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The theory of thermal �uctuations in open hydrodynamic steady states (OHSS) is presented
exclusively within the framework of hydrodynamics. The history of studies of �uctuations in a conti-
nuous medium with a stationary �ux is described. It is shown that the application the �uctuation-
dissipation theorem (FDT) to the OHSS with the requirement of ful�lling the Onsager's reci-
procal relations (�uctuating hydrodynamics), is erroneous. The reason is that the �ux, changing
the dynamics and initial values of the �uctuations, violates the detailed balance existing in equili-
brium. This is demonstrated by the example of the Mandelstam problem on �uctuations in a medi-
um with a heat �ux. For this problem, the structure dynamic factor is calculated for an isotropic
solid and a liquid. The loss of time symmetry by the correlation functions of �uctuations and the
asymmetry of their spectral representations in this problem is due to the spatial temperature vari-
ation, which determines the �ux. In order to show the generality of this result for all OHSS with
spatial heterogeneity, the Kelvin problem on thermal �uctuations of the interface displacements
between two liquids is also considered. The upper moving liquid has velocity potential changes as
the temperature in the Mandelstam problem. Reciprocal relations for both the Mandelstam and the
Kelvin problems are pointed out.
Key words: Mandelstam, open hydrodynamic steady state (OHSS), �uctuations, �ux, reciprocal

relations, �uctuating hydrodynamics.
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I. INTRODUCTION

Ninety one years ago, Onsager established reciprocal
relations obtained from the symmetry of the correlation
functions of thermodynamic (hydrodynamic) �uctuati-
ons (detailed balance) [1]. To explain the origin of such
symmetry, he put forward the principle of microscopic
reversibility, based on the fact that the movement of
molecules is carried out by equations that are even
with respect to time. Since all substances are composed
of molecules, it was believed that Onsager's reciprocal
relations will always be executed.

Below, however, a problem is discussed for which this
is not the case. We are talking about hydrodynamic
�uctuations in steady states with a stationary �ux. There
are many examples of such states in hydrodynamics.
Investigations of these systems, which began about half
a century ago, intensively use various kinds of statistical
substantiation for the ful�llment of Onsager's reciprocal
relations in such systems. In this article, we want to show
that there is no need to use them, since all necessary
statistical justi�cations in hydrodynamics have already
been made. Thus, hydrodynamics is quite self-su�cient
for solving problems of hydrodynamic �uctuations in the
OHSS.

II. HISTORICAL OVERVIEW

The author's interest in thermal hydrodynamic
�uctuations in the OHSS was sparked by Professor

I. Z. Fisher in the early seventies of the last century.
Fisher believed that the �ux would yield peculiarities in
the light scattering spectra, and thus, it would be possi-
ble to draw conclusions about the �ux from the spectra.
As it turned out later, a similar idea was put forward

much earlier by Mandelstam. In [2], he proposed to study
the scattering of light by thermal �uctuations in a medi-
um subjected to a stationary heat �ux. Mandelstam
expected that the scattering intensity from a certain
small region would be determined not only by the
temperature of the region itself, but also by its distributi-
on. Thus, we can say that Mandelstam is the founder of
the study of hydrodynamic �uctuations in the medium
with �uxes. Note that a hundred years ago (from 1918 to
1922) L. I. Mandelstam headed the department of phys-
ics at our university, which was then called the Odesa
Industrial Institute.
For the problem formulated by Mandelstam, Leonto-

vich calculated heat �ux �uctuations at some point of
a crystal plate, whose temperature varies linearly in
the direction perpendicular to the plate [3]. The basis
of Leontovich's theory was the simple assumption that
�uctuations are determined by the local temperature
in the point under consideration. It follows from the
results obtained by Leontovich that the �uctuation
elastic acoustic waves observed in the scattered light
should have di�erent intensities, which was noticed by
Vladimirskii [4], see also [5].
The steady state of the medium with the �ux is in

general non-equilibrium, so it is natural that �uctuati-
ons in such states are called non-equilibrium ones. Preci-
sely due to the non-equilibrium, there was no strict base
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for the theory of such �uctuations from the very begin-
ning of studies. This led to an abundance of various
research methods. In particular, before [3], Leontovich
considered, in his own words, �a one-dimensional and
moreover rather special model of a crystal� [6].

The experiments performed at that time to detect
the asymmetry of satellites were unsuccessful [7], obvi-
ously due to imperfections in the used equipment (experi-
mental con�rmation of the asymmetry occurred much
later [8]). For this reason, and also in connection
with the death of Mandelstam, the active study of
non-equilibrium hydrodynamic �uctuations in the USSR
stopped. A detailed history of the study of light scatteri-
ng spectra until this period is described in [9].

A new impulse for the study of non-equilibrium
hydrodynamic �uctuations was generated by Uhlenbeck
in his review lectures [10], where he presented his visi-
on of the transition from a microscopic description to a
macroscopic one in statistical physics and in particular
for the steady state with a �ux. In detail the problem is
considered in works [11, 12], where Fox and Uhlenbeck
derived the Langevin FDT for �uctuating forces. This
was done macroscopically by preserving the Onsager's
reciprocal relations in the derivation of the FDT [11] and
microscopically on the basis of the Boltzmann kinetic
equation [12]. For the Navier�Stokes liquid, the main
conclusion made here is that the sources of �uctuati-
ons in the equations of hydrodynamics will be the same
as in an equilibrium liquid, regardless of the speci�c
form of the considered non-equilibrium steady state,
i.e. sources of �uctuations are universal for all OHSS.
The same conclusion was made a year earlier by Bi-
xon and Zwanzig [13] derived �uctuating forces from the
Boltzmann equation using di�erent method than [12].

The same kind of statistical justi�cation has also been
used in many works devoted to obtaining the FDT
for systems with �ux, see for example [14�16]. All of
them are based on the fact that the source of �uctuati-
ons is randomly moving molecules. The macroscopic
�elds causing the non-equilibrium have scales signi-
�cantly exceeding the molecular scales. Therefore,
they cannot change signi�cantly the molecular moti-
on, and, consequently, the intensities of the sources of
hydrodynamic �uctuations. The in�uence of such �elds
is reduced only to the modulation of the intensities of
the equilibrium �uctuating sources.

Fluctuating sources for the equilibrium (�ux less)
liquid were established by Landau and Lifshitz [17],
who applied the Callen�Welton FDT to the system
of hydrodynamic equations for �uctuation perturbati-
ons. Earlier, a similar approach was used by Rytov for
electromagnetic �uctuations [18]. Landau and Lifshitz
found the correlation functions of �uctuating forces (or
random �uxes) added to the equations of the Navier�
Stokes hydrodynamics. Subsequently, they received the
name of the Landau�Lifshitz �uctuating forces.

The �nite intensity of the Landau�Lifshitz �uctuat-
ing forces and the statistical justi�cation for their uni-
versal application to any OHSS allowed Uhlenbeck to
suggest an increase of hydrodynamic �uctuations in

non-equilibrium dissipative hydrodynamic steady state
systems near stability thresholds. Zaitsev and Schli-
omis [19] were the �rst to consider the relatively si-
mple convective Rayleigh�Benard instability with the
Landau�Lifshitz �uctuating forces for a certain average
temperature of the liquid layer. Their results con�rmed
the assumption of a �uctuation increase when approachi-
ng the stability threshold.

