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PREDICTIVE CONTROL METHODS IN TASKS
OF SEARCHING SADDLE POINTS

A.B. Cmopooun. MeToau NPOrHo3yBaHHs YNPaBIiHHSA B 3aJa4aX NOLIYKY CiIJIOBUX TOYOK. Y CTaTTi IPEACTaBICHI HOBI METOIU
MOUIYKY CTAalliOHAPHUX TOYOK (YHKILIi OaraTboX 3MIHHUX, B TOMY 4HMCHi CimnoBux. Taki 3aBHaHHs 3yCTpiYarOThCS B PIi3HUX Taly3sx
TEOPETHYHOI 1 MPAKTHUYHOI HAYKH, HAPUKIAM, y HOOYIOBI Ci/UIOBUX TOYOK B JH3aiiHi JIiH3, MaIIMHHOMY ab0 IJIMOOKOMY HAaBYAHHI 3aBIaHb
OIYKJIOK ONTHMI3allil Ta HENiHIIHOrO mporpaMyBaHHs (HEOOXiIHi 1 JOCTaTHI YMOBH BHUpILICHHs (POPMYIIOIOTHCS 3a JOMOMOTOI0 CIITIOBHX
Touok QyHkuii Jlarpanxa i noBonsaTecs B Teopemi Kyna-Takkepa. [Ipy HaB4aHHI HEHPOHHUX MEPEX NOBOIAMUTHCS MOBTOPIOBATH IPOLEC
HaBYaHHS Ha BEJIMKHUX KJacTepax i MepeBipsTH 3aTHICTh 10 HABYAHHS MEPEeXKi NPH Pi3HUX QYHKUIAX BTPATH i Pi3HIN IIMOUHI Mepexi, ToOTO
MIPOBOIUTH TUCSAY] 3aIyCKiB HOBHX OOYHCIICHb, 1€ KOKEH pa3 ONTHMI3YeThCsl (DYHKIS BTPATH HA BEJIMKUX 00CsArax JaHUX, TOMY OyIb-ske
MIPUCKOPEHHSI MPOLECy IMOUIYKY CTAIl[iOHAPHUX TOYOK € HAWBAXKIMBIIIOW IEPEBarol0 i €KOHOMHTH OOYMCIIOBaNBHI pecypcu. bararo
CYYaCHHX METOJIB IIOIIYKY CiJUIOBHX TOYOK 3aCHOBaHi Ha oOuMcieHHi i marpuii I'ecce, 3BepHeHHI 1i€i MaTpuIli, CKaIApPHOro J00YyTKY
BEKTOpa IpajlieHTa i MOTOYHOTO BEKTOPA, 3HAXO/HKEHHI MMOBHOTO JIarpamKiaH i T.i. OnHaK Bci Li onepailii € 00UMCIIOBAIBHO «IOPOTHMI 1
Masio O ceHc OOXOIMTH Taki CKJIaJIHI po3paxyHKHU. Imes momudikamii 3BUYaiiHUX TPaJi€HTHUX METOJIB, BUKOPUCTAaHA B CTATTi, MOJISITAE B
3aCTOCYBaHHI CXEM IIONIYKY HEPYXOMHX TOYOK HENiHIHHMX MAWUCKPETHHX MAWHAMIYHMX CHCTEM JUI 3aJad TPaJi€HTHOTO CIIYCKY.
IlependavaeTscsi, MO MM HEPYXOMHM TOYKAM BiNOBIJAIOTh HECTIHKI MOJOXKEHHS PIBHOBAark, i cepell MYJIbTHILIIKATOPIB KOXKHOTO
IOJIOXKEHHsI PIBHOBAry € BENHKI OAMHUII. BHKOPHUCTOBYIOTHCS METOH YCEPEIHEHOTO HPOTHO3YIOYOr0 KOHTPOIIO. Pe3yabraTn 4icenbHOro
MOJICIIFOBAHHS Ta Bi3yai3amil HaBeAeHI y BUIVLAIl JBOX TaOJIMIb, 1€ BKa3aHi OaceiHM TSDKIHHS KOXKHOI CTAaIl[iOHApHOI TOYKH UL KOXKHOI
CXEMH, 1 CTATUCTHYHI JaHi 110 IBHIKOCTSAM 301%KHOCTI.

