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The theory of thermal fluctuations in open hydrodynamic steady states (OHSS) is presented
exclusively within the framework of hydrodynamics. The history of studies of fluctuations in a conti-
nuous medium with a stationary flux is described. It is shown that the application the fluctuation-
dissipation theorem (FDT) to the OHSS with the requirement of fulfilling the Onsager’s reci-
procal relations (fluctuating hydrodynamics), is erroneous. The reason is that the flux, changing
the dynamics and initial values of the fluctuations, violates the detailed balance existing in equili-
brium. This is demonstrated by the example of the Mandelstam problem on fluctuations in a medi-
um with a heat flux. For this problem, the structure dynamic factor is calculated for an isotropic
solid and a liquid. The loss of time symmetry by the correlation functions of fluctuations and the
asymmetry of their spectral representations in this problem is due to the spatial temperature vari-
ation, which determines the flux. In order to show the generality of this result for all OHSS with
spatial heterogeneity, the Kelvin problem on thermal fluctuations of the interface displacements
between two liquids is also considered. The upper moving liquid has velocity potential changes as
the temperature in the Mandelstam problem. Reciprocal relations for both the Mandelstam and the
Kelvin problems are pointed out.
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I. INTRODUCTION

Ninety one years ago, Onsager established reciprocal
relations obtained from the symmetry of the correlation
functions of thermodynamic (hydrodynamic) fluctuati-
ons (detailed balance) [1]. To explain the origin of such
symmetry, he put forward the principle of microscopic
reversibility, based on the fact that the movement of
molecules is carried out by equations that are even
with respect to time. Since all substances are composed
of molecules, it was believed that Onsager’s reciprocal
relations will always be executed.

Below, however, a problem is discussed for which this
is not the case. We are talking about hydrodynamic
fluctuations in steady states with a stationary flux. There
are many examples of such states in hydrodynamics.
Investigations of these systems, which began about half
a century ago, intensively use various kinds of statistical
substantiation for the fulfillment of Onsager’s reciprocal
relations in such systems. In this article, we want to show
that there is no need to use them, since all necessary
statistical justifications in hydrodynamics have already
been made. Thus, hydrodynamics is quite self-sufficient
for solving problems of hydrodynamic fluctuations in the
OHSS.

I1II. HISTORICAL OVERVIEW

The author’s interest in thermal hydrodynamic
fluctuations in the OHSS was sparked by Professor

This work may be used under the terms of the Creative Commons Attribution 4.0 International License. Further distri-
v bution of this work must maintain attribution to the author(s) and the title of the paper, journal citation, and DOI.

I. Z. Fisher in the early seventies of the last century.
Fisher believed that the flux would yield peculiarities in
the light scattering spectra, and thus, it would be possi-
ble to draw conclusions about the flux from the spectra.

As it turned out later, a similar idea was put forward
much earlier by Mandelstam. In [2], he proposed to study
the scattering of light by thermal fluctuations in a medi-
um subjected to a stationary heat flux. Mandelstam
expected that the scattering intensity from a certain
small region would be determined not only by the
temperature of the region itself, but also by its distributi-
on. Thus, we can say that Mandelstam is the founder of
the study of hydrodynamic fluctuations in the medium
with fluxes. Note that a hundred years ago (from 1918 to
1922) L. I. Mandelstam headed the department of phys-
ics at our university, which was then called the Odesa
Industrial Institute.

For the problem formulated by Mandelstam, Leonto-
vich calculated heat flux fluctuations at some point of
a crystal plate, whose temperature varies linearly in
the direction perpendicular to the plate [3]. The basis
of Leontovich’s theory was the simple assumption that
fluctuations are determined by the local temperature
in the point under consideration. It follows from the
results obtained by Leontovich that the fluctuation
elastic acoustic waves observed in the scattered light
should have different intensities, which was noticed by
Vladimirskii [4], see also [5].

The steady state of the medium with the flux is in
general non-equilibrium, so it is natural that fluctuati-
ons in such states are called non-equilibrium ones. Preci-
sely due to the non-equilibrium, there was no strict base
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for the theory of such fluctuations from the very begin-
ning of studies. This led to an abundance of various
research methods. In particular, before [3], Leontovich
considered, in his own words, “a one-dimensional and
moreover rather special model of a crystal” [6].

The experiments performed at that time to detect
the asymmetry of satellites were unsuccessful [7], obvi-
ously due to imperfections in the used equipment (experi-
mental confirmation of the asymmetry occurred much
later [8]). For this reason, and also in connection
with the death of Mandelstam, the active study of
non-equilibrium hydrodynamic fluctuations in the USSR
stopped. A detailed history of the study of light scatteri-
ng spectra until this period is described in [9].

A new impulse for the study of nomn-equilibrium
hydrodynamic fluctuations was generated by Uhlenbeck
in his review lectures [10], where he presented his visi-
on of the transition from a microscopic description to a
macroscopic one in statistical physics and in particular
for the steady state with a flux. In detail the problem is
considered in works [11, 12], where Fox and Uhlenbeck
derived the Langevin FDT for fluctuating forces. This
was done macroscopically by preserving the Onsager’s
reciprocal relations in the derivation of the FDT [11] and
microscopically on the basis of the Boltzmann kinetic
equation [12]. For the Navier—Stokes liquid, the main
conclusion made here is that the sources of fluctuati-
ons in the equations of hydrodynamics will be the same
as in an equilibrium liquid, regardless of the specific
form of the considered non-equilibrium steady state,
i.e. sources of fluctuations are universal for all OHSS.
The same conclusion was made a year earlier by Bi-
xon and Zwanzig [13] derived fluctuating forces from the
Boltzmann equation using different method than [12].

