36 . . . . ISSN 2076-2429 (print)
Ipaui Oxecpkoro NoaiTeXHIUHOTO yHiBepcuteTy, 2021. Bun. 2(64) ISSN 2223-3814 (onlinc)

INFORMACION TECHNOLOGY. AUTOMATION

THO®OPMAIIMHI TEXHOJIOT'Ti. ABTOMATHM3AIIIS

UDC 621.391

L. Prokopovych, DSc, Prof.,

O. Lopakov,

V. Kosmachevskiy,

Y. Babych, PhD, Assoc. Prof.,
P. Shvahirev, PhD, Assoc. Prof.,,

O. Denysova
Odessa Polytechnic State University, 1 Shevchenko Ave., Odesa, Ukraine, 65044; e-mail: kedrodess9@gmail.com

MATHEMATICAL MODELING OF INTERNET OF THINGS
TRAFFIC IN AD-HOC NETWORKS WITH HYBRID
ROUTING

LB. Ilpoxonosuu, O.C. Jlonakos, B.B. Kocmauesckuii, FO.I. babuu, I1.4. lllsacupes, O.B. [lenucosa. MaTeMaTH4He MOJeJIIOBAHHS
Tpadiky IntepHery Peueii B AD-HOC mepeikax 3 riopuanoro Mapmpyrusamiero. Y naHiil po6oti posrisaaerses BIuMB Tpadiky [HTepHery
Peueii, sikuii HOpMy€eTBCSI CHCTEMAaMK MOHITOPHHTY 1 AUCIIETYEPCHKOTO YIPaBIiHHA a00 IHIIMMU CUCTEMaMH, KOJIU BIIACTUBOCTI LIbOTO Tpadiky
OIHUCYIOTHCS BIACTHBOCTSAMH PETYIIAPHOro MOTOKY. OLIHIOETBCS BIUIMB 1[bOTO TpaiKy Ha Taki OCHOBHI IOKa3HUKK QOS sIK 3aTpHMKa JOCTAaBKU
JIaHMX 1 BIPOriAHICTH BTpat. B sikocTi Momeni Mepexi 3B’3Ky pO3IILIIAEThCsl cHCTeMa MacoBoro obcmyroByBants (CMO) 3 KOMOIHOBaHOO
JICLMIUTIHOKO OOCTyroBYBaHHsS. AHaJIi3 TEHJCHIINH PO3BUTKY 1H()OKOMYHIKAIIHHOI CHCTEMH HOKAa3ye, 10 B HEPCIEKTUBHUX MEpexkax 3B’SI3KY
icToTHO 30UIBIIMTHCS YacTka Tpadiky IP, mo npussene 10 foro BIUIMBY Ha SIKICTh 0OCIYTOBYBaHHS. 3 ypaxyBaHHsIM TOrO, 1[0 Tpadik B Mepexi
Oyzne mictuTH i Tpadik Tenemerpii, Ilei BIUIMB MOKE YMHUTH ICTOTHHII BIUIMB Ha sIKiCTh Horo obciyroByanHs. CydacHi Mmepexi AD-HOC
1o0y/I0BaHi Ha OCHOBI MPHHIIMITY «yCEPEAHEHHsD. 3TiHO 31 CTATUCTHKOIO, 0€3J1i4 MMOTOKIB JaHKUX 3 BUIAJKOBHUMH BapialliiMy IIUIEHOCTI Aa/yTh
B pe3yJIbTarti SIKHICH ycepeqHeHHit Tpadik. Aje Lell MxXin He NMpamioe B Mepexkax, CXMIBHAX 0 MPOsIBY MOTYXKHHUX MIiKOBHX BUKHAIB. Taki
CBOEPI/IHI, JIOKaJTi30BaHi B 4Yaci «CTOBMOTBOPIHHA» (congestions) BUKIMKAIOTh 3HAYHI BTPATH ITAKETiB, HABITh KOJM CyMapHa motpeda BCiX
MOTOKIB JIaJieKa BiJl MAKCUMAaJIbHO JOMYCTUMHX 3Ha4eHb. Lle HeraTBHO MO3HAYa€eThCs Ha €()EeKTHBHOCTI BUKOPHCTAHHS MPOIYCKHOI 3[JaTHOCTI
Mepex. Krmacnuna myaccoHiBcbka Mozienb Tpadiky, ska BHKOPHCTOBYBAJacs IPU INPOEKTYBAaHHI MEPEXKEBHX IIPOTOKONIB, HE BimoOpaxkae
peainbHOi JIiiCHOCTI: 1aHi peatbHOTO MEpPeXEeBOro TpadiKy MaroTh BIACTHBICTh CAMOIIOIOHOCTI.

