tests can be found to justify the properties 

of the sequences, which allow the patterns to be 

revealed. The results of statistical tests show that for 

maps 1.6 and 1.7 of the sequence the best 

randomness measure is shown on individual tests, 

however, this is not performed for the entire test 

group, and this does not allow viewing the displayed 

mappings as generators of pseudorandom numbers, 

as the necessary condition for randomness is not 

provided. 

In this paper, we also analyze the chaotic nature 

and unpredictability of the internal structure of gen-

erated sequences for the formation of a truly random 

sequence concept. When considering the concept of 

randomness, Kolmogorov's complexity theory is 

used, where the basic idea is based on the fact that 

the complexity of an object is determined by the 

length of its description. The complexity of a se-

quence y for a given map f is the number 

y}, опис-f єxxyR f |:min{|)(  where |x| - the length 

of the sequence. If an object cannot be described, 

then its complexity approaches infinity. When the 

internal structure of numerical sequences is consid-

ered, the presence of internal analogous sequences 

means that these internal structures can be grouped 

into separate classes and a description can be as-

signed to each class, which reduces the size of the 

description of the entire sequence. Thus, when con-

sidering the internal structure of the formed se-

quences, it is necessary to construct generators that 

give sequences, where the subsequence will have the 

least degree of similarity. 

Passing to the consideration of unpredictability, 

we understand the sequence as unpredictable, if for 

the arbitrary selection of its elements knowledge 

about these elements does not allow to predict the 

values of the following elements of the sequence. As 

this work explores processes in nonlinear dynamic 

systems, unpredictability is the result of sensitivity 

to the initial conditions of systems. A sequence is 

called predicted if there is a mapping for it that al-

lows you to get a sequence element based on the 

previous values. Thus, periodic similar subsequences 

allow the calculation of elements of the sequence 

with a certain level of similarity. It is known that any 

chaotic sequence is unpredictable. However, the 

issues of coincidence of classes of chaotic and un-

predictable sequences remain open.  

Given the internal structure of the sequences 

derived from the above-mentioned maps, there is a 

problem of finding and evaluating such structures. 

The presence or absence of which reflects a degree 

of approximation of this sequence to randomness. 

Accordingly, a mapping that generates sequences 

with fewer similar sequences and a smaller length of 

these subsequences can be considered for further 

analysis on the possibility of using it as a pseu-

dorandom sequence generator. Hence the problem of 

choosing a measure of similarity to evaluate the 

resulting sequences. In general, a measure of simi-

larity allows us to generalize the structural represen-

tation of an object. To obtain reliable results of the 

similarity measure, the ideal measure ),( yxD  for 

evaluating x and y of the subsequences must have 

the following properties (  - a small value, given in 

advance): 

1) Positivity: 0yxD ),( ;

2) Coincide axiom: yx fi1yxD ),( ;

3) Symmetry: ),(),( xyDyxD  ;

4) Triangle inequality:

),(),(),( yzDzxDyxD  , where z represents

another object;

5) Compactness: If x and y are very similar,

then  ),( yxD1 ;

6) True representation: if ),( yxD , then x

and y are very similar;

7) Continuity of D.

However, not all measures meet all these require-

ments and, accordingly, the similarity measures are 

chosen in accordance with the task and subjects of 

the study. 

Consider the existing approaches and methods 

for assessing the degree of similarity. The first type 

of similarity measurement evaluates and compares 

the overall shape of the sequences based on the actu-

al values of the sequence. There are two subcatego-

ries: rigid step-by-step and elastic measures. The 

rigid step-by-step measures require that the two se-
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quences be the same length, while the elastic 

measures are more flexible and allow "single-

valued" and "one-to-one" comparison for the ele-

ments of the sequences [8]. The second type of simi-

larity measurement are characteristic measures, 

which first determine the properties of the subse-

quence, and then measure the distance between these 

characteristics. Characteristic measures are often 

used to reduce the size of the evaluated objects. The 

third category, the distance of the editing, expresses 

the discrepancy between the two sequences based on 

the minimum number of operations required to con-

vert one subsequence to another. 