Knouosi cnosa’ yucenbHi METOU MOLIYKY CiJUIOBUX TOUOK, KEPOBaHI HENiHiHI AUCKPETHI cUcTeMH, OaceiiH! NPUTAraHb

A. Smorodin. Predictive control methods in tasks of searching saddle points. The article presents new methods for searching critical
points of a function of several variables, including saddle points. Such problems are found in various fields of theoretical and practical science,
for example, saddle-point construction lens design, machine and deep learning, problems of convex optimization and nonlinear programming
(necessary and sufficient conditions for the solution are formulated using saddle points of the Lagrange function and proved in the Kuhn-Tucker
theorem. When training neural networks, it is necessary to repeat the training process on large clusters and check the network’s trainability at
different loss functions and different network depth. Which means that thousands of new calculations are run, where each time the loss function is
optimized on large amounts of data. So any acceleration in the process of finding critical points is a major advantage and saves computing
resources. Many modern methods of searching saddle points are based on calculating the Hessian matrix, inverting this matrix, the scalar product
of the gradient vector and the current vector, finding the full Lagrangian, etc. However, all these operations are computationally “expensive” and
it would make sense to bypass such complex calculations. The idea of modifying the standard gradient methods used in the article is to apply
fixed-point search schemes for nonlinear discrete dynamical systems for gradient descent problems. It is assumed that these fixed points
correspond to unstable equilibrium positions, and there are large units among the multipliers of each equilibrium position. The averaged
predictive control methods are used. Results of numerical modeling and visualization are presented in the form of two tables, which indicate
basins of attraction for each critical point in each scheme, and statistical data by the convergence rates.

Keywords: numerical methods for finding saddle points, controlled nonlinear discrete systems, basins of attraction

Introduction

Methods for solving minimax problems, which are limited to the search for saddle points, are
found in different areas of theoretical and practical science. Among the actual problems we can men-
tion, for example, saddle-point construction lens design [1], machine and deep learning [2], problems
of convex optimization and nonlinear programming (necessary and sufficient conditions for the solu-
tion are formulated using saddle points of the Lagrange function and proved in the Kuhn-Tucker theo-
rem) and many other problems. When training neural networks, you have to repeat the training process
on large clusters and check the network's trainability with different loss functions and different net-
work depth, which means that you have to run thousands of new calculations, where each time the loss
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function is optimized on large amounts of data. Thus, any acceleration in the process of finding extre-
mum points is a major advantage and saves computing resources.

Analysis of recent publications and problem statement

Many modern methods in searching saddle points are based on calculating the Hessian matrix,
inverting this matrix, the scalar product of the gradient vector and the current vector, finding the full
Lagrangian [3], etc. However, all these operations are computationally “expensive” and it would make
sense to bypass such complex calculations.

This paper proposes a new approach to solving the considered extreme problems. The idea is to use
methods for finding fixed points of nonlinear discrete dynamical systems for gradient descent problems.
It is assumed that these fixed points correspond to unstable equilibrium positions. This means that among
the multipliers of each equilibrium position there are those of which modulus is greater than one. Moreo-
ver, in the case of the gradient descent method, the Jacobian matrix is symmetric, which means that all
its multipliers are real. If the fixed point is saddle, then there are positive large units among the multipli-
ers. This case is the most complex in the theory of fixed points’ stabilization. In general, the problem of
finding fixed points is limited to the problem of local stabilization of equilibrium positions. To solve
these problems, there were proposed various control schemes [4-7], which can be divided into two large
groups: methods using the Jacobian matrix or without it. Naturally, it is assumed that the Jacobian matrix
at the fixed points themselves is not known, otherwise it would be possible to use the entire powerful
apparatus of linear control theory applied to systems linearized in the vicinity of the cycle. The Jacobian
matrix is a necessary attribute of Newton-Raphson type methods [8, 9]. Among the methods where the
Jacobian matrix is not used, the predictive control method has shown sufficient efficiency [10, 11],
which in various special cases allows some modifications.

The purpose of the presented work is to apply different modifications of the method of predic-
tive control stabilization and search for fixed points to searching for saddle points.