The subsequent modernization of the non-equilibrium
Langevin FDT for the OHSS was the use of local
values of thermodynamic parameters in the equilibrium
formulas for the sources without changing the formulas
themselves. It was believed that in this form the FDT
takes into account local equilibrium in hydrodynami-
cs. As a result, a whole new area has arisen in stati-
stical physics, called �uctuating hydrodynamics, see
[20] and references therein. Adherents of �uctuating
hydrodynamics, referring to the non-equilibrium of the
problem, reject other possible methods of solving the
problem of �uctuations in the OHSS. Thus, the results of
calculating correlation functions of �uctuations obtained
by solving the Cauchy problem with the averaging of the
initial conditions [21] for the same problem as in [19] were
not recognized. Fluctuating hydrodynamics continues to
develop rapidly [22].

The combination of kinetics to justify the sources
of �uctuations and the equations of hydrodynamics
to describe the evolution of �uctuations in �uctuating
hydrodynamics makes the concept of non-equilibrium
terra incognita for stationary hydrodynamic states. The
terms �strong non-equilibrium�, �weak non-equilibrium�,
�out of equilibrium�, etc. are used in the literature.
In fact, there can be no combined (�joint�) descripti-
on. Kinetics and hydrodynamics are clearly separated
and have di�erent temporal limits of applicability,
which was shown by Bogoliubov back in 1946 [23].
Bogoliubov's work also gives an answer to the question
of what constitutes a non-equilibrium in hydrodynami-
cs, namely: hydrodynamics is valid in the approximati-
on of local equilibrium. This conclusion and Onsager's
regression hypothesis are the base that has been lack-
ing since the Mandelstam problem arose, and that is the
starting point in the whole theory presented below.

III. EVOLUTION TO STEADY STATE

Bogoliubov microscopically examined how a transi-
tion from a certain deviated state to an equilibrium
state occurs. The set of coupled equations for distributi-
on functions obtained by him from the exact Liouville
equation was also studied in the works of Born, Green,
Kirkwood, Yvon and was called the BBGKY hierarchy.

The solution of the corresponding system of equations
is based on the di�erence in evolutionary time at di�erent
stages. There are three time scales determined by the
collision time τ0, the time between collisions t0, and the
time the molecule travels the inner size T0. The orders
of these quantities for gas are 10−12 s, 10−9 s, and split
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of a second, so that inequalities arise:

τ0 ≪ t0 ≪ T0. (1)

Bogoliubov named the stage of the evolution of the
system in the time interval τ0 < t < t0 kinetic. The hyd-
rodynamic stage sets in for times t > t0. In liquids, where
the time between collisions is the same as the collision
time, the hydrodynamic stage is set in 10−12 � 10−9 s.
From the BBGKY hierarchy it follows that at the

kinetic stage the one-particle distribution function is
decisive. All multiparticle distribution functions are
expressed in terms of one-particle. At the hydrodynamic
stage, when enough collisions have occurred, a local equi-
librium is established, and we should talk only about
macroscopic hydrodynamic variables depending on the
space-time coordinates and their �uctuations.
Thus, the stochasticity that occurs at the kinetic stage

for a single molecule is not related to the hydrodynamic
stochasticity of a liquid particle, when the state of the
system is described by the �eld quantities, such as densi-
ty, temperature, pressure. At the hydrodynamic stage,
the thermodynamic limit is ful�lled for the number of
molecules, so that the substance is a continuous medi-
um for which there is no other �non-equilibrium� other
than local equilibrium. Hydrodynamic �uctuations are
�uctuations of locally equilibrium �eld quantities, or else,
hydrodynamics is valid in the zero order by the Knudsen
number; there are no molecules in it.
From a mathematical point of view, the assertion

that hydrodynamic �uctuations are locally equilibrium
is a consequence of the central limit theorem. Since any
hydrodynamic variable is the result of the summation of
such random variables as the number of molecules N ,
their momenta or energies in the limit N → ∞, the
distribution of �uctuations of hydrodynamic quantities
should occur according to the normal law.
There is no reason to think that the picture of

the evolution of the perturbations in the OHSS gi-
ven by local hydrodynamic variables will be di�erent.
In this case, for large times t > t0, it is generally
accepted to use hydrodynamic equations for such
perturbations (Onsager's regression hypothesis), whi-
le the hydrodynamic description that arises in the
thermodynamic limit always implies local equilibrium.
The theory of hydrodynamic �uctuations under the

conditions of local equilibrium formally does not dif-
fer from the theory of equilibrium �uctuations. In
hydrodynamics the ful�llment of the limit N → ∞ for
any arbitrarily small liquid particle ensures the ful�ll-
ment of the law of large numbers and that �uctuations
are small. The dynamics of small �uctuation deviations
xi from certain stationary values is determined by the
linearized Navier�Stokes hydrodynamic equations

ẋi = −λijxj , (2)

here and below we use the notation and de�nitions
adopted in [24]. The statistical properties of �uctuations
are speci�ed by the locally equilibrium Gaussian distri-
bution function of the initial values

f (x) ∝ exp

(
−1

2
βijxixj

)
. (3)

The matrices λ and β depend on the macroscopic
�elds that determine the OHSS, and this is the main
di�erence from the equilibrium version. Inhomogeneous
�elds lead to spatial dispersion of the corresponding
matrices. Equations (2), (3) determine the random
Ornstein�Uhlenbeck process, whose stationarity gives
the possibility of its spectral, in time, representation. The
spectral densities of the correlation functions of �uctuati-
ons are equal

(xixj)ω =

∞∫
−∞

⟨xi (t)xj (0)⟩ eiωtdt, (4)

where angle brackets mean locally equilibrium averag-
ing. We can calculate (4) using three equivalent methods.
The �rst is direct calculation. The other two methods
are more indirect and represent �uctuation-dissipation
theorems � the �rst (Callen�Welton) and the second
(Langevin). In this spirit, the work [25] was carried out,
which continued the work [21].

IV. FLUCTUATING HYDRODYNAMICS

Here local equilibrium is considered as equilibrium,
and states with a stationary �ux are classi�ed as non-
equilibrium. Hence the use of the term �Non-equilibrium
steady state� (NESS) and desire to consider such states
from the �rst principles.
The Langevin �uctuation-dissipation theorem is the

main method for studying �uctuations in �uctuating
hydrodynamics. As is known, it consists in adding
�uctuating forces with correlation functions

⟨yi (t) yj (0)⟩ = Qijδ (t) (5)

to the right-hand side of (2). To �nd correlation functi-
ons of �uctuations or their spectral densities, we must
average the solution of inhomogeneous equations using
(5). In �uctuating hydrodynamics, the intensity of
�uctuating forces Q is determined so that Onsager's reci-
procal relations must be ful�lled. As already said, mi-
croscopic and macroscopic substantiations of the choice
of such intensities are used.
In the �rst case the starting point in [12, 13] is the

solution of the usual Boltzmann equation in the form of
a series over deviations from equilibrium. The zero term
in this expansion is the equilibrium Maxwellian distri-
bution function. It is immediately clear that as the zero
state, the equilibrium state is used, where there are no
�uxes. The dynamics of �uctuations for this expansion
will be determined by the matrix λeq corresponding equi-
librium, and the �uctuating forces will be the same as
those of Landau and Lifshitz. If instead of the equilibri-
um Maxwellian distribution function we use the locally
equilibrium one, keeping the same expansion, we again
obtain the Landau and Lifshitz formulas, only with local
temperature.
In the second case, the same result is achieved by

referring to the symmetry of the intensity matrix Q
[11, 16]. It is believed that only the symmetric part of
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the matrix λ, i.e., the matrix λeq, contributes to the
intensity. This conclusion is illustrated by considering
�uctuations of the oscillator relative to the zero position
and hydrodynamic �uctuations in a �uid at a rest. That
is, non-�ux systems are considered.
Thus, the above works substantiated application of the

