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Abstract. In this paper it is considered and generalized hypothesis about existence of 3 classes of pro-
cesses: physical, mental and mathematical. It is shown that in all nonlinear dynamical systems the key factor
in determining their quantitative and qualitative characteristics is the information about fixed points of dy-

namical systems and their orbit properties.
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Introduction

Systems of physical, mental, and mathematical
spaces contain numerous complicated processes of
effective management that represent the necessary
condition for the successful evolutionary develop-
ment of human society. It is known that the creation
of effective control methods in all known forms is
possible upon the condition that information on the
laws of evolutionary development does exist and
available [11, 13]. The existence of information is a
necessary, but insufficient requirement for its use.
There is need for technology of obtaining, analyzing
and processing information. The combination of
such methods is developed on the basis of modern
information technologies. The accumulation, pro-
cessing and analysis of information, as a rule, is a
stochastic nature of the laws of its processing and
application [14]. One of the most common for-
mation, processing and analysis systems is self-
organized nonlinear dynamic systems. Research of
such systems is one of the mathematical methods of
obtaining and further application in information
technologies, which is currently actively developing
in all known directions of modern science. Modeling
of stochastic processes based on the theory of dy-
namic systems is currently a prerequisite for the
development of information technology [15, 16].

Simulation of stochastic processes is an im-
portant direction in mathematics, which is also used
in such fields as dynamical systems simulation,
functional analysis, function theory, cryptography,
etc. Relevant processes are used to generate numeric
sequences. The resulting sequences are widely used
in various example tasks such as, for example, the
theory of machine learning for the learning and test
sequences [1], and others.

Various methods for generating numerical se-
guences are based on chaotic nonlinear processes.
Currently there is no precise and constructive axio-
matic meaning of the notion of chance. Computer
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generators of numerical sequences are deterministic,
respectively, modeling a pseudo-random variable
with a definite degree of approximation to random-
ness by a given order distribution. Thus, the genera-
tors of pseudorandom numbers are a way to deter-
mine the formal concept of cascade, which is im-
portant and necessary in modern probability theory,
the theory of random processes, and others. The
problem of the pseudorandom sequence sequence
(PRS) approaching the ideal [2] is set because the
ideal random sequence is a mathematical model,
which is a completely non-predicted, and therefore
non-periodic, infinite posteriori, and, accordingly,
does not allow to receive its representation in com-
puter systems.

The notion of randomness finds its application
in game theory in the definition of such a concept as
"rational-flail behavior". Suppose there is a certain
set of agents that interact with each other and each
agent influences the results of others. Each agent has
a set of arbitrary strategies to determine further ac-
tions. The question arises: "What set of separate
strategies will be rational behavior of the entire
group of agents?". It is proved that a set of strategies
for individual agents will produce the best result if
none of the agents can improve their results in the
transition to another strategy by having information
about the strategies of other participants. Intuitively,
an arbitrary selection of optimal strategies by agents
allows us to obtain a universal notion of rational
behavior. However, the problem of true randomness
and the non-resolution of the question of the formal
definition of chance appears again. In the Kolmogo-
rov axiomatic, truly random sequences were left
beyond the bounds of the theory, and only general
approaches were proposed for the definition of ran-
domness, for example, von Mises' approach.

However, although the exact definition of ran-
domness does not exist yet, the above-recognized
application problems can be solved with the help of
pseudo-packet variables representing values
satisfying a certain set of requirements. An example

MopenoBaHHs JUHAMIYHUX CUCTEM

209



ISSN 2221-3805. EnexkrpoTexniuni Ta koMt rotepHi cuctemu. 2019. Ne 30 (106)

of such a task is the Monte Carlo method, which
raised the question whether or not it is really neces-
sary to use true chance or can it be replaced by an
appropriate deterministic procedure for the solution?
The theorem is proposed in [3], provided that any
settlement problem is difficult to solve, randomness
does not allow to improve algorithmic efficiency.
Each probabilistic algorithm can be replaced by a
deterministic algorithm with the same degree of
efficiency. The key to the proof of this theorem is
the construction of generators of pseudo-
randomness, forming sequences, not distinguishing
from random sequences when used by their respec-
tive algorithms. The question arises whether it is
possible to effectively form such sequences that
would be close to random by means of deterministic
methods. This problem can be solved both in terms
of mathematics and in terms of computer science.
The proof that the deterministic systems and struc-
tures satisfy the conditions of randomness is carried
out by methods of the theory of numbers, algebras,
and others. While computer methods begin with the
definition of necessary properties and subsequent
attempts to effectively form structures with specified
properties. Such analytical and synthetic approaches
are usually combined to improve the end result.