Kmiouosi cnosa: Intepuer Peueit, (I0T), AD-HOC-mepexa, ¢yHKLis aBTOKOpeslii, MaTeMaTW4HE OYIKyBaHHS, IUCHEPCid,
KoedinieHT XepcTa, HAHIPOCTIIIHIA 1 caMOIIOAIOHUH MOTIK

I. Prokopovych, O. Lopakov, V. Kosmachevskiy, Y. Babych, P. Shvahirev, O. Denysova. Mathematical modeling of Internet of
Things traffic in AD-HOC networks with hybrid routing. This paper considers the impact of Internet of Things traffic, which is formed
by monitoring and control systems or other systems, when the properties of this traffic are described by the properties of the regular flow.
The impact of this traffic on such key QoS indicators as data delivery delay and probability of loss is estimated. As a model of
communication network the system of queuing (SMO) with the combined discipline of service is considered. The analysis of trends in the
development of the infocommunication system shows that the share of IP traffic in promising communication networks will significantly
increase, which will lead to its impact on the quality of service .Given that the traffic in the network will also include telemetry traffic, this
impact can have a significant impact on the quality of its service. Modern AD-HOC networks are based on the principle of “averaging”.
According to statistics, many data streams with random variations in density will result in some average traffic. However, this approach does
not work in networks prone to strong peak emissions. Such peculiar, time-localized “congestions” cause significant packet losses, even when
the total demand of all flows is far from the maximum allowable values. This negatively affects the efficiency of network bandwidth
utilization. The classical Poisson model of traffic, which was used in the design of network protocols, does not reflect the real reality: the
data of real network traffic have the property of self-similarity.

Keywords: Internet of Things, (IoT), AD-HOC-network, autocorrelation function, mathematical expectation, variance, Hearst
coefficient, simplest and self-similar flow

1. Introduction
One of the most promising areas of development of telecommunication networks and ICS in gen-
eral is the implementation of the concept of the Internet of Things (IoT) [1], which appeared largely
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due to the development of technologies and networks of wireless communication and means of receiv-
ing and processing information. This concept assumes an increase in the availability of information,
unlimitedly expanding the concept of accessibility, both in the spatial and temporal domains (the
availability of information about everything, everywhere and at any time) [2, 3, 4]. This formulation,
in practice, does not limit the scope of application of IoT technologies, which creates the prerequisites
for an increase in the number of corresponding devices — IoT network nodes. Along with this, one
should expect changes in the properties of traffic served in communication networks. In the present
time, a change in a number of traffic properties is noted, which is due to an increase in the number of
automatic devices connected to the network that generate traffic, the properties of which differ from
the properties of traffic produced by people. Such changes require the development of appropriate ap-
proaches to solving the problems of building IoT both in terms of traffic servicing and in terms of
choosing a network structure. In this concept, Internet things (or just things) are understood as objects
of the world around us (physical objects) or the information world (virtual objects). These objects
must be identifiable, and it must also be possible to integrate them into existing communication net-
works. Accordingly, every Internet thing must satisfy two conditions: identifiability (be able to be ad-
dressed) and the ability to interact with the network, i.e. must have an appropriate interface. In fact, if
these two conditions are fulfilled, an Internet thing can be considered as an element of a communica-
tion network, and since, potentially, it can have all the functions of network nodes, it can be consid-
ered as a network node. Depending on the used communication technologies and methods of building
the IoT network, this can be an end node, which is a source or receiver of information, or, for example,
a node that performs traffic transit functions. This creates potential prerequisites for the formation of
network structures with a significantly higher density of nodes than was previously the case in tele-
communication networks.