Langevin FDT with sources determined by the equilibri-
um matrix λeq to the steady states with �ux. According
to �uctuating hydrodynamics, the matrix λ that determi-
nes the dynamics of �uctuations depends on stationary
�uxes, but the intensity of Langevin sources, determined
by the matrix λeq, does not.
The fallacy of this kind of conclusions is that the FDT,

both the �rst and the second, are mathematical methods
for solving systems of linear di�erential equations
with random initial conditions and absolutely do not
need any statistical justi�cation. Indeed, formula (4) for
the spectral density can be represented as

(xixj)ω =

∞∫
0

⟨xi (t)xj (0)⟩ eiωtdt

+

∞∫
0

⟨xj (t)xi (0)⟩ e−iωtdt, (6)

and the same spectral density obtained from equations
(2) with �uctuating forces can be represented in the form

(xixj)ω = (−iωδki + λki)
−1

(iωδmj + λmj)
−1

Qkm. (7)

The second FDT answers the question of what should
be Q so that (6) and (7) coincide, and, therefore, has
exclusively algebraic, and not statistical, origin. From
equality (6) and (7) we obtain the only one formula for
the second FDT

Qij = γij + γji, (8)

where γij = λikβ
−1
kj are kinetic coe�cients, and β−1

ij =

⟨xixj⟩ are simultaneous correlation functions of �uctuati-
ons. Similarly, the �rst FDT follows from the de�ni-
tion of susceptibility and the same kind of algebraic
transformations.
It is quite another matter that statistical physics

determines the matrices λ and β−1 involved in the FDT.
If, however, we are talking about hydrodynamics, then
all the problems have already been solved: λ is determi-
ned by Onsager's regression hypothesis, and β−1 by local
equilibrium, in accordance with the BBGKY hierarchy.
The fact that in hydrodynamics non-equilibrium reduces
to local equilibrium motivated the author to introduce
the term containing the word �hydrodynamic� � �Open
hydrodynamic steady states� (OHSS) [26] instead of the
term �Non-equilibrium steady state� (NESS).
We will discuss now the concept of dissipati-

ve non-equilibrium phase transitions in �uctuating
hydrodynamics. The �statistical justi�cation� of the
application of Landau�Lifshitz equilibrium forces to the
OHSS means that Q is speci�ed in the second FDT
(8). Then (8) serves as an equation for determining the
matrix β−1, which naturally, will no longer be locally

equilibrium. In particular, near the state of dissipative
instability for some unstable mode from the FDT

Q = 2λβ−1 (9)

follows unlimited growth β−1 when dissipative quantity
λ tends to zero.
In fact, the FDT determines not simultaneous

correlation functions, but the intensity of random forces.
That is why the interpretation of formula (9) is actually
quite di�erent. When the dissipative properties of the
medium change, the matrix β−1 does not change, since
it is determined by elastic properties that do not change.
Therefore, instead of β−1 →∞, one should speak about
reducing the source intensity Q to zero when λ → 0.
Herewith, in the spectrum of the unstable mode, an unli-
mited narrowing of the line occurs at a �nite integral
intensity in accordance with the results of the work [21].
And �nally, something must be said regarding the

use of local thermodynamic parameters in equilibrium
formulas of Landau and Lifshitz. It would seem that
this idea makes sense when there is su�cient reason to
assume that �uxes do not change the dynamic equations
for �uctuations. However, this is not the case. According
to the FDT, the entire matrix of simultaneous correlati-
on functions of �uctuations must be local equilibrium,
but not only thermodynamic parameters, in particular,
temperature. Mandelstam problem just illustrates this
fact.

V. FLUCTUATIONS IN A SOLID UNDER A

TEMPERATURE GRADIENT

Mandelstam problem of �uctuations in the medium
under a temperature gradient turns out to be the si-
mplest and, at the same time, the most fundamental.
We consider the case of unbounded medium. This
corresponds to the study of �uctuations in a certain
volume far enough from the boundaries, so that their
in�uence is insigni�cant due to the damping of �uctuati-
ons due to dissipative processes. We assume, as in [3],
that the gradient does not change the dynamic equati-
ons, so all changes are due to the local temperature.
The main interest from the experimental point of view

is the dynamic structure factor � the spatial-temporal
Fourier transform of the autocorrelation function of some
�uctuation quantity φ (r, t)

Sφ,φ (k, ω) =
1

TV

∫
V

dr

∫
V

dr′
T/2∫

−T/2

dt

T/2∫
−T/2

dt′ (10)

× ⟨φ (r, t)φ (r′, t′)⟩ eiω(t−t′)−ik(r−r′),

where the observation time T is quite long, and the
volume V is large. According to our theory, the angle
brackets mean locally equilibrium averaging.
First we use the direct method to calculate (10). The

stationarity of a random process allows us to represent
(10) in the form
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Sφ,φ (k, ω) =
1

V

∫
V

dr

∫
V

dr′e−ik(r−r′)

 ∞∫
0

dt ⟨φ (r, t)φ (r′, 0)⟩ eiωt +

∞∫
0

dt ⟨φ (r′, t)φ (r, 0)⟩ e−iωt

 . (11)

Let the solution to the Cauchy problem for the evolution
of �uctuations obtained from hydrodynamic equations
have the form

φ (r, t) =

∫
V

dr′G (r− r′, t)φ (r′, 0) , (12)

where G (r− r′, t) is Green's function, and the si-
multaneous locally equilibrium �uctuation function
determined by the local temperature is

⟨φ (r, 0)φ (r′, 0)⟩ = αφ (r)T (r) δ (r− r′) , (13)

where αφ (r) is the static susceptibility, and

T (r) = T0 + r∇T. (14)

So that

⟨φ (r, 0)φ (r′, 0)⟩
= ⟨φ (r, 0)φ (r′, 0)⟩eq (1 + qr) , (15)

where the index eq means the equilibrium average at
temperature T0 and

q =
∇T

T0
. (16)

We assume that the change in temperature due to the
gradient is small. The modulus of r is limited by 1/α

where α is the spatial attenuation coe�cient. As a result,
we obtain an inequality q ≪ α which implies that
the relative gradient should be much smaller than the
attenuation coe�cient. We also assume that, as usual,
the attenuation is small, so that α ≪ k. Thus, we have
the following inequalities q ≪ α≪ k.