The simplest measure of similarity for compar-

ing subsequences is any nL  norm of the form:  

 


M

1i
n

1
n

iiL yxyxd
n

))((),(       (7) 

where n is an integer, M is the length of the subse-

quence. Measures based on nL  are categorized as 

rigid step-by-step measures and compare structures 

of the same length. In the case when n = 2 we get the 

Euclidean norm whose evaluation process is shown 

on figure 10. 

Fig. 10 – Comparison process for rigid step-by-step 

measure 

However, such measures do not identify the similari-

ty of sequences if they are not aligned with the X 

axis. Accordingly, the problem of “deforming” the 

values of the X axis for one of the sub sequences 

appears. This problem allows us to solve elastic 

measures, such as the method of Dynamic Time 

Warping (DTW) [9], but such measures increase the 

complexity of calculations and the time required to 

obtain the result. In the case of DTW measurements, 

the local cost metric (LC) (n×m) is calculated initial-

ly, where each element of the matrix determines the 

distance between the corresponding elements of the 

sequence. The next step is determining the path of 

transformation: 

1nmKmnwwwW K21  ),max(,,,  (8) 

This path circumvents the LC matrix with conditions 

such as: boundary condition, continuity, monotony. 

The total distance for the path W is determined by 

summing up the individual elements of the LC ma-

trix that cover the path. To obtain a DTW measure, 

it should be selected a path with a minimum total 

distance. The complexity of the calculation in this 

case is O(nm) with the use of dynamic programming 

methods (DPs). The following recurrence ratio of 

DP can be used to calculate a path with a minimum 

length of:  

)},(),,(

),,(min{),(),(

1jidj1id

1j1idyxdjid

cumcum

cumjicum




   (9) 

Several scales have been developed for direct meas-

ure of DTW, one of which is the root of the sum of 

the elements of the path with a minimum length: 

 


K

1k kDTW wyxd min),(        (10) 

It is worth noting that the DTW measure is equal to 

the Euclidean norm if n = m, and also does not satis-

fy the 4th condition, which is advanced to the degree 

of similarity. Due to the need to calculate matrices, 

this method is one of the most time consuming, even 

in optimization conditions, so it is not considered in 

this paper. 

The following groups of measures of similarity 

represent the characteristic measures, among which 

the main is the discrete Fourier transform (DFT). As 

noted above, this measure evaluates the characteris-

tics of the comparable structures and, since it is cal-

culated only for half of the subsequence elements 

2
nq  in accordance with the Nyquist-Shannon 

sampling theorem, it allows to obtain a gain in the 

general time of the calculation. The DFT is obtained 

by computing the product between the subsequence 

and the sinusoid and is defined as:  









1N

0k
n

lk2i

k exX(l)          (11) 

As a result, we obtain a vector X(l)  of complex 

numbers. According to Parseval’s theorem, the DFT 

retains the Euclidean distance between sequences. 

That is, when all frequencies in the frequency do-

main X(f)  are used, the Euclidean distance between 

the two DFTs is equal to the distance between the 

initial sequences for these transformations, since the 

DFT is a linear transformation. The calculation of 

the distance between sequences on the basis of Fou-

rier coefficients is O(q) and therefore the whole pro-

cess of computing the DFT measures for all se-

quences is )log( 2qNnnNO  , where N is the num-

ber of all subsequences. 

3. Computer modeling and estimation for nonlin-

ear dynamical systems

Computer representation of the structure and 

behavior of dynamic systems is at the center of 

development of modern complex systems. Such 

representations are created and reviewed based on 

the use of graphical modeling languages that support 
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specification, analysis, development and testing of 

systems. 

To accomplish the tasks and program 

realization, the Wolfram language and Wolfram 

Mathematica 11.0 [17] have been selected. The 

programming language of Wolfram is supported by 

a variety of programming paradigms with an 

emphasis on functional programming. It has a large 

set of built-in functions, graphing tools, and also 

allows you to implement dynamic interactive 

computations that allow you to manipulate data and 

analyze dynamically changing results. The 

Mathematica system provides a wide set of higher-

order functions, meta-algorithms through which a 

progressive multi-level environment is implemented 

with automation when constructing user interfaces. 

Built-in function sets allow you to implement 

algorithms of various mathematical directions, such 

as number theory, dynamic systems, and others. 