2. Analysis of publications and problem statement

One of the priority directions of development of the infocommunication system is the organiza-
tion of the Internet of Things (IoT) [5, 6], the concept of which is reflected in [7]. The development of
the IoT is an extremely important step, as it affects almost all areas of human activity. The penetration
of the IoT will contribute to the availability of more and more information, the growth of opportunities
for its analysis, the formation of decisions and actions based on its results.

The second important direction in the development of the telecommunications system is ex-
pressed by the concept of the tactile Internet (TI) [8], which implies a significant increase in the re-
quirements for the quality of service (QoS) of traffic, which are imposed by new interactive services.
An example is the construction of monitoring and dispatch control networks [9], in terms of the devel-
opment of [oT, telemedicine applications and unmanned vehicles. Comparing the construction of the
IoT with the construction of telemetric and telemechanical systems [10], one can notice a lot in com-
mon. The fundamental novelty of these areas consists, first of all, in the potentially possible number of
monitoring and control devices, in the possibilities of their penetration to the most varied levels of
technological and other processes, as well as in the requirements for QoS, in particular, for probabilis-
tic and temporal parameters. The need to deliver data between a large numbers of devices, which po-
tentially can significantly exceed the number of subscribers of existing communication networks, sets
the task of ensuring the availability, QoS, reliability and stability of the functioning of communication
networks in such conditions.

3. Unresolved problem area

In view of the fact that the nature of loT traffic, in general, differs from the traffic of other ser-
vices, it makes sense to assess its characteristics and impact on the quality of service. According to
[10, 11, 12], the traffic generated by devices of the Internet of Things can be conditionally divided into
three characteristic types: deterministic — produced by devices operating according to a rigidly speci-
fied schedule; deterministic technological — necessary to maintain the functioning of the system and
mediated, i.e. generated as a reaction to some external events. The traffic generated by IoT devices can
be served in conjunction with traffic from other communication services, for example, with traffic
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from base stations of mobile communication systems, wireless broadband access points and other net-
work nodes. Such traffic has the properties of aggregated and must be investigated and modeled.

4. Purpose of the article

The aim of the study is to develop a mathematical model of IoT traffic in AD-HOC networks
with hybrid routing, which will differ from the known models in that it will allow assessing the quality
of service differentiated for each of the traffic flows entering the common service system. The article
also explores the definition of aggregated traffic for the Internet of Things in AD-HOC networks. The
proposed model and method of servicing the traffic of the Internet of Things make it possible to take
into account its influence on the quality of functioning when choosing the parameters of the communi-
cation network serving it.

5. Aggregated traffic in AD-HOC networks

Aggregation of traffic in the network solves the problem of fault tolerance and summation of the
capacity of data transmission channels involved in the aggregation. Typically, most traffic flows in
modern networks are aggregated. They consist of many streams that form them. These are streams
from various devices (users), streams of various services, etc. In data transmission networks, there are
a large number of queues (buffers) for transmission in network nodes, which affect each other in the
sense that a stream leaving one queue enters one or several other queues, possibly after merging with
parts of other streams from any other queues. From an analytical point of view, this complicates the
nature of the processes of entering the queues located in the direction of flow. The main difficulty lies
in the fact that when packets are transmitted outside the first queue in relation to the point of their en-
try into the network, the intervals between the moments of packet arrival become strongly dependent
(correlated) with the packet lengths, or rather with the time of their transmission. In real networks,
when packet lengths and intervals between arrival times are correlated, numerical modeling shows that
at high loads, the average packet delivery delay is less than in the ideal case, when there is no de-
scribed mutual dependence. However, in the case when the loads are small, the opposite is true. The
development of data transmission networks has led to the widespread use and use of self-similar traffic
models for modeling. The definition of self-similarity of traffic is often based on the autocorrelation
function of the flow. Suppose that the target process is specified by the sequence X=(Xi, X2, ..., X)),
where t=1, 2, ..., N.