In the case of PRS generators or dynamic sys-
tems, it is necessary to consider and analyze the
properties of the iterative functions that determine
the length of the iteration process period, which is
one of the main properties of the generators, as well
as the internal structure of the data of the iterative
processes. At the same time, the power of the set of
numbers on which the data are determined, iterative
functions are given much less attention. In this mat-
ter, there is a direct connection with number theory.
Prime numbers are of considerable interest because
they are used in a wide range of applications. For
example, in the RSA cryptosystem, in the first stage,
there is a selection of primes that require verification
to match the conditions of reliability of their theoret-
ic-numeric properties.

In accordance with previous statements, the
purpose of the work is to model nonlinear iterative
processes, analyze them in accordance with the
properties of functions, analyze the effects of fixed
points and the internal structure of the cycles on the
degree of randomness, as well as the set of primes
using statistical and structural methods.

1. Nonlinear dynamic systems and its itera-
tive processes

To investigate and analyze previously stated
problems this paper considers the processes ob-
served in a group of nonlinear maps that represents
behavior of nonlinear dynamical systems. The fol-

lowing maps are considered: “Tent”, “Asymmetric
tent”, “Sawtooth” map and multiplicative order map.

Real functions f:R — R are considered. Then f"

denotes the nth iteration of the function f , i.e. f" is
a n-fold composition of the function f with itself. If
X, € R, then an orbit or a trajectory for x, is some
sequence that can be  represented as
Xo Xg = F(X)s-os Xy = F"(X),.... An important role
is played by fixed points when considering dynam-
ical systems. An initial point x, is defined as a fixed
point if f(x,) =X, . It is obvious that the fixed point
orbit represents a constant sequence Xy, Xy, Xg,---. An
analogue of a closed orbit for differential equations
is determined by periodic fixed points. These are the
points x, for which f"(x,)=x,,n>0 and, as well

as closed orbits, periodic orbits repeat themselves:
Xg,---Xn1,Xg - - - PEriodic orbits of period n are also

called n-cycles (periods).

The maps that were chosen for an investigation
and analysis of iterative fixed point and inner struc-
ture of sequences, obtained on the basis on these
maps have next representation:

2Xp,  Xq <%

t;(X,) =X 1= (1)
B ™ 1-2X,, Xp 2%
2X,, Xy <
t) (Xn) = Xpy1 = % (2)
1-X,, X, 2%
2X,, Xy <
t3(Xp) = Xpy1 = % (3)

2X, -1, X, 2%

Graphical representation for t," contains 2" tents

with 2™ width. The distance between adjacent n-
cycles is no more than 22™" . For any compact subin-
terval [a,b] J0,) there exists a constant c(a, b) in-
dependent from n, so that the distance between adja-
cent n-cycles satisfies the condition
c2™" <distance<2™. For the map (1) special atten-
tion is drawn to the fact that it shares many proper-
ties with the logistic map g(x)=4x(1—-x) in the
process of iterating. This special feature indicates
their conjugation. If we assume that | and J represent
some interactions for maps f :1 —1,g:J —J then
we can say that the maps f and g are conjugated if
there is a homeomorphismh: 1 — J, that h satisfies
the conjugation equality ho f =goh. Conjugation
compares orbits f to orbits g. This follows from the
fact that h(f"(x)) = g"(h(x)) for all x 1 such that h
matches the nth point of the orbit for f from x to nth
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point of the orbit g from h(x). In paper [4], it is
proved that the “Tent” map is topologically linked to
a logistic map.