Substituting (12),(15) into (11), we �nd that the
dynamic structure factor is the sum of the equilibrium
result with temperature T0 and the contribution from
the temperature gradient

Sφ,φ (k, ω) = Seq
φ,φ (k, ω) +

1

V

∫
V

dr

∫
V

dr′e−ik(r−r′)

×



∞∫
0

qr′ ⟨φ (r, t)φ (r′, 0)⟩eq eiωtdt

+

∞∫
0

qr ⟨φ (r′, t)φ (r, 0)⟩eq e−iωtdt

 . (17)

The last term can be transformed given that equilibrium
correlation function ⟨φ (r, t)φ (r′, 0)⟩eq depends on the
absolute value of the di�erence r−r′. Therefore, passing

to the variables (x,R) =
(
r− r′, r+r′

2

)
, we'll get

∆Sφ,φ (k, ω) = −iq
2

∂

∂k
(⟨φk,ωφ−k⟩eq − ⟨φ−k,−ωφk⟩eq) = q

∂

∂k
Im ⟨φk,ωφ−k⟩eq . (18)

The �nal result is

Sφ,φ (k, ω) = Seq
φ,φ (k, ω) + ∆Sφ,φ (k, ω) =

(
2Re + q

∂

∂k
Im

)
⟨φk,ωφ−k⟩eq . (19)

which is a generalization of the expression for the dynamic structure factor found in [27] for the case of constant αφ

using another method.
If we represent (18) in the form

∆Sφ,φ (k, ω) =
i

2
{⟨φ−k−q,−ωφk+q⟩eq − ⟨φk+q,ωφ−k−q⟩eq + ⟨φk,ωφ−k⟩eq − ⟨φ−k,−ωφk⟩eq} , (20)

then the result can be interpreted as follows. In addition to modes with wave vectors ±k, modes with ±k ± q are
involved in scattering. This can be explained by the fact that the open system under consideration has a �ow of
thermal phonons with a momentum −q in the direction of the heat �ux. Modes with wave vectors ±k± q, emitting
or absorbing a similar phonon, take part in the scattering.
If we represent the correction in the form

∆Sφ,φ (k, ω) =
i

2

{〈
φk− q

2 ,ω
φ−k+ q

2

〉eq
−
〈
φ−k+ q

2 ,−ωφk− q
2

〉eq
+
〈
φ−k− q

2 ,−ωφk+ q
2

〉eq
−
〈
φk+ q

2 ,ω
φ−k− q

2

〉eq}
. (21)
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a) b)

Fig. 1. Features of the Brillouin peaks: (a) peak from a wave along �ux (solid line), (b) peak from a wave against �ux (solid
line). Peaks in the equilibrium are shown by a dash-dotted line. Owing to the sharpness of the peaks, only a narrow frequency

box about ω = ±ck is plotted

It can be said that, in addition to modes with wave
vectors ±k, modes with ±k ± q

2 in pairs are involved
in scattering, again interacting with the �ow of thermal
phonons with momentum −q.
We now write the Stokes wave equation for Fouri-

er transforms of �uctuation displacements ξk and di-
splacement velocities ξ̇k in an isotropic solid in the
absence of a temperature gradient

∂ξk
∂t = ξ̇k

∂ξ̇k
∂t = −2δξ̇k − c2k2ξk

, (22)

where δ = αc is the temporal attenuation coe�cient of
the sound wave, c is the speed of sound. Matrix λ is equal
to

λ =

(
0 −1

c2k2 2δ

)
, (23)

and matrix β−1

β−1 =

(
1

c2kk′ 0
0 1

)
T0

ρ0
δk,−k′ . (24)

As a result, we �nd

⟨ξk,ωξ−k⟩eq = G (k, ω) ⟨ξkξ−k⟩eq

=
−iω + 2δ

−ω2 + c2k2 − 2iωδ

T0

ρ0c2k2
. (25)

Let's apply formula (19) to (25). Due to the inequality
α ≪ k, the main contribution when di�erentiating with
respect to k will be from c2k2 in Green's function, while
di�erentiating the factor k−2 in ⟨ξk,ωξ−k⟩eq, as well as
the terms with δ, if δ depends on k, will give a small
result.

Finally, for the dynamic structure factor we'll get

Sξ,ξ (k, ω) =
4T0

ρ0

×


δ

(ω2 − c2k2)
2
+ 4ω2δ2

×

(
1− qk

k2
2ω3δ

(ω2 − c2k2)
2
+ 4ω2δ2

)
 . (26)

In the absence of a temperature gradient Sξ,ξ (k, ω)
has two Brillouin peaks at frequencies ±ck. Since the
correction is odd in frequency, heights of peaks and
integral intensities will be di�erent. The magnitude of
correction has maximum at frequencies ±ck, and it
should be small due to q ≪ α.

Features of the Brillouin peaks in the presence of a
temperature gradient are shown in Fig. 1.

Result (26) is identical to formula (45) from the work
[27] for the isothermal propagation of sound �uctuations
in liquid. It is only necessary to omit in the numerator

of the correction in (45) the term
(
ω2 − c2k2

)2
, which is

negligible and does not play any role due to the indicated
inequality α≪ k, put Dk2 = 2δ (D being generalized vi-
scosity), and replace the simultaneous correlation functi-
on of density �uctuations to the function of �uctuation
displacements.

We now consider the same problem using the Langevin
method. The matrix λ (23) remains the same. The
matrix β−1 must be determined from locally equilibri-
um estimates of the Fourier transforms of �uctuation
displacements ξk and displacement velocities ξ̇k in an
isotropic solid under a temperature gradient. It is obtai-
ned after the temperature (14) transformation to

T = T0 (1 + qr) ≈ T0 (1 + sin (qr)) . (27)
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As a result,

β−1 =

(
1

c2kk′ 0
0 1

)
T0

ρ0
∆k,k′ , (28)

where

∆k,k′ = δk,−k′ +
i

2
(δk+q,−k′ − δk−q,−k′) . (29)

It is important that, in addition to the equilibrium
correlations between the modes with k and k′ , correlati-
ons between the modes with k and k′±q take place. For

kinetic coe�cients and force intensities from (23) and
(28) we obtain

γ =

(
0 −1
k
k′ 2δ

)
T0

ρ0
∆k,k′ ,

(30)

Q =

(
0 −1 + k′

k

−1 + k
k′ 4δ

)
T0

ρ0
∆k,k′ .

Let's add forces (30) to (22). If the solution of
inhomogeneous equations (22) for displacements is
substituted in (11) we get

Sξ,ξ (k, ω) =
1

V

∫
V

dr

∫
V

dr′e−ik(r−r′)

×
∑
p,p′

〈
y1,p,ω (−iω + 2δ) + y2,p,ω
−ω2 + c2p2 − 2iωδ

y1,p′,−ω (iω + 2δ) + y2,p′,−ω

−ω2 + c2p‘2 + 2iωδ

〉
eipreip

′r′ . (31)

Passing then to the variables (x,R) and integrating, assuming that e±iqR ≈ 1, we have

Sξ,ξ (k, ω) =
∑
p,p′

(
−1 + p′

p

)
(−iω + 2δ) +

(
−1 + p

p′

)
(iω + 2δ) + 4δ

(−ω2 + c2p2 − 2iωδ) (−ω2 + c2p′2 + 2iωδ)

×
(
δp,kδp′,−k +

i

2
δp,k− q

2
δp′,−k− q

2
− i

2
δp,k+ q

2
δp′,−k+ q

2

)
. (32)

Performing summation and selecting the terms linear in
q, we arrive to (26). The condition qR≪ 1 used here is
equivalent to q ≪ α.
Thus, Langevin and direct calculations of the dynamic

structure factor for the Mandelstam problem are equi-
valent. It is seen from (30) that the kinetic coe�-
cients providing the same result (26) as the direct
method violate Onsager's reciprocal relation. Obviously,
the �ux breaks the detailed balance of the correlation
functions of �uctuations in the OHSS. The violation of
Onsager's reciprocal relations in systems with a �ux was
�rst established in [25]. There, for the Rayleigh�Benard
problem, �uctuating forces were found in accordance
with formula (8). Their use has fully con�rmed the
results of the work [21].
Reciprocal relations for �uctuation quantities in the

OHSS were obtained in [26]. In the Mandelstam problem
considered here, these reciprocal relations for non-
correlated �uctuation displacements and displacement
velocities have the form:〈

ξk (t) ξ̇k′ (0)
〉

〈
ξ̇k (t) ξk′ (0)

〉 =
γ12
γ21

, (33)

where γ is determined by (30). It was also pointed
out in [26] that from the thermodynamic point of view
Onsager's reciprocal relations arise due to the absence of
�uxes in the system.