The same kind of statistical justification has also been
used in many works devoted to obtaining the FDT
for systems with flux, see for example [14-16]. All of
them are based on the fact that the source of fluctuati-
ons is randomly moving molecules. The macroscopic
fields causing the non-equilibrium have scales signi-
ficantly exceeding the molecular scales. Therefore,
they cannot change significantly the molecular moti-
on, and, consequently, the intensities of the sources of
hydrodynamic fluctuations. The influence of such fields
is reduced only to the modulation of the intensities of
the equilibrium fluctuating sources.

Fluctuating sources for the equilibrium (flux less)
liquid were established by Landau and Lifshitz [17],
who applied the Callen—-Welton FDT to the system
of hydrodynamic equations for fluctuation perturbati-
ons. Earlier, a similar approach was used by Rytov for
electromagnetic fluctuations [18]. Landau and Lifshitz
found the correlation functions of fluctuating forces (or
random fluxes) added to the equations of the Navier—
Stokes hydrodynamics. Subsequently, they received the
name of the Landau-Lifshitz fluctuating forces.

The finite intensity of the Landau-Lifshitz fluctuat-
ing forces and the statistical justification for their uni-
versal application to any OHSS allowed Uhlenbeck to
suggest an increase of hydrodynamic fluctuations in
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non-equilibrium dissipative hydrodynamic steady state
systems near stability thresholds. Zaitsev and Schli-
omis [19] were the first to consider the relatively si-
mple convective Rayleigh—-Benard instability with the
Landau—Lifshitz fluctuating forces for a certain average
temperature of the liquid layer. Their results confirmed
the assumption of a fluctuation increase when approachi-
ng the stability threshold.

The subsequent modernization of the non-equilibrium
Langevin FDT for the OHSS was the use of local
values of thermodynamic parameters in the equilibrium
formulas for the sources without changing the formulas
themselves. It was believed that in this form the FDT
takes into account local equilibrium in hydrodynami-
cs. As a result, a whole new area has arisen in stati-
stical physics, called fluctuating hydrodynamics, see
[20] and references therein. Adherents of fluctuating
hydrodynamics, referring to the non-equilibrium of the
problem, reject other possible methods of solving the
problem of fluctuations in the OHSS. Thus, the results of
calculating correlation functions of fluctuations obtained
by solving the Cauchy problem with the averaging of the
initial conditions [21] for the same problem as in [19] were
not recognized. Fluctuating hydrodynamics continues to
develop rapidly [22].

The combination of kinetics to justify the sources
of fluctuations and the equations of hydrodynamics
to describe the evolution of fluctuations in fluctuating
hydrodynamics makes the concept of non-equilibrium
terra incognita for stationary hydrodynamic states. The
terms “strong non-equilibrium”, “weak non-equilibrium”,
“out of equilibrium”, etc. are used in the literature.
In fact, there can be no combined (“joint”) descripti-
on. Kinetics and hydrodynamics are clearly separated
and have different temporal limits of applicability,
which was shown by Bogoliubov back in 1946 [23].
Bogoliubov’s work also gives an answer to the question
of what constitutes a non-equilibrium in hydrodynami-
cs, namely: hydrodynamics is valid in the approximati-
on of local equilibrium. This conclusion and Onsager’s
regression hypothesis are the base that has been lack-
ing since the Mandelstam problem arose, and that is the
starting point in the whole theory presented below.

III. EVOLUTION TO STEADY STATE

Bogoliubov microscopically examined how a transi-
tion from a certain deviated state to an equilibrium
state occurs. The set of coupled equations for distributi-
on functions obtained by him from the exact Liouville
equation was also studied in the works of Born, Green,
Kirkwood, Yvon and was called the BBGKY hierarchy.

The solution of the corresponding system of equations
is based on the difference in evolutionary time at different
stages. There are three time scales determined by the
collision time 79, the time between collisions %y, and the
time the molecule travels the inner size Ty. The orders
of these quantities for gas are 10712 s, 1072 s, and split
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of a second, so that inequalities arise:
0 L tg K Tp. (1)

Bogoliubov named the stage of the evolution of the
system in the time interval 7p <t < tg kinetic. The hyd-
rodynamic stage sets in for times ¢ > ty. In liquids, where
the time between collisions is the same as the collision
time, the hydrodynamic stage is set in 10712 -1079s.

From the BBGKY hierarchy it follows that at the
kinetic stage the one-particle distribution function is
decisive. All multiparticle distribution functions are
expressed in terms of one-particle. At the hydrodynamic
stage, when enough collisions have occurred, a local equi-
librium is established, and we should talk only about
macroscopic hydrodynamic variables depending on the
space-time coordinates and their fluctuations.

Thus, the stochasticity that occurs at the kinetic stage
for a single molecule is not related to the hydrodynamic
stochasticity of a liquid particle, when the state of the
system is described by the field quantities, such as densi-
ty, temperature, pressure. At the hydrodynamic stage,
the thermodynamic limit is fulfilled for the number of
molecules, so that the substance is a continuous medi-
um for which there is no other “non-equilibrium” other
than local equilibrium. Hydrodynamic fluctuations are
fluctuations of locally equilibrium field quantities, or else,
hydrodynamics is valid in the zero order by the Knudsen
number; there are no molecules in it.

From a mathematical point of view, the assertion
that hydrodynamic fluctuations are locally equilibrium
is a consequence of the central limit theorem. Since any
hydrodynamic variable is the result of the summation of
such random variables as the number of molecules N,
their momenta or energies in the limit N — oo, the
distribution of fluctuations of hydrodynamic quantities
should occur according to the normal law.