The article is organized as follows. Following the Introduction, section “Mathematical founda-
tions of algorithms” provides a brief overview of the results related to the predictive control method
for searching the fixed points. In the next section, “Modifying schemes of gradient descent”, the right
part of the nonlinear discrete system is replaced by a function of the usual gradient method, and after
that the predictive control applies, resulting in the different new scheme of gradient descent. In the
section “Numerical modeling results” modification of gradient descent methods are applied to search-
ing saddle points of the model function. The algorithm of calculation, visualization of results are giv-
en, as well as their comparison based on the convergence rate and size of basins of attraction the sec-
tion “Conclusions” examines the issue of the methods effectiveness in general, and the issue of im-
proving this efficiency.

Mathematical foundations of algorithms

A nonlinear discrete system is given:

Xy = (X)), X, eR",n=12,..., (1)
where f(x) — differentiable vector function of the corresponding dimension. It is assumed that this
system has one or more unstable fixed points, i.e. n= f(n) . The multipliers of the considered unsta-
ble equilibrium positions are defined as the eigenvalues of the Jacobian matrices f'(n) of dimensions

mxm at fixed points. Since the fixed points are not known, the Jacobian matrix spectrum is also un-
known. For the equilibrium position x, = of the system (1) the spectrum of the Jacobian matrix is

denoted as{u,,...,u, }. We will assume that some set estimate M of the multipliers localization

{w,,...,n,, } is known.
Let us take a closer look at the control system:

Xn+1 = F(Xn)! (2)
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N .
where F()=Y9,f0(x), fO0=f(x), fO=f(F* ), k=2..,N. Numbers
j=1

N
9,,..., 9 arereal. Itis easy to check that with > §; =1 within the system (2) there is also an equilib-
j=1

rium positionn . The task is to select a parameter N and coefficients 9, ,..., §,, so that the equilibri-
um position n of the system (2) is local to asymptotically stables. Naturally, when constructing these

coefficients, it is necessary to use information about the set of localization multipliers M .
Lemma 1 [11]. The Jacobian matrix of the equilibrium position n of system (2) can be conceived

of as:
N .
29,3, ©)
j=1

where J —Jacobian matrix of the equilibrium position n of system (1).
Instead of system (2), another control system can be considered:

N .
Xn+1 = f {Slxn + ZSJ f(Jl)(Xn)j . (4)
j=2

N
In case if ZSJ. =1 is in the system (4), the equilibrium position is maintained. In addition, the
j=1

Jacobian matrix of this equilibrium position is expressed in terms of the Jacobian matrix of the same
equilibrium position of system (1) by the formula (3).

The advantage of the control system (4) over the system (2) is a less humber of calculations of
the function values f (x) . All results for system (2) are transferred without change to system (4).

Theorem 1 [11]. Let f e C* and system (1) has an unstable equilibrium position with multipliers
{u,, ..., 1, }. Then this equilibrium position will be locally asymptotically stable of the equilibrium
position (2) if:

r(uj)e D, j=1...,m,

N .
where D = {z eC:|| <1} — open central unit circle, r(pn)=>9, p' .
=1
Note that the condition r(1) =1 must be met.

Different estimates for multipliers allow us designing control systems that stabilize equilibrium
positions.

Case A: M ={u,,...,1u,}-
If the multipliers are known exactly, then we may choose N =m+1 and coefficients

m+1 ) m
9,..., 9,,, from the condition r(u)=> 9, u' ZmLH(p—uk).
= H(l_uk) K=
k=1

If the starting point belongs to the basin of attraction of the equilibrium position, then the conver-
gence to the cycle is superlinear. This follows from the fact that all multipliers of the equilibrium posi-
tion of system (2) are equal to zero.

CaseB: M =(—p", 1), u" >1.
It follows from Theorem 1 that in order to stabilize the equilibrium position, it is necessary to
construct a polynomial r(u), so that r(1) =1 and | r(u)|<1for all |u|<u". The desired polynomial can

be constructed using Chebyshev polynomials of the first kind T, (x) = cos(narccos x) .
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Theorem 2 [11]. Let f eC' and system (1) has an unstable equilibrium position with multipli-

ers{u,, ... ,upc (-1, 1) . Let the value N be chosen from the condition ';/ZN> u*, and coef-
sinm

ficients 9,,..., 9, -
N ) N1 T
r(w)=>9 p =(-1) 2T sin— |,
() 2.9 1 (-1 N(u ZNJ
where T, (x) — Chebyshev polynomial of the first kind of an odd order N . Then this equilibrium po-
sition will be a locally asymptotically stable equilibrium position of system (2) (excluding a finite
number of cases, when p; = (costk/N)/(sinm/2N), k=1,...,N -1).
CaseC:M =(0, u’), n" >1.
Theorem 3. Let f eC' and system (1) has an unstable equilibrium position with multipliers