Transitioning from a formal model to a com-
puter calculation, the question whether the results
obtained during the calculations can be considered a
solution to the problem arises, since the computer
system operates in calculations with computer num-
bers, while mathematics operates with numbers of
infinite length and these circumstances lead to mis-
takes when working with fractional numbers. Under
the computer numbers the set Q, is understood to

mean numbers whose entries contain no more than n
digits for the record of the whole and the fractional
part of the number (this number can be large, but
always limited). In this case, the set Q, is closed

with respect to arithmetic operations. In the end, the
aforementioned circumstance creates a problem of
reliability and gives false conclusions about process-
es in dynamic systems due to the fact that one of the
properties of any dynamic system is sensitivity to
initial conditions [5]. In the computer calculation of
the iterations of reflections, the results show that all
orbits are eventually fixed to 0, which does not cor-
respond to reality and raises the question of the tran-
sition to an integer form. In order to reduce this cir-
cumstance to a minimum, the transition to integer
maps presented in the following form is completed:

2x,, 4x,<p
tl(xn):Xml:{p_an n4X >p (4)
n» n =—
2X,, 2X,<p
tZ(Xn):XnJrl :{p_nx ;X >p (5)
n» n =—
2X,, 2X, <p
t?,(Xn) =Xpy = {an —p n2X > p (6)
n 1 n —
f (%) = % ;= 4x,, 4x,<p 7
4ltn ™17 lax, (mod p), 4x,>p’

were p is prime number. It is important to note that
the maps 4-6 are continuous functions, whereas the
map 7 is defined only on the integer set. It is also

worth noting that the map t," is algebraically con-

gruent to the map t," on the set of integers, that is,

the lengths of the cycles for all prime numbers coin-
cide.

It should also be noted that the transition to the
integer form for given maps leads to the expansion
of the values of the basic functions in the transition
between prime numbers to infinity while dimension
of prime number increases. Figure 1 shows the be-
havior of map 4 when using prime numbers of dif-
ferent dimensions, where p, - prime numbers and

fp n - corresponding fixed points.

Map 1 (integer)

e " : Primes
g : H P1<P2<pP3

0 fp1 Py fp2 fp3 pa P3

Fig. 1 - Representatioh of 1 iteration for map 4 and
prime numbers

Despite the simplicity of the above maps, their
iteration cycles have the properties that support the
above statements. According to them, the structure
of iterative cycles is determined not only by the
properties of the maps itself, but also by the proper-
ties of the numbers that are used and which have a
significant influence on the structure and can signifi-
cantly change it. The presented nonlinear maps al-
low to divide the set of primes p into a system of
classes based on the length of the iterative process
for given primes [6]. We note that there is an infinite
set of prime numbers for which the length of a peri-
od is substantially smaller than the dimension of a
number. and the sequence obtained for this number
forms a simple structure. The structure of this type is
characteristic for the numbers belonging to the class
of Fermat, Mersenne numbers and their various gen-
eralizations. At the same time, other prime numbers
generate sequences for which the length of the peri-
od is commensurable with the dimensionality of the
number and, accordingly, can show a greater degree
of approximation to the randomness, but also have
periodic components, as shown in figures 2 - 5.
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Fig. 2 — Sequence strUc;[ufé for p=160465519 and
map 4

BinoGpaxkenns 2

Fig. 3 — Sequence strﬁétu}é for p=160465519 and
map 5
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Fig. 4 — Sequence structure for p=160465519 and
map 6
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Fig. 5 — Sequence structure for p=160465519 and
map 7

At the same time, the sequences obtained on the
basis of maps 4 and 7 demonstrate a better approxi-
mation to the uniform distribution law, which repre-
sents one of the requirements for pseudorandom
sequences.

However, considering the internal structure, it
IS necessary to introduce some similarity measure
for the internal structures to conduct more complete
analysis. For example, for given simple numbers in
figures 6 - 9 it is presented an internal structure of
the iterative processes for the maps, where the
dashed line shows obtained sequences and the solid
line shows the inner parts within the sequences that
give the maximum value of similarity measure.

BixoGpaxenns 1 115 npocroro uuc.ia 26295457 ra mipn
noxibHOCTI Mixk 2 BB’\TplIIIBl\lI] cermesTamu p = 0.991228

HOMep iTepamil

Fig. 6 — Inner structure for map 4

Bigo6paxeHHda 2 1715 NPOCTOro UYHcIa 26295457 Tta mipn
noxiduocTi Mk 2 BHYTPimHIME cerMenTaMu p = 1.
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Fig. 7 — Inner structure for map 5

BizoOpakeHHs 3 1719 NpPocTOro Unc1a 26295457 Ta mipn
no,]lﬁuocn \llA 2 BH\TplmHl\HI cermenTamu p = 0. 8‘*614
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Fig. 8 — Inner structure for map 6

BigoGpaxenns 4 1,18 nNpocToro 4ncaa 26295457 ra mipn
noxibHocTi MiAK 2 BHVTpimHiME cermenTamu p = 0.936573
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Fig. 9 — Inner structure for map 7

As can be seen from these figures, the sequences
obtained with the help of maps 4 and 7 for some
subsequences give similarity measure values close to
1, which indicate the effect of fixed points on the
internal structure of the sequence, while map 7
demonstrates the least measure for its subsequences.