There is no reason to think that the picture of
the evolution of the perturbations in the OHSS gi-
ven by local hydrodynamic variables will be different.
In this case, for large times t > tp, it is generally
accepted to use hydrodynamic equations for such
perturbations (Onsager’s regression hypothesis), whi-
le the hydrodynamic description that arises in the
thermodynamic limit always implies local equilibrium.

The theory of hydrodynamic fluctuations under the
conditions of local equilibrium formally does not dif-
fer from the theory of equilibrium fluctuations. In
hydrodynamics the fulfillment of the limit N — oo for
any arbitrarily small liquid particle ensures the fulfill-
ment of the law of large numbers and that fluctuations
are small. The dynamics of small fluctuation deviations
x; from certain stationary values is determined by the
linearized Navier—Stokes hydrodynamic equations

i = —XAijLj, (2)
here and below we use the notation and definitions
adopted in [24]. The statistical properties of fluctuations

are specified by the locally equilibrium Gaussian distri-
bution function of the initial values

f(x) x exp (—;@.jxixj) : (3)

The matrices A and S depend on the macroscopic
fields that determine the OHSS, and this is the main
difference from the equilibrium version. Inhomogeneous
fields lead to spatial dispersion of the corresponding
matrices. Equations (2), (3) determine the random
Ornstein—Uhlenbeck process, whose stationarity gives
the possibility of its spectral, in time, representation. The
spectral densities of the correlation functions of fluctuati-
ons are equal

o

(wi27),, = / (s (1) 2 (0)) e, (4)

— 00

where angle brackets mean locally equilibrium averag-
ing. We can calculate (4) using three equivalent methods.
The first is direct calculation. The other two methods
are more indirect and represent fluctuation-dissipation
theorems — the first (Callen-Welton) and the second
(Langevin). In this spirit, the work [25] was carried out,
which continued the work [21].

IV. FLUCTUATING HYDRODYNAMICS

Here local equilibrium is considered as equilibrium,
and states with a stationary flux are classified as non-
equilibrium. Hence the use of the term “Non-equilibrium
steady state” (NESS) and desire to consider such states
from the first principles.

The Langevin fluctuation-dissipation theorem is the
main method for studying fluctuations in fluctuating
hydrodynamics. As is known, it consists in adding
fluctuating forces with correlation functions

(yi () y; (0)) = Qijd (t) (5)

to the right-hand side of (2). To find correlation functi-
ons of fluctuations or their spectral densities, we must
average the solution of inhomogeneous equations using
(5). In fluctuating hydrodynamics, the intensity of
fluctuating forces @ is determined so that Onsager’s reci-
procal relations must be fulfilled. As already said, mi-
croscopic and macroscopic substantiations of the choice
of such intensities are used.

In the first case the starting point in [12, 13] is the
solution of the usual Boltzmann equation in the form of
a series over deviations from equilibrium. The zero term
in this expansion is the equilibrium Maxwellian distri-
bution function. It is immediately clear that as the zero
state, the equilibrium state is used, where there are no
fluxes. The dynamics of fluctuations for this expansion
will be determined by the matrix Acq corresponding equi-
librium, and the fluctuating forces will be the same as
those of Landau and Lifshitz. If instead of the equilibri-
um Maxwellian distribution function we use the locally
equilibrium one, keeping the same expansion, we again
obtain the Landau and Lifshitz formulas, only with local
temperature.

In the second case, the same result is achieved by
referring to the symmetry of the intensity matrix @
[11, 16]. It is believed that only the symmetric part of
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the matrix A, i.e., the matrix Aoy, contributes to the
intensity. This conclusion is illustrated by considering
fluctuations of the oscillator relative to the zero position
and hydrodynamic fluctuations in a fluid at a rest. That
is, non-flux systems are considered.

Thus, the above works substantiated application of the
Langevin FDT with sources determined by the equilibri-
um matrix Aeq to the steady states with flux. According
to fluctuating hydrodynamics, the matrix A that determi-
nes the dynamics of fluctuations depends on stationary
fluxes, but the intensity of Langevin sources, determined
by the matrix A.q, does not.

The fallacy of this kind of conclusions is that the FDT,
both the first and the second, are mathematical methods
for solving systems of linear differential equations
with random initial conditions and absolutely do not
need any statistical justification. Indeed, formula (4) for
the spectral density can be represented as

oo

(wiz5),, = / (a: (t) 25 (0)) et
0

+ / G (1)1 (0)) e, (6)

0

and the same spectral density obtained from equations
(2) with fluctuating forces can be represented in the form

(Ctl‘iﬂ;‘j)w = (—iwé;ﬂ» + )\ki)_l (Z'w(smj + )\mj)_l Qrm- (7)

The second FDT answers the question of what should
be @ so that (6) and (7) coincide, and, therefore, has
exclusively algebraic, and not statistical, origin. From
equality (6) and (7) we obtain the only one formula for
the second FDT

Qij = Yij + Vjis (8)

where v;; = )\ik,é’l;jl are kinetic coefficients, and Bigl =
(x;x;) are simultaneous correlation functions of fluctuati-
ons. Similarly, the first FDT follows from the defini-
tion of susceptibility and the same kind of algebraic
transformations.

It is quite another matter that statistical physics
determines the matrices A and 5! involved in the FDT.
If, however, we are talking about hydrodynamics, then
all the problems have already been solved: X is determi-
ned by Onsager’s regression hypothesis, and 37! by local
equilibrium, in accordance with the BBGKY hierarchy.
The fact that in hydrodynamics non-equilibrium reduces
to local equilibrium motivated the author to introduce
the term containing the word “hydrodynamic” — “Open
hydrodynamic steady states” (OHSS) [26] instead of the
term “Non-equilibrium steady state” (NESS).