Then its autocorrelation function can be defined as:

r(k) = z,-zl (X,- _X)()f”k -X)
(N -k)o

; e

where N is the number of elements in the sequence; c° — dispersion.

An aggregated process (stream) means a process (stream) defined by a sequence of blocks.
Blocks (elements of this sequence) are obtained from the original stream by averaging it over blocks
of m consecutive elements. An aggregated process over blocks of length m can be written as:

X" =X, X, LX), ()

where X" =l(X
m

tm—m—1

+.X,,)-

Its autocorrelation function is Im(k).

The flow X is strictly self-similar if Im(k) =r(k), for m=2, 3, .., N. Also, the flow is strictly self-
similar if the autocorrelation functions correspond to formula (1), and for aggregated streams corre-
spond to formula (2) obtained from it when aggregating into blocks of arbitrary size. In this case, the
autocorrelation functions of the original stream must be equal. In other words, the correlation coeffi-
cient does not change when the stream is averaged over blocks of arbitrary size. For example, combin-
ing multiple traffic sources with alternating periods A and B creates aggregated traffic that is self-
similar. Aggregated data transfer traffic can be viewed as a superposition of sources that transfer the
requested file during a certain period A, and period B corresponds to the time interval between trans-
fers. The characteristics of such traffic appear to be robust to network operations such as splitting, ag-
gregation, queuing, management, and shaping. Self-similarity is preserved when homogeneous and
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heterogeneous, that is, independent, traffic sources are superimposed, and this property takes place
under a wide range of conditions: both in cases of changes in bandwidth and buffer capacity and when
mixing with other traffic.

In IoT networks, aggregation of flows occurs in relation to traffic flows produced by terminal de-
vices, i.e. internet things. Depending on the structure of the IoT network, traffic aggregation can occur
at different levels. For example, in a star structure, which is typical for data collection networks, traffic
aggregation occurs at the gateway level (or gateways if there are several). In networks of a tree struc-
ture, aggregation of flows also occurs at the level of transit nodes of the network, which, in most cases,
can be Internet things themselves. It is also worth noting the features that arise when using wireless
technologies for organizing an IoT network. They consist in the fact that the properties of an aggregat-
ed traffic stream can be influenced by streams that are not actually part of this aggregated stream, but
nevertheless affect its service. The reason for this is the use of a common distribution environment,
which may be busy serving a third-party thread at some points
in time. This effect complicates the analysis, but it can be tak- QoSier
en into account when choosing the properties of the aggregated

flow service system in the IoT network model. k

For the analysis, the model shown in Fig. 1 was chosen. It (i)
consists of an [oT traffic generator that simulates the operation
of one device and a traffic generator for traditional communi- —— T P

cation services and TI traffic, which is denoted as H2H + T1.
The generated traffic flows arrive at a communication node, | QoS
the model of which is represented by a queuing system with a l
combined service discipline (Wlth Waltlng and failures). The Fig. 1. Aggregated traffic service model
average service time of a packet (message) is 7 .

We will denote the traffic intensity of the Internet of Things as A, and the H2H traffic will be

denoted as A, , the intensity of the aggregated flow A=A, + A, . With a certain probability p, the

packet arrives at the input of a system in which all positions in the queue are occupied and gets reject-

ed (losses occur). At the output of the system, the aggregated flow has a total intensity A . The proper-
ties of the mixed stream at the input of the system are determined by the properties of both streams;
therefore, in general, they differ from both the properties of traditional traffic and the properties of loT
traffic. The operation of this system will be characterized by indicators of the quality of service: the
probability of losses (refusals) of packets (messages) and the delay in packet delivery (waiting time in
the queue and service time). Various services generating traffic in the communication network have
specific requirements for the values of the quality of service indicators. The process of servicing pack-
ets (messages) affects the properties of the served traffic, which then enters other network elements;
therefore, the properties of the served traffic at the output of the system are also of significant interest.