The solution of the Mandelstam problem using the
methods of �uctuating hydrodynamics is identical to the
solution of the problem of the sound isothermal �uctuati-
ons using the same methods [28]. Namely, instead of
(30), equilibrium expressions are used for the kinetic
coe�cients and intensities of �uctuating forces with the
replacement of the equilibrium temperature by the local
temperature (27)

γ =

(
0 −1
1 2δ

)
T0

ρ0
∆k,k′ , Q =

(
0 0
0 4δ

)
T0

ρ0
∆k,k′ .(34)

With such kinetic coe�cients, Onsager's reciprocal
relation holds. At the same time, (34) gives a non-
equilibrium ensemble, which contradicts the local equili-
brium (28). Indeed, with λ (23) and γ (34) we obtain

β−1 = λ−1γ =

(
1

c2k2 0
0 1

)
T0

ρ0
∆k,k′ . (35)

As we see, simultaneous correlations take place
between the same modes as above, but they no longer
depend on kk′, but on k2. If the dynamic structure
factor is calculated with such forces as (34), then in the
numerator of formula (32) remains only 4δ and there are

no terms with factors
(
−1 + p′

p

)
and

(
−1 + p

p′

)
. As a

result, the correction value is twice as large as in (26).
Thus, even if the stationary �ux does not change

the equations of the dynamics of �uctuation perturbati-
ons, �uctuating hydrodynamics using local temperature
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rather than local simultaneous correlation functions
leads to an error, since it contradicts the FDT and local
equilibrium.

VI. ASYMMETRY OF FLUCTUATIONS IN

THE OHSS

The dynamic structure factor (10) has obvious
symmetry

Sφ,φ (k, ω) = Sφ,φ (−k,−ω) = S∗
φ,φ (k, ω) (36)

due to the symmetry of the autocorrelation function
relative to the replacement r, t ←→ r′, t′. In the equi-
librium, the dynamic structure factor depends on the
modulus of the wave vector, since there is no distingui-
shed direction in space; therefore, the �rst of the wri-
tten equations ensures the frequency symmetry of the
dynamic structure factor

Seq
φ,φ (k, ω) = Seq

φ,φ (k,−ω) . (37)

The same equality (36) prohibits in the OHSS the ful�-
llment of the relation

Sφ,φ (k, ω) = Sφ,φ (k,−ω) . (38)

We now calculate the asymmetry in the Mandelstam
problem. We assume that the direction of the
temperature gradient and vertical axis z coincide. Let's
denote the intensities of the waves propagating in the
crystal at angles θ+ π and θ to the vertical axis with I+
and I−. The angle θ is acute. The asymmetry is usually
determined now by the formula

εI =
I+ − I−
I+ + I−

. (39)

Asymmetry can also be determined using the maximum
height of the Brillouin peaks instead of the intensity. We
denote this asymmetry with εω.
Integrating (26) over the frequency, we obtain

I± = I0

(
1± q cos θ

4α

)
, (40)

where I0 is the wave intensity in a medium with constant
temperature T0. Correspondingly

εI =
∇T cos θ

4αT0
. (41)

Compare the result (41) with Leontovich's theory. It
considers the energy �ux KdΩdω in a frequency interval
(ω, ω + dω) carried by elastic waves through a unit area
normal to the direction of their propagation, which is
determined by a unit vector lying inside the solid angle
element dΩ. The original equation of the theory for the
same geometry as above is

cos θ
∂K

∂z
+ aK = C (T0 + z∇T ) . (42)

Here C is a certain constant, a is the energy absorption
coe�cient, twice the amplitude absorption coe�cient α.

As seen from (42), the source of �uctuation elastic waves
is the local temperature. Propagation occurs at an angle
θ to the vertical axis and is accompanied by attenuation.
Leontovich found a solution to equation (42) with

boundary conditions on the surfaces of the sample.
Assuming that the dimensions of the sample are large
and the point where the energy �ux is considered is far
enough from the boundaries, it follows from it that

K (z, θ) = CT (z)− C
∇T cos θ

a
. (43)

This solution also follows directly from (42) for an
unbounded sample.
In the work [4], Vladimirskii de�ned the asymmetry as

[K (z, θ + π)−K (z, θ)] /K, where K corresponds to a
medium with temperature T0. Taking into account (43),
he found that it is equal ∇T cos θ

αT0
. If the asymmetry was

determined by the ratio of the di�erence between the
quantities K (z, θ + π) and K (z, θ) to their sum, then it
would be ∇T cos θ

2αT0
.

At �rst glance, it may seem that a contradiction
with formula (41) arises. However, it should be taken into
account that the quantityK is not an integral characteri-
stic, since by de�nition it represents the frequency di-
stribution of the energy �ux in an angle dΩ, i.e. it is
a dynamic structure factor. Therefore, the comparison
should not be carried out with εI (39), but with εω.
Calculating the asymmetry εω from (26), we obtain

εω =
Sξ,ξ (k,−ck)− Sξ,ξ (k,+ck)

Sξ,ξ (k,−ck) + Sξ,ξ (k,+ck)
=
∇T cos θ

2αT0
. (44)

Thus we get the same result, as from Leontovich's theory.
Fluctuating hydrodynamics with local temperature gi-

ves twice as much value εI as (41), see the paragraph
after (35). Measurements of asymmetry in experi-
ments with small temperature gradients indicate a
quantitative discrepancy with predictions of �uctuat-
ing hydrodynamics, the asymmetry should be smaller
[8, 29, 30].
We show below with a simple example that the ampli-

�cation of �uctuations in the direction of �ux and
their weakening in the opposite direction, discovered by
Leontovich and Vladimirskii for heat �ux, is a common
property of the OHSS containing spatial inhomogeneity,
causing the �ux.
Consider the behavior of gravity-capillary �uctuation

waves at the interface between two semi-in�nite layers
of liquid, the lower of which has a density ρ and the
upper one ρ′. Let the upper liquid be ideal, and the lower
one have a kinematic viscosity ν, which we will consider
small. Let the upper layer move at speed U relative to
the motionless lower one. We choose a coordinate system
whose axis Ox coincides with the direction of speed,
the axis Oz is directed vertically upward, so that the
upper layer occupies half-space z > 0, and the lower one
z < 0, respectively. Thus, the heterogeneity of the system
is due to the velocity potential of the upper liquid. This
problem for ideal liquids is known as the Kelvin problem
[31].
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For low-viscosity lower liquid, it is not di�cult to
obtain an equation for the modes of �uctuation dis-
placements

ρ+ ρ′

k

[
ξ̈k + 2 (iΩ∗ + δ) ξ̇k +

(
Ω2 − Ω2

∗
)
ξk

]
= 0,(45)

where

V =
ρ′

ρ+ ρ′
U, Ω∗ = Vk, δ = 2

ρ

ρ+ ρ′
ν k2,

(46)

Ω2
0 =

αk3 + g (ρ− ρ′)

ρ+ ρ′
, Ω2 = Ω2

0 −
ρ

ρ′
Ω2

∗.