t L>u*,

< (0, u*). Let the value N be chosen from the condition—————cot?
ootk < 00 1+2cosm/2N 4N

and coefficients 9,,..., 9 —

N i i i o
rw=>9 p =-T COS— —C0S—— |+C0S— |,
) ,Zl i b NEM( N ZNJ ZNJ
where T, (x) — Chebyshev polynomial of the first kind of an order N . Then this equilibrium position will
be a locally asymptotically stable equilibrium position of system (2) (excluding a finite number of cases).
Case D: M =(—", 1), u >1.
Theorem 4. Let f eC' and system (1) has an unstable equilibrium position with multipliers

{uy, ...,y (-1, 1). Let the value N be chosen from the condition cotzﬁmﬁ, and coeffi-

cients 9,,..., 9, -

r(u) = i&i =T, (u(l— cosij + COSLJ :
=1 2N 2N

where T, (x) — Chebyshev polynomial of the first kind of an order N . Then this equilibrium position will

be a locally asymptotically stable equilibrium position of system (2) (excluding a finite number of cases).
Lemma 2 [12 — 14]. Let f eC" and system (1) has an unstable equilibrium position with multi-
-1+p
1+u’
position will be a locally asymptotically stable equilibrium position of system:

s

pliers {u,, ..., 1, < (—n*, 1) . Let the value v meets condition <v<1. Then this equilibrium

Xo = A=v) F(X,)+VX,.
Lemma 2 can be used to solve the stabilization problem in case 2.2. Functions

N-1

(—1)2TN(psin%j if Nis odd depict an interval (-, pu’) in (=c",1]. Function

2N

is odd (-0, ©) B (=", 1]. This means that multipliers of the equilibrium position of system (2) when

T, LH(COS%—COSLJ"'COS%j if N is odd depicts an interval (oo, u*) in (=", 1], and if N

INFORMACION TECHNOLOGY. AUTOMATION



84 . . . . ISSN 2076-2429 (print)
IMpani Opecbkoro nositexHiuHoro yHiBepceutery, 2020. Bur. 3(62) ISSN 2223-3814 (online)

choosing the coefficients, as indicated in Theorem 2 or 3, fall in the interval (—c”, 1]. Thus, multipliers
of the equilibrium position in system:

Xp. = (@=V)F(X,)+VvX,,

N . N .
where F(x)=>9,f7(x) or F(x)= f(81x+28jf“1)(x))fall within the interval (-1, 1]. That is,
j=1 j=2

the equilibrium position becomes locally asymptotically stable (with the possible exception of a finite
number of cases).

In a special case, when N=2 -T,|u COS—- — COS—— |+ COS—— =2x—x%, if N=3
N 2N 2N

A .0 3 1
1) 2 T, | psin— |==x—-=x°.
-1 N (lvl N 5 5
Case E: (general case).
Using the ideas of Theorem 1, we can propose the following scheme for stabilizing the equilibri-

um position. In this case, the coefficients 3; will not necessarily be constants:

a) we determine the matrix f'(x);
m+1 i

b) we determine the characteristic polynomial of this matrix 3" 9, (x) u'™ ;
=1

. - . 1 ml i
¢) we normalize the characteristic polynomial M—Z 9,(x) L
2 3;(x) =
j=1
d) we build the control system
Xn+1 = F(Xn)'

m+1 i m+1 .
where F(x)=— > 9,)fV(x) or F(x)=f %[glmzsj(x)f“‘”(x)] .
28,00 7 29;(x) "~
=1 j
Modification schemes of the gradient descent
Let us consider the problem of searching critical points of a function z=®(¢,...,¢,), for
o> o T

a_al, ceey a
(symbol “T” indicates the transposition operation). Hereafter, we will denote grad ® =G(x), where

which it is necessary to solve a system of equations grad ® =0, where grad ® ={

T . . R

x=(&,..., &,) . Hessian matrix H =
{a&iaa,-
are real. If these eigenvalues calculated at a critical point of different signs, then the critical point in
question is a saddle point, otherwise an extreme one. We consider the general case of eigenvalue signs.
A critical point is a fixed point of displaying X —yG(x), where y — some nonzero number. To search a critical

} is symmetrical, hence, its eigenvalues {t,,...,7,,}
i, j=1

point, let us consider the following iterative scheme:

X0 =X, —YG(X,) . 5)
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That is, we can now consider the problem of searching a fixed point of system (1) in which
f (x) =x—-yG(x), and apply all schemes suggested in the previous section. The fixed point multipliers

are related to the eigenvalues of the Hessian matrix by formulas:
uy=1l-y7;, j=L...,m,

In case if among t; there are numbers of different signs, then among the multipliers of the cycle
there will necessarily be large units.