When studying the mutual influence of the traffic flows, the quality of service indicators sepa-
rately for [oT and H2H traffic flows will be evaluated.

IoT traffic service model

The model of the queuing system described above can be represented as the G/G/1/k system. For
this system, there are no accurate analytical models that allow us to estimate the probability of packet
loss and delivery delay (waiting time in the queue). In [13], the diffusion approximation method is
used to estimate the probability of losses in such a system with known distribution parameters describ-
ing the traffic at the input and the packet service process, and the following expression for an approx-

imate estimate is obtained:
2
I-p  awc”
p= . pCtt (3)
| paa™”
— <

where C? and C? — quadratic coefficients of variation of the distributions of the input flow and ser-
vice time, respectively; n, — buffer size; p — system boot.
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An approximate estimate of the average packet delivery time can be obtained using [14]:

t (c2+c’ )1 +c57) —
r=—PL |20 I _ 70 7 )
2(1-p) t a +o;

S

where 62, o — the variance of the time interval between packets and the service time; @ — the aver-

age value of the interval between packets; 7 — average service time.

Formula (4) determines the average packet delivery time for the general type of traffic.

Since we are interested in a separate assessment of the quality of service of H2H traffic and IoT
traffic, it makes sense to investigate the applicability of the above approximate solutions for assessing
the quality of service of an aggregated traffic flow. We will assume that the human-to-human back-
ground traffic flow (H2H) has the properties of a self-similar flow (the value of the Hurst coefficient
H=0.7...0.9). This assumption is based on the fact that a large proportion of traffic in modern com-
munication networks is video transmission. As a rule, video playback by modern players generates
self-similar (burst) traffic. Thus, this assumption about the properties of subscriber traffic is quite ac-
ceptable. Let's also make the assumption that M2M traffic is a deterministic flow, defined as a periodic
process of sending data to the monitoring system. This assumption is based on the fact that in many
cases M2M traffic is generated by monitoring and supervisory control (SCADA) systems that periodi-
cally poll the status of the sensors.

Researching the Impact of LIoT Traffic on Quality of Service

To build a simulation model, the AnyLogic simulation system was chosen [15], which allows creat-
ing discrete event simulation models. To simulate a self-similar flow, a generator of a sequence of inde-
pendent events was used, the time intervals between which are random and have a Pareto distribution:

k
X=X ;

Sx) =917 )

0, x<x,,

where x, and k — distribution parameters.

Based on formula (5), we determine the moments of a random variable.
The mathematical expectation and variance are determined according to:

Fig. 2 shows examples of the implementation of the simplest (H=0.50) and self-similar flow
(H=0.75).

16 16
$14 14
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g 12 o2
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210 g 10
a a
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5 8 < 8
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§6 26
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’ | | i > |
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— N N> N —mNn WV >0 — NN >~ — N NN~ NV~ NN >~
<t — 0 O n O < ANy Oon
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Time, sec Time, sec
a b

Fig. 2. The simplest (a) and self-similar () flows
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A deterministic stream is a regular stream with 20

a given packet rate. Figure 3 shows the implementa- 4 18

tion of aggregated traffic (H2ZH+M2M) with a ;éf 12

Hurst coefficient value H=0.8. § 12

The Hurst coefficient is estimated by the <% 10

method of analysis of variance changes [16] based 8 ¢
on formulas (6). The graphs of the dependences of &
Z

6

the variance of the incoming and outgoing flows on 4

the flow aggregation interval are shown in Fig. 4. 2
This example is given for a relatively high traf- 0=

NN~ O —n N~ O — o0\~
fic volume (0.9 Earl). As will be shown below, the TIRERTEILAITIREE R
value of the Hurst coefficient of the served flow Time, sec
depends on the load intensity, at a high value of Fig. 3. Implementation
which the properties of the output flow are deter- of aggregated traffic (H=0.7)

mined by the properties of the service process.