2. Methods of randomness measure estima-
tion

There are several approaches to determining
randomness and, accordingly, methods for evaluat-
ing the degree of randomness of a particular se-
quence. In [7], four algorithmic properties are dif-
fered for the description of randomness: frequency
stability, chaotic behavior, typicality, nonpredictabil-
ity. Each of them presents its own algorithmic aspect
of randomness, and each of them, with greater or
lesser connotation, can claim mathematical defini-
tion of the concept of randomness. In this case, se-
quences are considered in binary format. According
to the definition of von Mises, the sequences are
divided into 2 groups: random and non-random.
From a mathematical point of view, random se-
guences form a plurality of complete measure and
all without exception satisfy all the laws of probabil-
ity theory. In this approach, the sequence is consid-
ered to be random, if the stability of the frequencies
0 and 1 is observed both in the sequence itself and in
any “correctly” chosen part thereof. According to
von Mises, the admissible selection rule is that the
decision to include a member in the subsequence
cannot depend on the value. It is worth noting that
the classes of ‘“admissible” frequency-stable se-
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guences, for which the basic laws of probability
theory have been fulfilled, have not yet been deter-
mined. It has also been proved that there are se-
guences that satisfy the von Mises requirements, but
do not satisfy the law of a second-order logarithm.
The approach proposed by Martin-Lof is that
the sequence is considered to be random if it passes
a set of statistical tests. The essence of testing is to
verify the "zero hypothesis" in relation to the
sequence being studied. The statistical test T for
binary sequences of length | can be considered as a
Boolean function T :Vv, —{1,0}, that divides the set

of sequences V, into a set of "non-random"
sequences V|, (usually small) and a set of random
sequences V. The probability pr that randomly
chosen sequence of length | is rejected by the test is
equal to pr=|V,, |-27'. Typically, pr in tests has a
small value, pr<0.01. Since some of the necessary

properties can be analytically proven only for some
classes of sequences, a wide range of different
statistical tests can be found to justify the properties
of the sequences, which allow the patterns to be
revealed. The results of statistical tests show that for
maps 1.6 and 1.7 of the sequence the best
randomness measure is shown on individual tests,
however, this is not performed for the entire test
group, and this does not allow viewing the displayed
mappings as generators of pseudorandom numbers,
as the necessary condition for randomness is not
provided.

In this paper, we also analyze the chaotic nature
and unpredictability of the internal structure of gen-
erated sequences for the formation of a truly random
sequence concept. When considering the concept of
randomness, Kolmogorov's complexity theory is
used, where the basic idea is based on the fact that
the complexity of an object is determined by the
length of its description. The complexity of a se-
guence y for a given map f is the number
R (y) =min{| x|: xe f - onuc y}, where |X| - the length

of the sequence. If an object cannot be described,
then its complexity approaches infinity. When the
internal structure of numerical sequences is consid-
ered, the presence of internal analogous sequences
means that these internal structures can be grouped
into separate classes and a description can be as-
signed to each class, which reduces the size of the
description of the entire sequence. Thus, when con-
sidering the internal structure of the formed se-
guences, it is necessary to construct generators that
give sequences, where the subsequence will have the
least degree of similarity.

Passing to the consideration of unpredictability,
we understand the sequence as unpredictable, if for

the arbitrary selection of its elements knowledge
about these elements does not allow to predict the
values of the following elements of the sequence. As
this work explores processes in nonlinear dynamic
systems, unpredictability is the result of sensitivity
to the initial conditions of systems. A sequence is
called predicted if there is a mapping for it that al-
lows you to get a sequence element based on the
previous values. Thus, periodic similar subsequences
allow the calculation of elements of the sequence
with a certain level of similarity. It is known that any
chaotic sequence is unpredictable. However, the
issues of coincidence of classes of chaotic and un-
predictable sequences remain open.