Here V is the velocity of the center of mass, α is the
coe�cient of the surface tension, g hereinafter referred to
as acceleration of gravity. The solution of the dispersion
equation corresponding to (45) gives the frequencies of
fast and slow gravity-capillary waves propagating at an
acute and obtuse angle to the vector U

ω1,2 = Ω∗ ± Ω1 − i (δ ± δ1) , (47)

where

Ω1 =

√[
Ω2 − δ2 +

√
(Ω2 − δ2)

2
+ 4 (δΩ∗)

2

]
/2,

(48)

δ1 =

√[
− (Ω2 − δ2) +

√
(Ω2 − δ2)

2
+ 4 (δΩ∗)

2

]
/2.

In addition to the di�erence in frequency, the waves di�er
in attenuation: in a fast wave, the attenuation coe�cient
is greater. In the absence of viscosity, instead of (47) we
have

ω1,2 = Ω∗ ± Ω, (49)

and we can immediately write expressions for simul-
taneous correlations of displacements and displacement
velocities in a reference frame associated with the center
of mass:

⟨ζkζk′⟩ = Tk

(ρ+ ρ′) Ω2
δk,−k′ ,

〈
ζkζ̇k′

〉
= 0,

(50)〈
ζ̇kζ̇k′

〉
= Ω2 ⟨ζkζk′⟩ .

Given that

ξk = ζke
−iΩ∗t, (51)

we get β−1 the matrix that interests us

β−1 =

(
1 iΩ∗
−iΩ∗ Ω2 +Ω2

∗

)
⟨ξkξk′⟩ ,

(52)

⟨ξkξk′⟩ = ⟨ζkζk′⟩ .

For the variables ξk and ξ̇k we represent (45) in the form
(2) with the matrix λ

λ =

(
0 −1

Ω2 − Ω2
∗ 2 (iΩ∗ + δ)

)
. (53)

Using expressions (52), (53) and any of calculation
methods, we �nd the dynamic structure factor

Sξ,ξ (k, ω) = 4δ ⟨ξkξ−k⟩ (54)

× Ω2 + ω∗Ω∗[
(ω∗ − Ω1)

2
+ (δ + δ1)

2
] [

(ω∗ +Ω1)
2
+ (δ − δ1)

2
] .

The notation ω∗ = ω − Ω∗ was introduced in (54).
Note that the linear heterogeneity of the velocity

potential, which determines the �ow, leads to a correcti-
on in the structure dynamic factor proportional to ωΩ∗
in accordance with formula (36). The same should be
noted for the Mandelstam problem where the correction
is proportional to ω3qk .
For the case Ω0 ≫ Ω∗, (54) can be written as

Sξ,ξ (k, ω) = ⟨ξkξ−k⟩ (55)

×

{
(1− Ω∗/Ω0)

(ω∗ +Ω0)
2
+ δ2

+
(1 + Ω∗/Ω0)

(ω∗ − Ω0)
2
+ δ2

}
.

In this form, the dynamic structure factor consists of two
Lorentzians, the �rst corresponds to a �uctuation wave
propagating against the �ow, and the second along the
�ow. The integrated intensity of the second is greater.
The magnitude of the asymmetry εI will be

εI =
Ω∗

Ω0
. (56)

Thus, just as in the case of the Mandelstam problem,
where there is a heat �ux, we conclude that �uctuations
in the direction of the �ow have a greater intensity than
in the direction opposite to the �ow.
It is easy to obtain the reciprocal relation in the Kelvin

problem. Using (51) from (45) we write the equation for

non-correlated quantities ζk and ζ̇k in the form (2) with
the matrix

λ =

(
0 −1

Ω2 − 2iδΩ∗ 2δ

)
. (57)

Formulas (50) and (57) give the matrix

γ =

(
0 −Ω2

Ω2 − 2iδΩ∗ 2δΩ2

)
⟨ζkζ−k⟩, (58)

and reciprocal relation (33) for ζk and ζ̇k takes the form〈
ζk(t)ζ̇−k(0)

〉
〈
ζ̇k(t)ζ−k(0)

〉 = − Ω2

Ω2 − 2iδΩ∗
. (59)

Returning to the variables ξk and ξ̇k we obtain〈
ξk(t)ξ̇−k(0)

〉
− iΩ∗ ⟨ξk(t)ξ−k(0)⟩〈

ξ̇k(t)ξ−k(0)
〉
+ iΩ∗ ⟨ξk(t)ξ−k(0)⟩

= − Ω2

Ω2 − 2iδΩ∗
.(60)

As can be seen from the results (29),(30), (33) and
(60), the reciprocal relations in the OHSS essentially
depend on the �ux, and also that Onsager's reciprocal
relations hold only in the absence of a �ux (in the equi-
librium).
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VII. FLUCTUATIONS IN A LIQUID UNDER A

TEMPERATURE GRADIENT

The light scattering spectrum in equilibrium li-
quid is determined by the density�density correlati-
on function. It can be found from a system of li-
near hydrodynamic equations for �uctuation perturbati-
ons of density, temperature, and velocity [32], or from
hydrodynamic equations for �uctuation perturbations of
pressure, entropy, and velocity [33].
Compared to the equations used in [32], the presence

of a temperature gradient in the liquid leads to
the appearance in the equation for the temperature
perturbations of the term equal to the product of the
�uctuation velocity and the temperature gradient and
the term that takes into account buoyancy force in
the equation of motion [21]. As a result, two pai-
rs of sound and coupled viscous-thermal �uctuation
waves are formed. Such a situation occurs when the
temperature gradient is such that the value βgκ2

γk2 ∇T is

of the order (ν − χ)
2
k4 where β is the coe�cient of

thermal expansion, γ = cp/cv is the ratio of speci�c
heat, κ is the horizontal projection of k, ν is the ki-
nematic shear viscosity, χ is the thermal di�usivity. This
is important for small values wave vector when consi-
dering the e�ects associated with convective instability.
If, however, one is interested in the scattering of light
for typical values of the wave vector 105 cm−1, then the
connection between viscous and temperature modes is

insigni�cant
(
(ν − χ)

2
k4 ≫ βgκ2

γk2 ∇T
)
and the determi-

ning factor is the change in the simultaneous correlation
functions by the temperature gradient.
We will use the well-known k,t-representation of the

density�density correlation function

⟨ρk (t) ρ−k (0)⟩eq

=
ρ0T0

c2

[
(γ − 1) e−χk2t + e−Γk2t cos ckt

]
, (61)

where c is the sound speed, Γ = 1
2 [D + (γ − 1)χ], D is

generalized viscosity as above. Then, having performed
the one-sided Fourier transform in time from formula
(19) we obtain