When constructing the model, it is assumed that the service time should reflect the time of packet
transmission over the communication line [17]. The transmission time of a packet is determined by the
packet size and the line rate. If the latter is constant (such an assumption can be made for wired com-
munication lines), then the transmission time is determined only by the size of the packet and the dis-
tribution function is determined by the distribution function of the packet length. Let’s assume that the
minimum and maximum packet sizes are limited. Based on the analysis of the results of a sufficiently
large number of measurements, it is concluded that a large proportion of packets in wired communica-
tion networks have either a maximum length or a relatively short length. Packages with intermediate
lengths make up a significantly smaller percentage. Therefore, to approximate the distribution of the
packet length for modeling purposes, the beta distribution is chosen [18]:

1 -1 -1
x)= X (A-x)", 7
S (x) Bluv) (1-x) (7)
where u, v — form parameters; B(u, v) — beta feature.
0 0
| \ \ _1
\ _ )
-2 ‘-\_“ \
s y=-0.3182x—-0.1428 )
23 S \.\
20 20_4
i | | s e,
5 B y=-09742x+0.1021 g,
-6 =7
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7
lg(m) lg(m)
a b

Fig. 4. Estimation of the Hurst coefficient for incoming (@) and served (b) streams
(H=0.80 and H = 0.51, respectively)

According to the above formula (7), we will use the beta distribution of the packet length typical
for Internet traffic. Different IoT applications can create packets of different lengths, however, in this
model, we focus on monitoring and dispatching services, the implementation of which currently uses
packets of equal length (required to represent telemetry data). In this model, we assume that the length
of the IoT packets is constant (“short” packets).
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6. Analysis of simulation results

As a result of simulation, empirical dependences of the probability of packet loss on traffic inten-
sity were obtained, differentiated for loT traffic and background traffic. These dependencies are shown
in Fig. 5 for different buffer sizes. The red dashed line / indicates the Deterministic Flow for approx-
imating the probability of packet loss and delivery delay using the diffusion approximation method
using formula (3). The blue dashed line 2 indicates the Self-Similar Flow for approximate estimation
of packet loss probability and delivery delay using the same method.

0.7 0.6
n=2 n=10 G
0.6 0.5 |,
A e
. 0.5 Self-similar flow £0.4 | —J 7 O e,
204 = Self-similar flow -
& 9‘30.3 A \
203 | & S 2
2 " LA £ Deterministi S " Deterministi
= : yra eterministic —0.2 ete stic
02 \ T AL flow flow
0.1 - 0.1
0 0.5 15 20 O 0.5 5 2.0

1.0
Load intensity, Erl
a

1.0 1
Load intensity, Erl
b

Fig. 5. Dependence of the probability of losses on the load intensity
for different buffer lengths (a) n=2 and (b) n=10, p=1

These figures also show the dependences obtained according to the approximate formula (3). The
simulation results showed that the estimate using formula (3) gives a slightly overestimated value of
the loss factor, and the largest error (about 2 times) occurs for a self-similar flow at average values of
the load intensity. It can also be seen from the graphs above that the loss factor for regular flow (IV)

claims is much less than the loss factor for self-similar flow claims in aggregated traffic.