Given the internal structure of the sequences
derived from the above-mentioned maps, there is a
problem of finding and evaluating such structures.
The presence or absence of which reflects a degree
of approximation of this sequence to randomness.
Accordingly, a mapping that generates sequences
with fewer similar sequences and a smaller length of
these subsequences can be considered for further
analysis on the possibility of using it as a pseu-
dorandom sequence generator. Hence the problem of
choosing a measure of similarity to evaluate the
resulting sequences. In general, a measure of simi-
larity allows us to generalize the structural represen-
tation of an object. To obtain reliable results of the
similarity measure, the ideal measure D(x,y) for

evaluating x and y of the subsequences must have
the following properties (¢- a small value, given in
advance):
1) Positivity: D(x,y)>0;
2) Coincide axiom: D(x,y)=1if x=y;
3) Symmetry: D(x,y)=D(y,X);
4) Triangle inequality:
D(x,y) < D(x,z) + D(z,y) , where z represents
another object;
5) Compactness: If x and y are very similar,
then 1-D(x,y) <¢;
6) True representation: if D(x,y) <, then x

and y are very similar;

7) Continuity of D.

However, not all measures meet all these require-
ments and, accordingly, the similarity measures are
chosen in accordance with the task and subjects of
the study.

Consider the existing approaches and methods
for assessing the degree of similarity. The first type
of similarity measurement evaluates and compares
the overall shape of the sequences based on the actu-
al values of the sequence. There are two subcatego-
ries: rigid step-by-step and elastic measures. The
rigid step-by-step measures require that the two se-
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guences be the same length, while the elastic
measures are more flexible and allow "single-
valued" and "one-to-one" comparison for the ele-
ments of the sequences [8]. The second type of simi-
larity measurement are characteristic measures,
which first determine the properties of the subse-
guence, and then measure the distance between these
characteristics. Characteristic measures are often
used to reduce the size of the evaluated objects. The
third category, the distance of the editing, expresses
the discrepancy between the two sequences based on
the minimum number of operations required to con-
vert one subsequence to another.

The simplest measure of similarity for compar-
ing subsequences is any L, norm of the form:

d o) =M oG-y (@)

where n is an integer, M is the length of the subse-
guence. Measures based on L, are categorized as

rigid step-by-step measures and compare structures
of the same length. In the case when n = 2 we get the
Euclidean norm whose evaluation process is shown
on figure 10.

W

Subsequence 2

0 20 40 60 80 100
number of iteration

Fig. 10 — Comparison process for rigid step-by-step
measure

However, such measures do not identify the similari-
ty of sequences if they are not aligned with the X
axis. Accordingly, the problem of “deforming” the
values of the X axis for one of the sub sequences
appears. This problem allows us to solve elastic
measures, such as the method of Dynamic Time
Warping (DTW) [9], but such measures increase the
complexity of calculations and the time required to
obtain the result. In the case of DTW measurements,
the local cost metric (LC) (nxm) is calculated initial-
ly, where each element of the matrix determines the
distance between the corresponding elements of the
sequence. The next step is determining the path of
transformation:

W =w, W, ... W, max(n,m) <K <m+n-1 (8)
This path circumvents the LC matrix with conditions
such as: boundary condition, continuity, monotony.
The total distance for the path W is determined by
summing up the individual elements of the LC ma-
trix that cover the path. To obtain a DTW measure,
it should be selected a path with a minimum total
distance. The complexity of the calculation in this

case is O(nm) with the use of dynamic programming
methods (DPs). The following recurrence ratio of
DP can be used to calculate a path with a minimum
length of:
dcum(il = d(xiv yj) + min{dcum(i -1, j-1), (9)
dcum(i _1’ J)’ dcum(i’ J _l)}

Several scales have been developed for direct meas-
ure of DTW, one of which is the root of the sum of
the elements of the path with a minimum length:

dpry (X y) = min ,/zf:l W,

It is worth noting that the DTW measure is equal to
the Euclidean norm if n = m, and also does not satis-
fy the 4th condition, which is advanced to the degree
of similarity. Due to the need to calculate matrices,
this method is one of the most time consuming, even
in optimization conditions, so it is not considered in
this paper.