We will discuss now the concept of dissipati-
ve non-equilibrium phase transitions in fluctuating
hydrodynamics. The “statistical justification” of the
application of Landau-Lifshitz equilibrium forces to the
OHSS means that @ is specified in the second FDT
(8). Then (8) serves as an equation for determining the
matrix 37!, which naturally, will no longer be locally
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equilibrium. In particular, near the state of dissipative
instability for some unstable mode from the FDT

Q=2)\3"" (9)

follows unlimited growth S5~! when dissipative quantity
A tends to zero.

In fact, the FDT determines not simultaneous
correlation functions, but the intensity of random forces.
That is why the interpretation of formula (9) is actually
quite different. When the dissipative properties of the
medium change, the matrix 3~ does not change, since
it is determined by elastic properties that do not change.
Therefore, instead of 37! — oo, one should speak about
reducing the source intensity @ to zero when A — 0.
Herewith, in the spectrum of the unstable mode, an unli-
mited narrowing of the line occurs at a finite integral
intensity in accordance with the results of the work [21].

And finally, something must be said regarding the
use of local thermodynamic parameters in equilibrium
formulas of Landau and Lifshitz. It would seem that
this idea makes sense when there is sufficient reason to
assume that fluxes do not change the dynamic equations
for fluctuations. However, this is not the case. According
to the FDT, the entire matrix of simultaneous correlati-
on functions of fluctuations must be local equilibrium,
but not only thermodynamic parameters, in particular,
temperature. Mandelstam problem just illustrates this
fact.

V. FLUCTUATIONS IN A SOLID UNDER A
TEMPERATURE GRADIENT

Mandelstam problem of fluctuations in the medium
under a temperature gradient turns out to be the si-
mplest and, at the same time, the most fundamental.
We consider the case of unbounded medium. This
corresponds to the study of fluctuations in a certain
volume far enough from the boundaries, so that their
influence is insignificant due to the damping of fluctuati-
ons due to dissipative processes. We assume, as in [3],
that the gradient does not change the dynamic equati-
ons, so all changes are due to the local temperature.

The main interest from the experimental point of view
is the dynamic structure factor — the spatial-temporal
Fourier transform of the autocorrelation function of some
fluctuation quantity ¢ (r,t)

T/2  T/2
1
Sy (k,w) = ﬁ/dr/dr’ / dt / '’ (10)
A -T/2  —T/2

X (p (r,1) p (1)) e(t-1) k().

where the observation time T is quite long, and the
volume V' is large. According to our theory, the angle
brackets mean locally equilibrium averaging.

First we use the direct method to calculate (10). The
stationarity of a random process allows us to represent
(10) in the form
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Let the solution to the Cauchy problem for the evolution
of fluctuations obtained from hydrodynamic equations
have the form

o (r,t) :/dr/G (r—r',t)p(r',0), (12)
14

where G (r—1',t) is Green’s function, and the si-
multaneous locally equilibrium fluctuation function
determined by the local temperature is

(p(r,0)@(r",0)) =0y (r)T (r)d (r—1r'), (13)

where «,, (r) is the static susceptibility, and

T(r)=Ty+rVT. (14)
So that
(¢ (r,0) ¢ (r',0))
= (¢ (r,0) ¢ (r',0))™ (1 +ar), (15)

where the index eq means the equilibrium average at
temperature Ty and

(16)
We assume that the change in temperature due to the

gradient is small. The modulus of r is limited by 1/«
J

ASg.e (k,w) =

The final result is

. 6 e
—i5 e (PP -

where « is the spatial attenuation coefficient. As a result,
we obtain an inequality ¢ < « which implies that
the relative gradient should be much smaller than the
attenuation coefficient. We also assume that, as usual,
the attenuation is small, so that o < k. Thus, we have
the following inequalities ¢ < a < k.

Substituting (12),(15) into (11), we find that the
dynamic structure factor is the sum of the equilibrium
result with temperature 7, and the contribution from

the temperature gradient
]_ : ’
d d / 7zk(r7r)
v / r/ re

\4 \4

Se. (k,w) = Seko (k,w) +

oo

/W@@wwmﬁww

+/qr
0

The last term can be transformed given that equilibrium
correlation function (¢ (r,t) (r',0))°! depends on the
absolute value of the difference r —r’. Therefore, passing

to the variables (x, R) = (r -/, “5” ), we’ll get

P (r,0)) et

e a e
(P1,—wipr) ™) = A Im (Prwp—i) . (18)

ok

S (k,w) =551 (k,w) + AS, , (k,w) = (2 Re + q2 Im) (Orwp—1) . (19)

which is a generalization of the expression for the dynamic structure factor found in [27] for the case of constant o,

using another method.
If we represent (18) in the form

Z‘ e
ASg.e (k,w) = 5 {<<P—k—q,—w50k+q> 1-

<S0k+q,w S"—k—q>C

T+ (Prwp—1) = (P —wpr) Y (20)

then the result can be interpreted as follows. In addition to modes with wave vectors +k, modes with +k + q are
involved in scattering. This can be explained by the fact that the open system under consideration has a flow of
thermal phonons with a momentum —q in the direction of the heat flux. Modes with wave vectors +k + q, emitting
or absorbing a similar phonon, take part in the scattering.

If we represent the correction in the form

7 eq eq eq eq
ASq.p (k,w) = ) {<80k—g,w<ﬁ—k+g> - <<P—k+g,—w<Pk—g> + <<P—k—g,—w80k+g> - <<Pk+g,w80—k—g> } - (21)
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Fig. 1. Features of the Brillouin peaks: (a) peak from a wave along flux (solid line), (b) peak from a wave against flux (solid
line). Peaks in the equilibrium are shown by a dash-dotted line. Owing to the sharpness of the peaks, only a narrow frequency
box about w = *+ck is plotted

It can be said that, in addition to modes with wave
vectors +k, modes with £k 4 § in pairs are involved
in scattering, again interacting with the flow of thermal
phonons with momentum —q.