Mathematica also implements parallel programming 

capabilities, which reduces computing time. The 

system supports numbers of any accuracy, and also 

for the purpose of increasing the accuracy of the 

environment, uses symbol-no calculations that allow 

expressions to be transformed. 

In this paper we consider the application of 

measures of form estimation and DFT measure as an 

example of the characteristic measure, since they 

provide a simple process for the implementation of 

calculations and allow us to draw conclusions about 

the internal structure of the sequences considered in 

this paper. As a rigid step-by-step measure, the 

measure is based on the correlation coefficient. 

Among the various correlation coefficients we will 

use the Spirman correlation, since the Spirman 

correlation coefficient does not contain any 

assumptions about the distribution. Sequences will 

be called similar if the measure takes a value greater 

than 0.5. The Spirman correlation coefficient can be 

calculated using the following equation: 

)( 1NN

d6
1r

2

2
i

s





, (12) 

where id - the difference between the rank for each

pair of data, and the value N - the number of data 

pairs. The Spearman correlation coefficient 

calculates the p-value in the same way as the linear 

regression and Pearson correlation, except that the 

calculation takes place for ranks, not magnitudes. It 

is worth noting that the price for the best properties 

of the Spirman correlation is the greater complexity 

of the calculations, which is O(n log n), while the 

Pearson correlation calculation has the complexity 

of O(n). However, modern methods of parallel 

computing can minimize this time difference. To 

evaluate the internal structure of the sequences 

derived from maps, next method is used that 

includes the following steps: 

Step 1. The first peak position is computed in 

order to remove the initial exponential compo-

nent from calculation; 

Step 2. Determines the size of the initial succes-

sion for evaluation with the following elements 

of the sequence; 

Step 3. Using the single step, the Spearman cor-

relation value of the reference subsequence with 

the corresponding subsequences is calculated; 

Step 4. The obtained correlation values are fi-

nite according to the specified level of similari-

ty; 

Step 5. The size of the initial subsequence de-

creases by 1 if it exceeds 10 elements, and steps 

1-4 are repeated. 

Thus, this method allows obtaining a hierarchy of 

internal cycles according to the length of the cycle, 

as well as the degree of similarity of the found 

structures. This hierarchy can be used to further 

evaluate the sequence. In accordance with a step-by-

step approach to the search for similar subsequences, 

we obtain a set of values that could identify a 

subsequence that exceeds the initial value. 

Considering the results for the individual 

sequences, the results of the evaluation of the degree 

of similarity allow us to obtain a hierarchy of similar 

sequences based on the length of the internal cycles 

and the level of similarity presented in table 1. In 

this table: s – length of the pattern, l – searched simi-

larity measure, pat – initial position of used pattern, 

comp – some compared pattern, SM – obtained simi-

larity measure for two subsequences. 

Table 1. 

Similar subsequences for the map 2.4 and p=521 

s l pat comp lag SM 

11 0,7 {9, 19} {20, 30} 36 0,772727 

11 0,8 {17, 27} {28, 38} 33 0,836364 

11 0,9 {40, 50} {51, 61} 53 0,972727 

15 0,7 {19, 33} {34, 48} 67 0,717857 

15 0,8 {36, 50} {51, 65} 49 0,817857 

15 0,9 {13, 27} {28, 42} 67 0,907143 

20 0,7 {11, 30} {31, 50} 62 0,795489 

20 0,8 {13, 32} {33, 52} 62 0,842105 

25 0,7 {50, 74} {75, 99} 6 0,731538 

30 0,6 {10, 39} {40, 69} 52 0,631146 

30 0,6 {46, 75} {76, 105} 1 0,63337 

Comparing the chosen similarity measures, the best 

results from the search for similar sequences 

demonstrate the DFT measure, since it represents the 

estimation of the subsequence in the form of the sum 

of harmonic oscillations, respectively, allows for a 

more precise estimation. Also, the DFT measure has 

better computational performance by reducing the 
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dimension, which significantly affects the total time 

of the calculation for sequences that display a 

proportional to a prime number of length of the 

period. The time complexity for the DFT using the 

fast Fourier transform algorithm is O(n log n).  

The obtained results show that, from the 

point of view of chaos and unpredictability, the 

considered maps 1.4 and 1.5 show a very high 

degree of similarity for many internal cycles. Corre-

lation method used in this work allowed to identify 

these internal sequences for further analysis. 