The following groups of measures of similarity
represent the characteristic measures, among which
the main is the discrete Fourier transform (DFT). As
noted above, this measure evaluates the characteris-
tics of the comparable structures and, since it is cal-
culated only for half of the subsequence elements

q=”2 in accordance with the Nyquist-Shannon

(10)

sampling theorem, it allows to obtain a gain in the
general time of the calculation. The DFT is obtained
by computing the product between the subsequence
and the sinusoid and is defined as:

X(l) = zﬁjxke’m”'% (11)

As a result, we obtain a vector X(I) of complex

numbers. According to Parseval’s theorem, the DFT
retains the Euclidean distance between sequences.
That is, when all frequencies in the frequency do-
main X(f) are used, the Euclidean distance between

the two DFTs is equal to the distance between the
initial sequences for these transformations, since the
DFT is a linear transformation. The calculation of
the distance between sequences on the basis of Fou-
rier coefficients is O(q) and therefore the whole pro-
cess of computing the DFT measures for all se-

quences is O(Nnlogn+gN?), where N is the num-
ber of all subsequences.

3. Computer modeling and estimation for nonlin-
ear dynamical systems

Computer representation of the structure and
behavior of dynamic systems is at the center of
development of modern complex systems. Such
representations are created and reviewed based on
the use of graphical modeling languages that support
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specification, analysis, development and testing of
systems.

To accomplish the tasks and program
realization, the Wolfram language and Wolfram
Mathematica 11.0 [17] have been selected. The
programming language of Wolfram is supported by
a variety of programming paradigms with an
emphasis on functional programming. It has a large
set of built-in functions, graphing tools, and also
allows you to implement dynamic interactive
computations that allow you to manipulate data and
analyze dynamically changing results. The
Mathematica system provides a wide set of higher-
order functions, meta-algorithms through which a
progressive multi-level environment is implemented
with automation when constructing user interfaces.
Built-in function sets allow you to implement
algorithms of various mathematical directions, such
as number theory, dynamic systems, and others.
Mathematica also implements parallel programming
capabilities, which reduces computing time. The
system supports numbers of any accuracy, and also
for the purpose of increasing the accuracy of the
environment, uses symbol-no calculations that allow
expressions to be transformed.

In this paper we consider the application of
measures of form estimation and DFT measure as an
example of the characteristic measure, since they
provide a simple process for the implementation of
calculations and allow us to draw conclusions about
the internal structure of the sequences considered in
this paper. As a rigid step-by-step measure, the
measure is based on the correlation coefficient.
Among the various correlation coefficients we will
use the Spirman correlation, since the Spirman
correlation coefficient does not contain any
assumptions about the distribution. Sequences will
be called similar if the measure takes a value greater
than 0.5. The Spirman correlation coefficient can be
calculated using the following equation:

6> d’
N(N2-1) '
where d; - the difference between the rank for each

pair of data, and the value N - the number of data
pairs. The Spearman correlation coefficient
calculates the p-value in the same way as the linear
regression and Pearson correlation, except that the
calculation takes place for ranks, not magnitudes. It
is worth noting that the price for the best properties
of the Spirman correlation is the greater complexity
of the calculations, which is O(n log n), while the
Pearson correlation calculation has the complexity
of O(n). However, modern methods of parallel
computing can minimize this time difference. To
evaluate the internal structure of the sequences

S

(12)

derived from maps, next method is used that
includes the following steps:
Step 1. The first peak position is computed in
order to remove the initial exponential compo-
nent from calculation;
Step 2. Determines the size of the initial succes-
sion for evaluation with the following elements
of the sequence;
Step 3. Using the single step, the Spearman cor-
relation value of the reference subsequence with
the corresponding subsequences is calculated;
Step 4. The obtained correlation values are fi-
nite according to the specified level of similari-
ty,
Step 5. The size of the initial subsequence de-
creases by 1 if it exceeds 10 elements, and steps
1-4 are repeated.
Thus, this method allows obtaining a hierarchy of
internal cycles according to the length of the cycle,
as well as the degree of similarity of the found
structures. This hierarchy can be used to further
evaluate the sequence. In accordance with a step-by-
step approach to the search for similar subsequences,
we obtain a set of values that could identify a
subsequence that exceeds the initial value.
Considering the results for the individual
sequences, the results of the evaluation of the degree
of similarity allow us to obtain a hierarchy of similar
sequences based on the length of the internal cycles
and the level of similarity presented in table 1. In
this table: s — length of the pattern, | — searched simi-
larity measure, pat — initial position of used pattern,
comp — some compared pattern, SM — obtained simi-
larity measure for two subsequences.