We now write the Stokes wave equation for Fouri-
er transforms of fluctuation displacements & and di-
splacement velocities & in an isotropic solid in the
absence of a temperature gradient

&k =4

. , (22)

% = —2(55.1( — k%

where & = ac is the temporal attenuation coefficient of
the sound wave, c is the speed of sound. Matrix A is equal

to
0 -1
A= <02]€2 28 > ) (23)

and matrix 1

1 T
ﬁ—l — < Cz(k)k/ (1)) pisdk’ik/, (24)

As a result, we find

(Ckwé—k)™ = G (k,w) (€x€—xk)™

—iw + 25 TO
= . 25
—w? + 2k? — 2iwd poc?k? (25)

Let’s apply formula (19) to (25). Due to the inequality
a < k, the main contribution when differentiating with
respect to k will be from ¢?k? in Green’s function, while
differentiating the factor k=2 in (&k w€_ k), as well as
the terms with 4, if § depends on k, will give a small
result.
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Finally, for the dynamic structure factor we’ll get

4T,
See (kw) = —
Po
)
(w2 — 2k?)? + 4w?5?

X 26
o [1- qk 2035 (26)
k2 (w2 — 2k2)? 4 40262

In the absence of a temperature gradient S¢ ¢ (k,w)
has two Brillouin peaks at frequencies +ck. Since the
correction is odd in frequency, heights of peaks and
integral intensities will be different. The magnitude of
correction has maximum at frequencies =ck, and it
should be small due to ¢ < .

Features of the Brillouin peaks in the presence of a
temperature gradient are shown in Fig. 1.

Result (26) is identical to formula (45) from the work
[27] for the isothermal propagation of sound fluctuations
in liquid. It is only necessary to omit in the numerator
of the correction in (45) the term (w? — 02k2)2, which is
negligible and does not play any role due to the indicated
inequality a < k, put Dk? = 26 (D being generalized vi-
scosity), and replace the simultaneous correlation functi-
on of density fluctuations to the function of fluctuation
displacements.

We now consider the same problem using the Langevin
method. The matrix A (23) remains the same. The
matrix f~' must be determined from locally equilibri-
um estimates of the Fourier transforms of fluctuation
displacements &y and displacement velocities £k in an
isotropic solid under a temperature gradient. It is obtai-
ned after the temperature (14) transformation to

T=Ty(1+qr)~T,(1+sin(qr)). (27)
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As a result,
_ = 0\ To
1_ c2kk’ - ,
57 = (7 ) e (28)
where
)
A = 0k,—k + 5 (Oktq,—k' = Ok—q,—x) - (29)

2

It is important that, in addition to the equilibrium
correlations between the modes with k and k’ , correlati-
ons between the modes with k and k’ + q take place. For
J

kinetic coefficients and force intensities from (23) and
(28) we obtain

0 -1
(85 o

I’

0 -1+E\T
= 7A s
@ (—1+,§, 48 ) po K

Let’s add forces (30) to (22). If the solution of
inhomogeneous equations (22) for displacements is
substituted in (11) we get

1 .
See (k,w) = v /dr/dr’eﬂk(rf’“)
v
% Z Yipw (W +26) + Y2.pw Y1,p,—w (W +20) + y2.p/ —w (P D' (31)
—oﬂ + 2p? — 2iwd —w? + 2p2 + 2iwd

p;p’

Passing then to the variables (x,R) and integrating, assuming that e

+iaR ~ 1, we have

(“1+2) (miw+20) + (-1+ &) (i +20) + 46

See (kyw) =Y

p,p’

X (6p,k6p’,k + 6p k,,é

Performing summation and selecting the terms linear in
q, we arrive to (26). The condition gR < 1 used here is
equivalent to ¢ < a.

Thus, Langevin and direct calculations of the dynamic
structure factor for the Mandelstam problem are equi-
valent. It is seen from (30) that the kinetic coeffi-
cients providing the same result (26) as the direct
method violate Onsager’s reciprocal relation. Obviously,
the flux breaks the detailed balance of the correlation
functions of fluctuations in the OHSS. The violation of
Onsager’s reciprocal relations in systems with a flux was
first established in [25]. There, for the Rayleigh-Benard
problem, fluctuating forces were found in accordance
with formula (8). Their use has fully confirmed the
results of the work [21].

Reciprocal relations for fluctuation quantities in the
OHSS were obtained in [26]. In the Mandelstam problem
considered here, these reciprocal relations for non-
correlated fluctuation displacements and displacement
velocities have the form:

(acbe @) 5,

: =—, (33)

(&)
where ~ is determined by (30). It was also pointed
out in [26] that from the thermodynamic point of view
Onsager’s reciprocal relations arise due to the absence of
fluxes in the system.