Let us assume t, <...<t,, at that 7, <0, t, >0. Then if y is positive, we get p, =1-yt, >1,
R, =1-7yt, <1. Let’s additionally p, <0, and p* =max{u,, |u,[}. Then, p; e[-p*, p’], and we may
apply Theorem 2 to build a control scheme. When we choose N =3, then the control scheme (2) will

be as follows x,,, =g f(x,) —% f(f(f(x,)),and(4) x,,=f (%xm —% f (f(xn))] . Let us write down

these schemes for the system (5):

Scheme 1.1
un = Xn _yG(Xn);
Vn :un _YG(un);
w, =v, —yG(v,);
3 1
Xn+1 __un __Wn'
2 2
Scheme 1.2

u, =X, _YG(Xn);
Vi =U, _YG(un);
3 1
W, ==X, —=V,,
2 2
Xn+1 :Wn _YG(Wn)

Theorem 5. Let GeC' and parameter y is chosen from condition max{l-yrt,, |1—yrm|}<2.
Then, the fixed point x, =n of difference schemes 1.1 and 1.2 will be of locally stable equilibrium
position.

Now we will apply Theorem 3. Let us assume that t, <...<t,, where 1, <0, 7, >0 and
M, =1-yt, >0. Then,p, €[0,1-y7], j=1...,m. We choose N =2, then the control scheme (2)
will be as follows x. ., =2f(x,)— f(f(x,)), and (4) x ., = f(2x,— f(x,)). Let us write down these
schemes for the system (5):

Scheme 2.1
U, =%, —yG(x,);
v, =u,-yG(u,);
Xpy =2U, = V,.
Scheme 2.2
u, =X, —yG(X,);
v, =2X,—U,;

Xn+1 :Vn _YG(Vn)'
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J2-1

Theorem 6. Let G eC' and parameter y satisfy the condition y<T. Then, the fixed point
Y
X, =n of difference schemes 2.1 and 2.2 will be of locally stable equilibrium position.
We additionally apply Lemma 2. Now, we get schemes:

Scheme 3.1
u, =X, —yG(X,);
Vo =U, —yG(Uu,);
X,y =@=v)(2u, =V, )+ VX,.
Scheme 3.2

u, =X, _YG(Xn);
v, =2X, —U,;
Xna1 = (1_V)(Vn _YG(Vn))+VXn'

Theorem 7. Let GeC' and parameters y and v are chosen from conditions y<ﬁ,
]
2u—p? -1
2u—p’+1
will be of locally stable equilibrium position.

Hereby we note that each given scheme allows us finding all critical points at once, at that pa-
rameters must be chosen according to conditions of Theorems. However, the basins of attraction can
be very different when moving from one scheme to another. For the effectiveness of the difference
schemes application, both knowledge about the basins of attraction of stationary points and infor-
mation about the convergence rate to a stationary point are important. This is regulated non-
parametrically by the choice of scheme, parametrically — by the choice of an interval and an addition-
al parameter v .

Results of numerical simulation

Let us consider the test minimax problem [3]:

<v<l,where n=1-yr, . Then, the fixed point x, =n of difference systems 3.1 and 3.2

min max{CD(x, y)=2x2+y2+4xy+%y2—%y4] (6)

xR yen
where X,y € R. When solving the equation grad ® =0, we find all the extremum points:
z,=(0,0);
z =(—2+\/§, 2—\/5);
zZ,= (—2—\/5, 2+ﬁ).

Point z, is the local minimum point, but z,and z, are saddle points.

Let us build the basins of attraction of extreme points of problem (6) for each scheme from the
previous section.