Sρ,ρ (k, ω) =
ρ0T0

c2

×



(γ − 1)
2χk2

ω2 + (χk2)
2

[
1− qk

k2
2ωχk2

ω2 + (χk2)
2

]

+
4c2k2Γk2

(ω2 − c2k2)
2
+ 4ω2 (Γk2)

2

×

[
1− qk

k2
2ω3Γk2

(ω2 − c2k2)
2
+ 4ω2 (Γk2)

2

]


.(62)

Obviously, the changes in the Brillouin doublet also could
be immediately written down using (26) and changing δ

to Γk2, and ⟨ξkξk′⟩eq to ρ0T0

c2 δk,−k′ . The asymmetry of
the doublet is determined by the same formula (41).
As for the Rayleigh line, the integral over negati-

ve frequencies determines the contribution I+ from

�uctuation modes propagating in the direction of �ux,
and over the positive ones, the contribution I− from
�uctuation modes propagating in the direction opposi-
te to �ux, and we get

I± = I0

(
1± 2

π

qk

k2

)
, (63)

where I0 is the contribution when the gradient is absent.
All features of the Rayleigh line in the presence of a
temperature gradient are shown in the �gure below.

Fig. 2. Features of the Rayleigh line:1) Rayleigh line in equi-
librium liquid (dash dot line), 2) Rayleigh line in the liquid

under temperature gradient (solid line)

The asymmetry will be

εI =
2

π

qk

k2
. (64)

The maximum will be shifted to a point ω = −χqk and

the height of the maximum increases by factor 1+
(

qk
k2

)2
.

All this, obviously, will not change the Landau�Placzek
formula.

VIII. CONCLUSION

The FDT is a mathematical theorem that follows
from the solution of the Cauchy problem and the
subsequent averaging of the initial conditions. For this
reason, the calculation of �uctuations using the FDT will
give absolutely the same results for systems of linear
homogeneous differential equations as the direct soluti-
on of the Cauchy problem and averaging over the initial
conditions both in equilibrium systems and in the OHSS.
The FDT like any mathematical theorem is not a subject
of statistical physics.
Fluctuating hydrodynamics is erroneous because it

uses �uctuating forces that contradict the FDT, and,
therefore, is not related to the problems under consi-
deration. For the OHSS, the statistical properties
of hydrodynamic �uctuations are determined by the
locally equilibrium distribution function according to the
BBGKY hierarchy and the dynamics is determined by
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Onsager's hypothesis. These two statements are su�cient
to elucidate all the properties of hydrodynamic �uctuati-
ons, including reciprocal relations.
In the OHSS �uxes, changing the dynamics and ini-

tial values of �uctuations violates the detailed balance
that takes place in equilibrium. As a result, Onsager's
reciprocal relations are broken. The next criterion can
be formulated. The ful�llment of Onsager's reciprocal
relations indicates the absence of �uxes in the system
under consideration, while their violation indicates the

presence of �uxes.
The spatial heterogeneity causing �ux in the OHSS

leads to a violation of the symmetry of the correlation
functions of �uctuations with respect to the time vari-
able, resulting in an asymmetry of the light scattering
spectra. The �ux transfers the �uctuation energy from
one frequency region to another. There is an increase of
�uctuation modes propagating in the direction of �ux,
and a weakening in �uctuation modes propagating in the
direction opposite to �ux.

[1] L. Onsager, Phys. Rev. 15, 405, 2265 (1931); https://
doi.org/10.1103/PhysRev.15.405.

[2] L. I. Mandelstam, Dokl. Akad. Nauk SSSR 11, 219
(1934); L. I. Mandelstam, Complete Works (Publishing
House of the Acad. Sci. USSR, Moscow, 1948�1950).

[3] M. A. Leontovich, Zh. Eksp. Teor. Fiz. 9, 1314 (1939);
M. A. Leontovich, Selected Works (Nauka, Moscow,
1985).

[4] V. V. Vladimirskii, Dokl. Akad. Nauk SSSR 38, 229
(1943).

[5] I. L. Fabelinskii,Molecular Scattering of Light (Vysshaja
shkola, Moscow, 1965).

[6] M. A. Leontovich, Dokl. Akad. Nauk SSSR 1, 97 (1935);
M. A. Leontovich Selected Works (Nauka, Moscow,
1985).

[7] G. S. Landsberg, A. A. Shubin, Zh. Eksp. Teor. Fiz. 9,
1309 (1939); G. S. Landsberg, Selected Works (Publishi-
ng House of the Acad. Sci. USSR, Moscow, 1958).

[8] D. Beysens, Y. Garrabos, G. Zalczer, Phys. Rev. Lett.
45, 403 (1980); https://doi.org/10.1103/PhysRevLet
t.45.403.

[9] I. L. Fabelinskii, Phys.-Uspekhi 164, 897, (1994); https:
//doi.org/10.1070/PU1994v037n09ABEH000042.

[10] G. E. Uhlenbeck, Usp. Fiz. Nauk 103, 275 (1971); https:
//doi.org/10.3367/UFNr.0103.197102c.0275.

[11] R. F. Fox, G. E. Uhlenbeck, Phys. Fluids 13, 1893 (1970);
https://doi.org/10.1063/1.1693183.

[12] R. F. Fox, G. E. Uhlenbeck, Phys. Fluids 13, 2881 (1970);
https://doi.org/10.1063/1.1692878.

[13] M. Bixon, R. Zwanzig, Phys. Rev. 187, 267 (1969); ht
tps://doi.org/10.1103/PhysRev.187.267.

[14] F. L. Hinton, Phys. Fluids 13, 857 (1970); https://do
i.org/10.1063/1.1693027.

[15] J. Keizer, Statistical Thermodynamics of Nonequilibrium
Processes (Springer, New York, 1987); https://doi.or
g/10.1007/978-1-4612-1054-2.

[16] R. Zwanzig, Nonequilibrium Statistical Mechanics
(Oxford University Press, 2001).

[17] L. D. Landau, E. M. Lifshitz, Sov. Phys. JETP 5, 512
(1957).

[18] S. M. Rytov, Theory of Electrical Fluctuations and Heat
Radiation (Publishing House of the Acad. Sci. USSR,
Moscow, 1953).

[19] V. M. Zaitsev, M. I. Shliomis, Sov. Phys. JETP 32, 866
(1971).

[20] J. M. Ortiz de Zarate, J. V. Sengers, Hydrodynamic
�uctuations in �uids and �uid mixtures (Amsterdam,
Elseveir, 2006); https://doi.org/10.1007/s10765-008
-0517-7.

[21] V. P. Lesnikov, I. Z. Fisher, Sov. Phys. JETP 40, 667
(1975).

[22] Experimental Thermodynamics Vol. X: Non-equilib-
rium Thermodynamics with Applications, edited by
D. Bedeaux, S. Kjelstrup, J. Sengers (Royal Society of
Chemistry, Cambridge, 2016); https://doi.org/10.103
9/9781782622543-00001.

[23] N. N. Bogoliubov, Problems of Dynamical Theory
in Statistical Physics (Gostekhizdat, Moscow, 1946);
Selected Works on Statistical Physics (Moscow Universi-
ty Press, Moscow, 1979).

[24] L. D. Landau, E. M. Lifshitz, Course of Theoretical
Physics. Volume 5: Statistical Physics (Addison-Wesley,
Reading, MA, 1973).