(—w? + 2p? — 2iwd) (—w? + 2p'? + 2iwd)

1
, k*% 25pk+q§ ) (32)

The solution of the Mandelstam problem using the
methods of fluctuating hydrodynamics is identical to the
solution of the problem of the sound isothermal fluctuati-
ons using the same methods [28]. Namely, instead of
(30), equilibrium expressions are used for the kinetic
coefficients and intensities of fluctuating forces with the
replacement of the equilibrium temperature by the local
temperature (27)

’Y‘(? 2;) DAy, Q= <8£5> 2 Are-(34)

With such kinetic coefficients, Onsager’s reciprocal
relation holds. At the same time, (34) gives a non-
equilibrium ensemble, which contradicts the local equili-
brium (28). Indeed, with A (23) and ~ (34) we obtain

1 T
B—l — )\—17 o ( c2(?2 (1)) ?sAk’k,. (35)

As we see, simultaneous correlations take place
between the same modes as above, but they no longer
depend on kk’, but on k2. If the dynamic structure
factor is calculated with such forces as (34), then in the
numerator of formula (32) remains only 40 and there are

no terms with factors (71 + %) and (71 + ﬁ .As a

result, the correction value is twice as large as in (26).
Thus, even if the stationary flux does not change

the equations of the dynamics of fluctuation perturbati-

ons, fluctuating hydrodynamics using local temperature
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rather than local simultaneous correlation functions
leads to an error, since it contradicts the FDT and local
equilibrium.

VI. ASYMMETRY OF FLUCTUATIONS IN
THE OHSS

The dynamic structure factor (10) has obvious
symmetry

Sp.o (k,w) =8, (=k,—w) =55 , (k,w)  (36)

due to the symmetry of the autocorrelation function
relative to the replacement r,t <+— r’,¢. In the equi-
librium, the dynamic structure factor depends on the
modulus of the wave vector, since there is no distingui-
shed direction in space; therefore, the first of the wri-
tten equations ensures the frequency symmetry of the
dynamic structure factor

S, (kyw) = SZL, (k, —w). (37)

The same equality (36) prohibits in the OHSS the fulfi-
Ilment of the relation

Se.o (k,w) =S, (k, —w). (38)

We now calculate the asymmetry in the Mandelstam
problem. We assume that the direction of the
temperature gradient and vertical axis z coincide. Let’s
denote the intensities of the waves propagating in the
crystal at angles 6 + 7 and 6 to the vertical axis with I
and I_. The angle 6 is acute. The asymmetry is usually
determined now by the formula

LI

=T (39)

Er
Asymmetry can also be determined using the maximum
height of the Brillouin peaks instead of the intensity. We
denote this asymmetry with &,,.
Integrating (26) over the frequency, we obtain

0
I =1, <1 + qzos ) , (40)

07

where [j is the wave intensity in a medium with constant
temperature Ty. Correspondingly

_ VTcost

= 41
e 4OZT() ( )

Compare the result (41) with Leontovich’s theory. It
considers the energy flux KdQdw in a frequency interval
(w,w + dw) carried by elastic waves through a unit area
normal to the direction of their propagation, which is
determined by a unit vector lying inside the solid angle
element df). The original equation of the theory for the
same geometry as above is

cos 988—[2( +aK =C(Ty+ =VT). (42)

Here C is a certain constant, a is the energy absorption
coefficient, twice the amplitude absorption coefficient .
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As seen from (42), the source of fluctuation elastic waves
is the local temperature. Propagation occurs at an angle
f to the vertical axis and is accompanied by attenuation.
Leontovich found a solution to equation (42) with
boundary conditions on the surfaces of the sample.
Assuming that the dimensions of the sample are large
and the point where the energy flux is considered is far
enough from the boundaries, it follows from it that

K (2,0)=CT (z) - C ,

(43)
This solution also follows directly from (42) for an
unbounded sample.

In the work [4], Vladimirskii defined the asymmetry as
[K (2,0 + 7) — K (2,0)] /K, where K corresponds to a
medium with temperature Tp. Taking into account (43),
he found that it is equal w. If the asymmetry was
determined by the ratio of the difference between the
quantities K (2,6 + 7) and K (2, 6) to their sum, then it

VT cos b
would be 3aTh

At first glance, it may seem that a contradiction
with formula (41) arises. However, it should be taken into
account that the quantity K is not an integral characteri-
stic, since by definition it represents the frequency di-
stribution of the energy flux in an angle dS?, i.e. it is
a dynamic structure factor. Therefore, the comparison
should not be carried out with 7 (39), but with &,,.
Calculating the asymmetry ¢, from (26), we obtain

_ See(k,—ck) — See (k,+ck)  VTcosd
 See(k,—ck) + See (k,+ck)  2aTy

Cw

. (44)

Thus we get the same result, as from Leontovich’s theory.

Fluctuating hydrodynamics with local temperature gi-
ves twice as much value e; as (41), see the paragraph
after (35). Measurements of asymmetry in experi-
ments with small temperature gradients indicate a
quantitative discrepancy with predictions of fluctuat-
ing hydrodynamics, the asymmetry should be smaller
[8, 29, 30].

We show below with a simple example that the ampli-
fication of fluctuations in the direction of flux and
their weakening in the opposite direction, discovered by
Leontovich and Vladimirskii for heat flux, is a common
property of the OHSS containing spatial inhomogeneity,
causing the flux.

Consider the behavior of gravity-capillary fluctuation
waves at the interface between two semi-infinite layers
of liquid, the lower of which has a density p and the
upper one p’. Let the upper liquid be ideal, and the lower
one have a kinematic viscosity v, which we will consider
small. Let the upper layer move at speed U relative to
the motionless lower one. We choose a coordinate system
whose axis Oz coincides with the direction of speed,
the axis Oz is directed vertically upward, so that the
upper layer occupies half-space z > 0, and the lower one
z < 0, respectively. Thus, the heterogeneity of the system
is due to the velocity potential of the upper liquid. This
problem for ideal liquids is known as the Kelvin problem
[31].
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For low-viscosity lower liquid, it is not difficult to
obtain an equation for the modes of fluctuation dis-
placements

+0 7. ) .
pk'g [£k+2(ZQ*+5)€k+(QQ—Qi)fk}ZO,(45)
where
/
= U a=vk s=2-L_vi
p+p p+p
(46)
92:ak3+g(p7p/) Q2:Q2—£QQ,
0 p+pl ’ 0 p/ *

Here V is the velocity of the center of mass, « is the
coefficient of the surface tension, g hereinafter referred to
as acceleration of gravity. The solution of the dispersion
equation corresponding to (45) gives the frequencies of
fast and slow gravity-capillary waves propagating at an
acute and obtuse angle to the vector U

w1,2 :Q* :th 72(5:&51), (47)

where

Q, = \/{92 — (@2 — 02 14 (59*)2] /2,
(48)

5y = \/[ (92— 62) + /(@2 — 62)> 44 (59*)2] /2.