Table 1.
Similar subsequences for the map 2.4 and p=521

S I pat comp lag SM
11 0,7 {9,19} {20,30} 36 0,772727
11 08 {17,27}y {28,38} 33 0,836364
11 0,9 {40,50} {51,61} 53 0,972727
15 0,7 {19,33} {34,48} 67 0,717857
15 08 {36,50} {51,65} 49 0,817857
15 0,9 {13,27}y {28,42} 67 0,907143
20 0,7 {11,30} {31,50} 62 0,795489
20 08 {13,32} {33,52} 62 0,842105
25 0,7 {50,74} {75,99} 6 0,731538
30 06 {10,39} {40,69} 52 0,631146
30 06 {46,75} {76,105} 1 0,63337

Comparing the chosen similarity measures, the best
results from the search for similar sequences
demonstrate the DFT measure, since it represents the
estimation of the subsequence in the form of the sum
of harmonic oscillations, respectively, allows for a
more precise estimation. Also, the DFT measure has
better computational performance by reducing the
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dimension, which significantly affects the total time
of the calculation for sequences that display a
proportional to a prime number of length of the
period. The time complexity for the DFT using the
fast Fourier transform algorithm is O(n log n).

The obtained results show that, from the
point of view of chaos and unpredictability, the
considered maps 1.4 and 1.5 show a very high
degree of similarity for many internal cycles. Corre-
lation method used in this work allowed to identify
these internal sequences for further analysis.

Conclusion

The results of the work show that the best ap-
proximation to the requirements of probability theo-
ry with the use of nonlinear dynamic maps is pro-
vided by analyzing the power of the set of numbers
on which the generator is based. The best sequences
ensure the use of prime numbers for which the
length of the period corresponds to the dimension of
the number itself, since such sequences show chaotic
behavior. The best results in the number of such
internal cycles show sequences based on the map
1.7, which confirms the results previously obtained
for this mapping, when statistical tests were used to
estimate the randomness measure. At the same time,
the largest number of similar internal cycles is
demonstrated by sequences based on the maps 1.6,
even assuming that the length of period for this map
is greater compared to other maps. For reliable
pseudorandom generation methods should be con-
sidered maps that generate sequences with fewer
similar internal structures and smaller lengths of
these subsequences.
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MATEMATHUYHI OCHOBH IHOOPMAIIMHUX TEXHOJIOI'TA B CYUACHUX HEJITHIHHHAX
JUHAMIYHUX CUCTEMAX