4.0 ; 12
n=2 f n=10 Self-similar flow ]
3.5 '.' 10 T
3.05| ‘ Self-similar e : il
505 Model . flow = 4 8 f PAVa =
o = = Model LA \Determmlstlc
< 2.0| D O o . A e E6 71 flow
é 1.5l i '\Deterministic_ A, o |
H71 o flow
1.0p |
0.5 2l
0

0" 02 04 06 08 1.0 12 1.4 1.6 1.8 2.0

Load intensity, Erl
a

02 04 06 0.8 1.0 1.2 14 1.6 1.8 2.0
Load intensity, Erl

b

Fig. 6. Dependence of the packet delivery delay on the load intensity
for different buffer lengths (a) n=2 and (b) n=10, p=1

Fig. 6 shows the empirical dependences of the packet delivery delay for self-similar and regular
flows in aggregated traffic on the load intensity for different buffer sizes (n=2 and n= 10, respective-
ly). These dependences were obtained from the results of simulation modeling. For comparison, these
figures show the estimates obtained using the approximate model (dashed line). As can be seen from
the above simulation results, the average delay of packet delivery for a self-similar flow is slightly
higher than delivery delay of the regular flow packet. The difference in values does not exceed 20 %.
The analytical model for the aggregated flow rather accurately describes the packet delivery delay in
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the range of load intensity values, in which packet losses are close to zero (up to 0.5 Erl with a buffer
length n=2 and 0.8 Erl with n=10), and its values are closest to the delay values for a self-similar
flow. Thus, regular flow (IoT) claims are served with a higher quality, and this is mostly evident in an
increase in the loss rate for shared traffic. When studying the properties of traffic at the output of the
service system, the dependence of the Hurst coefficient [19] on the load intensity was investigated.

Table 1 shows the results of simulation modeling of the QS (queuing system) of the form
G/M/1/k, the input of which receives an aggregated flow obtained by combining self-similar and regu-
lar flows. The value of the Hurst coefficient of the input stream H, =0.77.

Table 1
Values of the Hurst coefficient of the served flow to the system outputs on the intensity of the flow load G/M/1/k

. . Hurst index values
Load intensity, Erl Self-similar flow Deterministic flow
0.5 0.75 0.71
0.6 0.725 0.73
0.7 0.71 0.722
0.8 0.68 0.667
0.9 0.66 0.651
1.0 0.649 0.625
1.1 0.625 0.63
1.2 0.6 0.625
1.3 0.58 0.65
1.4 0.56 0.552
1.5 0.549 0.525
1.6 0.525 0.551
1.7 0.519 0.47
1.8 0.49 0.46
1.9 0.472 0.472
2.0 0.465 0.465

With an increase in the load intensity at the QS input, a decrease in the Hurst coefficient of the
serviced flow at the QS output is observed. At low and medium values of the load intensity at the input
from O to 0.5 Erl, the Hurst coefficient of the output flow is practically equal to the analogous parame-
ter of the input flow. The obtained dependence can be explained by the fact that for high values of the
load intensity, the properties of the serviced flow are determined largely by the distribution law of the
service time than by the properties of the input flow, which coincides with the results of the study [20].
At a high load intensity, the distribution of the duration of the time intervals between packet arrivals
tends to the distribution of the service time, i.e. to the beta distribution, which is ultimate.

Consequently, the time intervals between packets take on a limited range of values, while a self-
similar stream is characterized by a distribution having a “long tail” (for example, a Pareto distribu-
tion). Thus, for the chosen service time model, an increase in the load intensity leads to a decrease in
the self-similarity properties of the served traffic.

7. Conclusions

1. The simulation results showed that when servicing an aggregated stream, the parameters of the
quality of service of IoT traffic and background traffic differ significantly. Analysis of the results of
modeling the process of servicing the aggregated stream showed that the probability of packet loss of
the regular stream is less than that of the random stream (H2H+ TI). Moreover, this difference in-
creases with an increase in the intensity of the incoming load.

2. Analysis of the dependence of the self-similarity properties of the serviced flow on the load in-
tensity showed that the properties of the output flow are close to the properties of the input flow at
small and medium values of the input load intensity. At large values of the load intensity, the proper-
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ties of the served flow are determined by the distribution of the service time. The results obtained
demonstrate the range of applicability of known approximate models for systems G/G/1/k and G/G/1
for describing the loss rate and packet delivery delay.
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