Conclusion 

The results of the work show that the best ap-

proximation to the requirements of probability theo-

ry with the use of nonlinear dynamic maps is pro-

vided by analyzing the power of the set of numbers 

on which the generator is based. The best sequences 

ensure the use of prime numbers for which the 

length of the period corresponds to the dimension of 

the number itself, since such sequences show chaotic 

behavior. The best results in the number of such 

internal cycles show sequences based on the map 

1.7, which confirms the results previously obtained 

for this mapping, when statistical tests were used to 

estimate the randomness measure. At the same time, 

the largest number of similar internal cycles is 

demonstrated by sequences based on the maps 1.6, 

even assuming that the length of period for this map 

is greater compared to other maps. For reliable 

pseudorandom generation methods should be con-

sidered maps that generate sequences with fewer 

similar internal structures and smaller lengths of 

these subsequences. 
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МАТЕМАТИЧНІ ОСНОВИ ІНФОРМАЦІЙНИХ ТЕХНОЛОГІЙ В СУЧАСНИХ НЕЛІНІЙНИХ 

ДИНАМІЧНИХ СИСТЕМАХ 

Г. М. Востров, А. О. Хріненко 

Одеський національний політехнічний університет 

Анотація. Розглянута і узагальнена гіпотеза про існування 3х класів процесів: фізичних, мента-

льних та математичних. У відповідності до визначення узагальненої моделі взаємодія цих процесів 

має місце як прямий, так і зворотній зв’язок. Доведено, що взаємодія між цими процесами адекват-

но описується за допомогою математичної моделі нелінійних динамічних систем. Встановлено, що 
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першорядними елементами даних моделей є інформація та відповідні інформаційні технології. Дове-

дено, що в усіх нелінійних динамічних системах ключовим фактором визначення їхніх кількісних та 

якісних характеристик є інформація про нерухомі точки динамічної системи та властивості їхніх 

траєкторій. Встановлено, що в нелінійних динамічних системах будь-якого типу потенційно існує 

нескінченна множина нерухомих точок з потенційно нескінченною довжиною траєкторій. Дослі-

джена проблема узгодженості різних класів динамічних систем та показано, що міра невизначенос-

ті структури траєкторій зі збільшенням довжини циклу наближається до нескінченності. Відпові-

дно, розкриття цієї невизначеності є джерелом потенційно нескінченної кількості інформації. 

Встановлено, що отримана інформація може бути використана для керування процесами прийнят-

тя рішень, а в ідеалі і задачах оптимального управління. Показано, що перенесення інформації на 

конгруентні динамічні системи представляє собою основу інформаційних систем. Доведено, що дос-

лідження структури циклів траєкторій є важливим джерелом інформації щодо структури хаотич-

них процесів, що протікають в таких системах. Такого роду дані стосовно хаотичних процесів 

представляють собою носій інформації, що є необхідним в системах інформаційних технологій в 

наступних класах задач: комп’ютерне моделювання еволюційного розвитку динамічних систем, ге-

нерація випадкових чисел, дослідження динамічної структури формування класів простих чисел, по-

будова методів криптографічного захисту інформації, побудова методів геш-функцій, дослідження 

нерухомих точок, прогнозування часових рядів та ряд інших прикладних задач. Досліджені методи 

оцінки узгодженості різних типів динамічних систем, що задаються за допомогою нелінійних відо-

бражень. 

Ключові слова: динамічні системи, відображення, випадковість, траєкторії, хаотичні процеси. 

МАТЕМАТИЧЕСКИЕ ОСНОВЫ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ В СОВРЕМЕННЫХ 

НЕЛИНЕЙНЫХ ДИНАМИЧЕСКИХ СИСТЕМАХ 

Востров Г. Н., Хриненко А. О. 
Одесский национальный политехнический университет 

Аннотация. Рассмотрена и обобщенная гипотеза о существовании 3х классов процессов: физи-

ческих, ментальных и математических. Доказано, что во всех нелинейных динамических системах 

ключевым фактором определения их количественных и качественных характеристик является ин-

формация о неподвижных точках динамической системы и свойствах их траекторий.  

Ключевые слова: динамические системы, отображения, случайность, орбиты, хаотические 

процессы 
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