I'. M. Boctpos, A. O. XpiHeHko
Ooecvkuii HayioHAbHUL NOTIMEXHIYHUL YHIBepCUmem

Anomauia. Poszenisanyma i y3acanvnena 2inomesa npo icHy8anus 3x Kiacie npoyecis: izuunux, meHma-
JIHUX ma mMamemamudnux. Y ionogionocmi 00 8U3HAUEHHS Y3A2AlbHEHOI MOOeNi 83aEMO0isl Yyux npoyecia
Mae micye Kk npamut, max i 360pomuiil 38 ’a30k. /[ogedeno, w0 83aEmo0isn Midc yumu npoyecamu aoekeam-
HO ORUCYEMbCSL 30 00NOMO2010 MAMEMAMUYHOI MOOeNi HeIHIUHUX OUHAMIiYHUX cucmem. Bemanoeneno, uo
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NepULOPSIOHUMU eJleMeHmami OaHux mooenetll € inghopmayis ma eionosioHi ingopmayiini mexuonoaii. Jjoge-
0€HO, WO 8 YCIX HEeNIHIUHUX OUHAMIYHUX CUCMEMAX KIIOYOBUM (AKMOPOM BUSHAYEHHS IXHIX KIIbKICHUX ma
SAKICHUX XAPAKmepucmuk € iHgopmayis npo HepyXomi moyku OUHAMIYHOL cucmemu ma 61acmueoCcmi iXHix
mpaexkmopi. Bcmanosneno, wjo 6 HeniniiHux OUHAMINHUX cucmemax 0)y0b-1K020 muny HOMEHYIUHO ICHYE
HEeCKIHUeHHA MHOJMCUHA HEPYXOMUX MOUYOK 3 NOMEHYIUHO HeCKIHUeHHOI 008X4CUHOI0 mpaekmopill. Jochui-
0ofceHa npobiema y3200H4CeHOCMI PI3HUX KAACI8 OUHAMIYHUX CUCMeM Ma NOKA3AHO, W0 Mipa HeU3HAYEeHOC-
mi cmpyKmypu mpaekmopitl 3i 30i1bUeHHAM 008ICUHU YUKTY HAOTUNCAEMbCL 00 HecKiHueHHocmi. Bionoesi-
OHO, PO3Kpumms yici HeBUHAUEHOCMI € 0dcepeloM NOMEHYIUHO HeCKIHYeHHOI KinbKocmi iHgopmayii.
Bcmanosneno, wo ompumana inghopmayia modce 6ymu gukopucmarna 0jisi Kepy8aHHs Npoyecamu npuuHAm-
ms piwenv, a 8 ideani i 3a0awax onmumaibHo2o ynpasiinus. Iloxazano, wo nepenecenus ingpopmayii Ha
KOHZPYEeHMHI OUHAMIYHI CUCMeMU NPedCcmasisie cobow 0cHo8y ingopmayitinux cucmem. JJosederno, wo 0oc-
JIOMNHCEHH CMPYKMYPU YUKII8 MPAEKMOPILL € 8ANCTUBUM OHCEPENOM THDopMayii wooo CMpyKmypu Xaomuu-
HUX npoyecis, w0 npomikawoms 8 maxux cucmemax. Taxozo pody Oami cmMOCOBHO XAOMUUHUX NPOYeECi8
npedcmasisitoms co60t0 HOCIU IHOpMayii, wo € HeobXIOHUM 6 cucmemax HOOPMAYIUHUX MEXHON02Il 8
HACMYNHUX KIACAx 3a0a4: KOMN 1omepHe MOOeN08AHHA eB0NIOYINIHO20 PO3BUMKY OUHAMIYHUX CUCHEM, 2e-
Hepayis UNnaodKosux uuces, 00Ci0NHCeHHS OUHAMIYHOT CMPYKMYpU (opMy8aHHs KIdACie NPOCMuUX ducel, no-
b6yoosa memodie kpunmozpagiunozo saxucmy iHpopmayii, nodyoosa memoodis ceui-GyHKYil, 00CAIONCEHHS
HEPYyXoMUX MOYOK, NPOSHO3Y8AHHA 4ACOBUX PAOI& MaA pA0 IHWUX NPUKIAOHUX 3a0ay. Jlocnioxceni memoou
OYIHKU Y32002/CEHOCII PI3HUX MUNIE OUHAMIYHUX CUCHEM, WO 3A0ar0mMbCsl 3 OONOMO20H0 HENIHIIHUX 8i00-
bpasicenn.
Knrouoei cnosa: ounamiuni cucmemu, 6i000padicents, UNAOKOBICMb, MPAEKMOPIl, XAOMUYHI NPOYECU.

MATEMATHYECKUE OCHOBbI TH®OPMAILMOHHBIX TEXHOJIOI' Ui B COBPEMEHHBIX
HEJIMHEUHBIX TMHAMHNYECKNUX CUCTEMAX

Boctpos I'. H., Xpunenko A. O.
Ooecckuil HaYUOHAIbHBIL NOAUMEXHUYECKUL YHUBEPCUmMem

Annomavus. Paccmompena u 0600wennasn 2unomesa o cyujecmaoganuu 3x Kiaccos npoyeccos. Gusu-
YecKux, MeHmanbHelX U Mamemamuieckux. JJokazano, 4mo 80 6cex HeNUuHeUuHbIX OUHAMUYECKUX CUCEeMAax
KII04e8biM hakmopom onpeoeneHuss ux KOJIU4eCmEeHHbIX U KaueCmeeHHbIX XapaKmepucmux A6jisaemcs uH-
Gopmayusi 0 HeNOOBUICHBIX MOUKAX OUHAMUYECKOU CUCTNEMbL U CBOUICTNBAX UX MPAEKMOPULL.

Knwouesvie cnoea: ounamuueckue cucmemvl, OmoOPaAd*CeHUs, CAyYaUHOCHb, OpOUMbl, Xaomuyeckue
npoyeccol
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