In addition to the difference in frequency, the waves differ
in attenuation: in a fast wave, the attenuation coefficient
is greater. In the absence of viscosity, instead of (47) we
have

wi2 = Qe £, (49)

and we can immediately write expressions for simul-
taneous correlations of displacements and displacement
velocities in a reference frame associated with the center
of mass:

(Celir) = ﬁ%ﬁku <Ckék/> =0,
(50)
<ék§k/> = 0% (GG -
Given that
e = Qe (51)
we get 57! the matrix that interests us
gt = ( 72-19* QQZ%}E ) (SRS
(52)

(Cér) = (Culier) -

For the variables &, and ék we represent (45) in the form
(2) with the matrix A

A= (QQEQE 2(2‘9_*1+5)>‘ (53)

Using expressions (52), (53) and any of calculation
methods, we find the dynamic structure factor

See (k,w) = 46 (€k€—x) (54)
02 + w. Q.
[ = 002 + 6+ 607 [lwn + )2 + (6 - 60)°]

X

The notation w, = w — Q, was introduced in (54).

Note that the linear heterogeneity of the velocity
potential, which determines the flow, leads to a correcti-
on in the structure dynamic factor proportional to w$2.
in accordance with formula (36). The same should be
noted for the Mandelstam problem where the correction
is proportional to w3qk .

For the case Qg > Q., (54) can be written as

See (kw) = (Gb-x) (55)

L) -9./0) (1+Q./)
(Wi + Q)2+ (we — Qo) +62 ]

In this form, the dynamic structure factor consists of two
Lorentzians, the first corresponds to a fluctuation wave
propagating against the flow, and the second along the
flow. The integrated intensity of the second is greater.
The magnitude of the asymmetry ¢; will be

_ &
-

Thus, just as in the case of the Mandelstam problem,
where there is a heat flux, we conclude that fluctuations
in the direction of the flow have a greater intensity than
in the direction opposite to the flow.

It is easy to obtain the reciprocal relation in the Kelvin
problem. Using (51) from (45) we write the equation for
non-correlated quantities i and (x in the form (2) with
the matrix

€1 (56)

0 -1
A= ( 0~ 2i60. 2 ) (57)
Formulas (50) and (57) give the matrix
0 -2
Y= < 02 — 2i60, 2602 ) <Ck<—k>v (58)
and reciprocal relation (33) for (i and ék takes the form
(G x(0)) 02
= (59)

() 9200

Returning to the variables & and Sk we obtain
(8DEw0) =i (GDE0) g2 )
(€c(HE(0) ) + i (Ee(t)E1(0))

02 — 2602,

As can be seen from the results (29),(30), (33) and
(60), the reciprocal relations in the OHSS essentially
depend on the flux, and also that Onsager’s reciprocal
relations hold only in the absence of a flux (in the equi-
librium).
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VII. FLUCTUATIONS IN A LIQUID UNDER A
TEMPERATURE GRADIENT

The light scattering spectrum in equilibrium li-
quid is determined by the density—density correlati-
on function. It can be found from a system of li-
near hydrodynamic equations for fluctuation perturbati-
ons of density, temperature, and velocity [32], or from
hydrodynamic equations for fluctuation perturbations of
pressure, entropy, and velocity [33].

Compared to the equations used in [32], the presence
of a temperature gradient in the liquid leads to
the appearance in the equation for the temperature
perturbations of the term equal to the product of the
fluctuation velocity and the temperature gradient and
the term that takes into account buoyancy force in
the equation of motion [21]. As a result, two pai-
rs of sound and coupled viscous-thermal fluctuation
waves are formed. Such a situation occurs when the
temperature gradient is such that the value ﬁ; 95 VT is

of the order (v—x)®k* where j is the coefficient of
thermal expansion, v = ¢,/c¢, is the ratio of specific
heat, x is the horizontal projection of k, v is the ki-
nematic shear viscosity, x is the thermal diffusivity. This
is important for small values wave vector when consi-
dering the effects associated with convective instability.
If, however, one is interested in the scattering of light
for typical values of the wave vector 10° cm ™!, then the
connection between viscous and temperature modes is

insignificant ((1/ — )Pk > ’ig—:;VT) and the determi-

ning factor is the change in the simultaneous correlation
functions by the temperature gradient.

We will use the well-known k,t-representation of the
density—density correlation function

(prc (£) p—1c (0))

T
_ p020 [('y — e~ XKt 4 o=TR* cog ekt (61)
c

where c is the sound speed, I' = 1 [D + (y — 1) x], D is
generalized viscosity as above. Then, having performed
the one-sided Fourier transform in time from formula
(19) we obtain

Spp (k,w) = p([)go
2vk? k 2wyk?
x4 + ACKTE .(62)
(w? — 2k2)? + 4w? (Tk2)?
y [1 gk 2uw3Tk? 1
k2 (w2 — 2k2)? + 4w? (Th2)?