Modeling and visualization of numerical results are performed in the Python programming lan-
guage from the Anaconda distribution package. The graphs are built using the Matplotlib library. All
calculations were performed on a computer with Intel(R) Xeon(R) E-2286M CPU @ 2.40GHz with
64GB ECC RAM with the operating system Ubuntu Linux (64 bit) installed.

No specialized libraries of increased accuracy were used in the process of calculations, since the
stability of methods to standard hardware errors was checked. At the same time, iterative schemes
were executed thousands of times based on the finite field arithmetic, which led to rounding the re-
sults. There were situations when the result of calculations was the NaN number (Not a number),
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which meant that results were approaching one of the infinities or went beyond the boundaries of the
rectangle in question on the plane (x, y).

Such cases were treated in a special way and the starting points were not added to the basins of
attraction. The grid was built in intervals x [-8.0,6.0] and y €[-2.0, 6.0] at an interval 0.1. Accu-

racy has been taken as 10™°. To ensure conditions for comparing different schemes, the same parame-
ters were chosen: y=0.1 and N =5000, in schemes 3.1 and 3.2 additional parameter v=0.5.

Basins of attraction for each scheme are shown in Table 1. Purple color indicates the basin of at-
traction for the point z,, blue color — z,, yellow — z,. The figure shows a significant difference be-
tween the basins of attraction when using different schemes. For the experiment conducted, both varie-
ties of scheme 2 were able to converge from a larger number of initial points (64...64.6%). The per-
centage of convergence was calculated as the percentage of points from the grid, which we used as the
starting iteration points, for which there was the convergence to a critical point.

Table 1

Basins of attraction of critical points for difference schemes 1.1, 1.2, 2.1, 2.2, 3.1, 3.2

Scheme name Scheme 1.1 Scheme 1.2

basins of attraction
visualization

basins’ areas

z,—-2702 z,-2305
convergence coefficient ~44.77 % ~61.51 %

Scheme name Scheme 2.1 Scheme 2.2

basins of attraction
visualization

basins’ areas

z, — 2407 z,—2821
convergence coefficient ~64.53 % ~64.09 %

Scheme name Scheme 3.1 Scheme 3.2

basins of attraction
visualization

basins’ areas

z,~3878
~59.82 %

convergence coefficient
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To estimate the rate of methods convergence, standard statistical data on this rate were calculated
for each of the critical points of the schemes from the different attraction basin points. The data is
shown in Table 2, all the values given means the number of iterations spent to approach critical points
at a given distance.

Table 2

Statistical characteristics of estimates of the convergence rate to different critical points for different schemes

Scheme Critical point Mode Minimum value Maximum value A\\//:Irjé]e
z, 585 2 1580 605.96
Scheme 1.1 z, 1602 742 2548 1578
z, 33 21 88 34.60
z, 592 2 1509 603
Scheme 1.2 zZ 1608 807 2818 1573
z, 33 21 79 33.42
Z, 920 2 2657 946.02
Scheme 2.1 z, 2349 753 3540 2306
z, 43 27 123 43.99
z, 930 2 2699 946.02
Scheme 2.2 zZ 2345 626 4242 2293
z, 43 25 105 42.48
z, 1845 2 4591 1894.95
Scheme 3.1 z, 4690 1795 4997 4573.21
z, 90 41 194 93.75
z, 1852 2 4439 1874.03
Scheme 3.2 z, 4696 2297 5000 92.53
z, 91 47 214 4544.60

For all the schemes presented in the article, a constant value of the parameter y was used, which

is not optimal from a practical point of view, and many library functions dynamically change this pa-
rameter as they approach a critical point. Therefore, these schemes must be modified to take into ac-
count an interval change as they approach the critical point.

Conclusions

The methods of predictive control of stabilization and search for fixed points to search for saddle
points considered in the paper showed improved results relative to the original method of gradient de-
scent with the new opportunities to find all critical, including saddle points. It should be noted, how-
ever, that not for all schemes it was possible to obtain the fastest search for extremals with the maxi-
mum number of initial points. This problem will be covered in greater detail in future publications.
Additionally, in the following articles it is planned to bring the schemes under consideration to the
level of Open Source libraries, such as Scipy (Python). This function has an open extension interface,
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which it is possible to embed new algorithms in, and this is what we are going to use in the future, and
bring all schemes to the level of library ones. This will allow using new methods for solving real-
world practical issues, including in the tasks of training neural networks.
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