[25] V. P. Lesnikov, J. Phys. Stud. 1, 208 (1997); https:
//doi.org/10.30970/jps.01.208.

[26] V. P. Lesnikov, Ukr. J. Phys. 64, 126 (2019); https:
//doi.org/10.15407/ujpe64.2.126.

[27] V. P. Lesnikov, Ukr. J. Phys. 49, 279 (2004).
[28] A.-M. S. Tremblay, M. Arai, E. D. Siggia, Phys. Rev.

A 23, 1451 (1981); https://doi.org/10.1103/PhysRe
vA.23.1451.

[29] H. Kiefte, V. J. Clouter, R. Penney, Phys. Rev. B 30,
4017 (1984); https://doi.org/10.1103/PhysRevB.30.
4017.

[30] D. S. Chung, K. Y. Lee, E. Mazur, Phys. Lett. A 145,
348 (1990); https://doi.org/10.1016/0375-9601(90)9
0947-M.

[31] L. D. Landau, E. M. Lifshitz, Fluid Mechanics
(Pergamon, London, 1959).

[32] R. D. Mountain, Rev. Mod. Phys. 38, 205 (1966); https:
//doi.org/10.1103/RevModPhys.38.205.

[33] D. McIntyre, J. V. Sengers, in Physics of Simple Li-
quids, edited by H. N. V. Tamperley, J. S. Rowlinson,
G. S. Rushbrooke (North-Holland Publishing Company,
Amsterdam, 1968).

3003-11

https://doi.org/10.1103/PhysRev.15.405
https://doi.org/10.1103/PhysRev.15.405
https://doi.org/10.1103/PhysRevLett.45.403
https://doi.org/10.1103/PhysRevLett.45.403
https://doi.org/10.1070/PU1994v037n09ABEH000042
https://doi.org/10.1070/PU1994v037n09ABEH000042
https://doi.org/10.3367/UFNr.0103.197102c.0275
https://doi.org/10.3367/UFNr.0103.197102c.0275
https://doi.org/10.1063/1.1693183
https://doi.org/10.1063/1.1692878
https://doi.org/10.1103/PhysRev.187.267
https://doi.org/10.1103/PhysRev.187.267
https://doi.org/10.1063/1.1693027
https://doi.org/10.1063/1.1693027
https://doi.org/10.1007/978-1-4612-1054-2
https://doi.org/10.1007/978-1-4612-1054-2
https://doi.org/10.1007/s10765-008-0517-7
https://doi.org/10.1007/s10765-008-0517-7
https://doi.org/10.1039/9781782622543-00001
https://doi.org/10.1039/9781782622543-00001
https://doi.org/10.30970/jps.01.208
https://doi.org/10.30970/jps.01.208
https://doi.org/10.15407/ujpe64.2.126
https://doi.org/10.15407/ujpe64.2.126
https://doi.org/10.1103/PhysRevA.23.1451
https://doi.org/10.1103/PhysRevA.23.1451
https://doi.org/10.1103/PhysRevB.30.4017
https://doi.org/10.1103/PhysRevB.30.4017
https://doi.org/10.1016/0375-9601(90)90947-M
https://doi.org/10.1016/0375-9601(90)90947-M
https://doi.org/10.1103/RevModPhys.38.205
https://doi.org/10.1103/RevModPhys.38.205


V. P. LESNIKOV

ÇÀÄÀ×À ÌÀÍÄÅËÜØÒÀÌÀ

Â. Ï. Ë¹ñíiêîâ

Íàöiîíàëüíèé óíiâåðñèòåò �Îäåñüêà ïîëiòåõíiêà�, ïðîñï. Øåâ÷åíêà, 1, Îäåñà, 65044, Óêðà¨íà

Òåîðiþ òåïëîâèõ ôëóêòóàöié ó âiäêðèòèõ ãiäðîäèíàìi÷íèõ ñòàöiîíàðíèõ ñòàíàõ (ÂÃÑÑ) ïîäàíî
âèêëþ÷íî â ìåæàõ ãiäðîäèíàìiêè. Îïèñàíî iñòîðiþ âèâ÷åííÿ ôëóêòóàöié ó ñóöiëüíîìó ñåðåäîâèùi çi
ñòàöiîíàðíèì ïîòîêîì. Ïîêàçàíî, ùî çàñòîñóâàííÿ äî ÂÃÑÑ ôëóêòóàöiéíî-äèññèïàöiéíî¨ òåîðåìè
ç âèìîãîþ âèêîíàííÿ ñïiââiäíîøåíü âçà¹ìíîñòi Îíçà åðà (ôëóêòóàöiéíà ãiäðîäèíàìiêà) ¹ ïîìèë-
êîâèì. Ïðè÷èíîþ ¹ òå, ùî ïîòiê, çìiíþþ÷è äèíàìiêó é ïî÷àòêîâi çíà÷åííÿ ôëóêòóàöié, ïîðóøó¹
äåòàëüíèé áàëàíñ, ùî ¹ â ðiâíîâàçi. Öå ïðîäåìîíñòðîâàíî íà ïðèêëàäi çàäà÷i Ìàíäåëüøòàìà ïðî
ôëóêòóàöi¨ â ñåðåäîâèùi ç òåïëîâèì ïîòîêîì. Äëÿ öi¹¨ çàäà÷i ðîçðàõîâàíî ñòðóêòóðíèé äèíàìi÷íèé
ôàêòîð äëÿ içîòðîïíîãî òâåðäîãî òiëà òà ðiäèíè. Âòðàòà ÷àñîâî¨ ñèìåòði¨ êîðåëÿöiéíèìè ôóíêöiÿìè
ôëóêòóàöié òà àñèìåòðiÿ ¨õ ñïåêòðàëüíèõ çîáðàæåíü ó öié çàäà÷i çóìîâëåíà ïðîñòîðîâîþ çìiíîþ
òåìïåðàòóðè, ÿêà âèçíà÷à¹ ïîòiê.

Ùîá ïîêàçàòè çàãàëüíiñòü öüîãî ðåçóëüòàòó äëÿ âñiõ ÂÃÑÑ ç ïðîñòîðîâîþ íåîäíîðiäíiñòþ, òàêîæ
ðîçãëÿíóòî çàäà÷ó Êåëüâiíà ïðî òåïëîâi ôëóêòóàöi¨ çìiùåíü ïîâåðõíi ðîçäiëó ìiæ äâîìà ðiäèíàìè.
Ïîòåíöiàë øâèäêîñòi âåðõíüî¨ ðóõîìî¨ ðiäèíè çìiíþ¹òüñÿ ëiíiéíî, òàê ñàìî ÿê i òåìïåðàòóðà â çàäà÷i
Ìàíäåëüøòàìà.

Çíàéäåíî ñïiââiäíîøåííÿ âçà¹ìíîñòi ÿê äëÿ çàäà÷i Ìàíäåëüøòàìà, òàê i Êåëüâiíà.
Êëþ÷îâi ñëîâà: Ìàíäåëüøòàì, âiäêðèòi ãiäðîäèíàìi÷íi ñòàöiîíàðíi ñòàíè (ÂÃÑÑ), ôëóêòóàöi¨,

ïîòiê, ñïiââiäíîøåííÿ âçà¹ìíîñòi, ôëóêòóàöiéíà ãiäðîäèíàìiêà.
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