Obviously, the changes in the Brillouin doublet also could
be immediately written down using (26) and changing &
to Tk?, and (&) to 22520 _iv. The asymmetry of
the doublet is determined by the same formula (41).

As for the Rayleigh line, the integral over negati-
ve frequencies determines the contribution I, from
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fluctuation modes propagating in the direction of flux,
and over the positive ones, the contribution I_ from
fluctuation modes propagating in the direction opposi-
te to flux, and we get

where [y is the contribution when the gradient is absent.
All features of the Rayleigh line in the presence of a
temperature gradient are shown in the figure below.

Fig. 2. Features of the Rayleigh line:1) Rayleigh line in equi-
librium liquid (dash dot line), 2) Rayleigh line in the liquid
under temperature gradient (solid line)

The asymmetry will be

_ 2dqk
E[—ﬂ_kz.

The maximum will be shifted to a point w = —yqk and

(64)

the height of the maximum increases by factor 1+ (2—?)

All this, obviously, will not change the Landau—Placzek
formula.

VIII. CONCLUSION

The FDT is a mathematical theorem that follows
from the solution of the Cauchy problem and the
subsequent averaging of the initial conditions. For this
reason, the calculation of fluctuations using the FDT will
give absolutely the same results for systems of linear
homogeneous differential equations as the direct soluti-
on of the Cauchy problem and averaging over the initial
conditions both in equilibrium systems and in the OHSS.
The FDT like any mathematical theorem is not a subject
of statistical physics.

Fluctuating hydrodynamics is erroneous because it
uses fluctuating forces that contradict the FDT, and,
therefore, is not related to the problems under consi-
deration. For the OHSS, the statistical properties
of hydrodynamic fluctuations are determined by the
locally equilibrium distribution function according to the
BBGKY hierarchy and the dynamics is determined by
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Onsager’s hypothesis. These two statements are sufficient
to elucidate all the properties of hydrodynamic fluctuati-
ons, including reciprocal relations.

In the OHSS fluxes, changing the dynamics and ini-
tial values of fluctuations violates the detailed balance
that takes place in equilibrium. As a result, Onsager’s
reciprocal relations are broken. The next criterion can
be formulated. The fulfillment of Onsager’s reciprocal
relations indicates the absence of fluxes in the system
under consideration, while their violation indicates the

presence of fluxes.

The spatial heterogeneity causing flux in the OHSS
leads to a violation of the symmetry of the correlation
functions of fluctuations with respect to the time vari-
able, resulting in an asymmetry of the light scattering
spectra. The flux transfers the fluctuation energy from
one frequency region to another. There is an increase of
fluctuation modes propagating in the direction of flux,
and a weakening in fluctuation modes propagating in the
direction opposite to flux.
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BAJAYA MAHOEJBIITTAMA

B. II. Jlecuikos
Haugonanvrutl ynisepcumem “Odecvka nosimexnira”, npocn. lesuenka, 1, Odeca, 65044, Yrpaina

Teopito TemnoBux duykryaniii y Blakpurux rigpogunamiunux cramjonapaux cranax (BI'CC) nogano
BUKJIIOYHO B MexKax rigpoguaamiku. Onucano ictopito BuBueHHs GJIyKTyaliil y CyniJIbHOMY CEPEIOBHUII] 31
cramioHapauM morokoMm. [lokaszano, mo 3acrocyBanus 10 BI'CC daykryarriiino-auccunariiiinol Teopemun
3 BUMOTOI0 BUKOHAHHs CIHiBBigHOmEHb B3aeMmHOocTi Onzarepa (dbaykryaniiina rizpoaunamika) € nomMmu-
KoBUM. [IpmdamHOO € Te, IO MOTIK, 3MIHIOIYHN AWHAMIKY # MOYATKOBI 3HAYEeHHS (DIYyKTYyaIliil, TOPYIIyeE
JeTanbHAi OastaHc, mo € B piBHOBa3i. lle mpomemoHCcTpOBaHO HA MPUKIAAL 3aaadi MaHmenbirama mpo
daykTyarnii B cepeoBHIIi 3 TEMJIOBUM MOTOKOM. [IJ1s1 i€l 3a1a4i po3paxoBaHO CTPYKTYPHUN TUHAMITHAN
dakTop 71 i30TPOMHOrO TBEPAOTrO Tija Ta piguau. Brpara 1acoBol cumerpil Kopendmiitaumu GyHKIIMA
dayKTyaniii Ta acHMeTpis IX CIeKTpaJbHUX 300parkeHb y il 3a7a<i 3yMOBJI€HA IIPOCTOPOBOIO 3MiHOIO
TeMIIEPATyPH, SKA BU3HAYAE IOTIK.

[ITo6 mokaszaTu 3arajabHICTh IHOr0 pe3yabrary miis Beix BI'CC 3 mpocTOpOBOIO HEOIHOPIJHICTIO, TAKOK
po3rsaHyTO 331a41y KenbBina mpo Temmosi (ayKTyaril 3MilleHb MOBEPXHI PO3/IiIy MiXK JBOMA PiIuHAMHA.
[Torertian mBHAKOCTI BEPXHBOI PyXOMOI PiAuHN 3MIHIOETHCS JIIHIHHO, TAK CAMO K i TeMIeparypa B 3a1ati
Mangenpbuirama.

3HaiaeHo CITiBBIIHONIEHHS B3a€MHOCTI K s 3ama4i Mangeabmrama, Tak i Keanpina.

Kuirouosi caoBa: Manjenbiram, Biakpuri rigpogunamivni cramionapui cranu (BI'CC), daykryarii,
TIOTIK, CIBBiAHOIIEHHS B3aEMHOCTI, (pyKTyariiiina rigpoanHaMika.
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