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BASIC PRINCIPLES FOR CONSTRUCTING MIXING
FUNCTIONS BASED ON THE SIMPLEST LINEAR
AND NONLINEAR MAPPINGS

C. I'pubnax, J. AImumpuwiun. OCHOBHI NPHHIMIHN KOHCTPYIOBAHHS (YHKIIN 3MilIyBaHHsI Ha OCHOBI HalimpocTimmx JiHiiiHNX i
HediHiiHUX BinoOpaskenb. CTaTTS NPHUCBSYEHA JOCIIKCHHIO MOXIUBOCTI BUKOPHCTAHHS y KOMII'IOTepHIH kpunTorpadii HampocTimmx
HPHHLMIIB TEOpil HEMHIMHUX JUCKPETHHX IMHAMIYHHX CHCTEM, sIKi XapaKTepHU3YIOThCS CBOEI XAaOTHYHOI I0BeliHKOK. OCHOBHA
pobIieMa BUKOPUCTAHHS XaOTHYHNUX CHCTEM B KOMIT'IOTEPHHX PO3PAaXyHKaxX IIOJSra€ B TOMY, IO YHCIIO MOJKIMBHX CTaHIB B KOMIT FOTEpi
KiHneBe. ToMy KOMIT'FOTEpPHI MOJIEINI XaocCy € JIMIIEe HaOJIMKSHHSIM iCTHHHOI XaOTHYHOI ITOBEIIHKH, a KOXKHA TPAEKTOPIsl alpOKCHMOBAHOI
CHUCTEMH € MEePIOANYHOI0. 3 MaTeMaTUYHOI TOUKHU 30py MK(pyBaHHSA B iHQOPMALIIHUX CHCTEMax € MEePEeTBOPEHHS MPOCTOPY CKIHYEHHUX
TIOBiZIOMJIEHB, IO BiJNOBizae (a3oBoMy HpocTopy B Teopii JUHaMiuHMX cucTeM. DyHKIs 3MilllyBaHHS BU3HA4ae Take IMM(pPYBaHHS.
OCHOBHUMHM BUMOTaMH 10 (DYHKIIIi 3MillIyBaHHS € BIACYTHICTh KOJIi3iH, TOOTO OI€KTHBHICTH BiloOpaskeHHs, Xopoli qudys3iiiHi BIaCTUBOCTI
Ta KpiM TOTO, 3BOPOTHE MEPETBOPEHHS HE MOBHHHO OyTW CKJIAQJHIIIMM 3a mIpsiMe. Y CTaTTi MOKA3aHO, IO € MOXIMBICTh MOXKHA
BHUKOPHCTOBYBAaTU NUQY3iiHI BIACTUBOCTI HETMIHIHHUX AMHAMIYHMX CHUCTEM y MPOCTOPAaxX 3i CKIHYEHHOIO KIJIbKICTIO CTaHIB 3a JIOMOMOTO0
HaWIpOoCTINIOro HewiHiiHOrO BinoOpakeHHs TeHT. [ mokpameHHs IUQY3IHHHX BIACTHBOCTEH OYJIO BHUKOPHCTAHO CYIEPIIO3ULIIO
HeNiHiiHOrO BinoOpaxkeHHs TeHT Ta JiHIHHOTO BiZOOpaKEHHS NEepecTaHOBKH (y OiiblI 3arajJbHOMY BHIIQJIKy HEPETBOPEHHA XilUia).
OCHOBHMMH TIepeBaramMi 1oOynoBaHHX (YHKIIH € iXHA MpocToTa peaiisamii, MIBUAKICTE OOYHMCIEHb y 3ajadax 3MilIyBaHHS Ta CHIIbHA
kpunrorpadiyna criikicTs. Jng umx ¢GyHkuid Oyno MpoBENEHO KOpeNALidHWI aHaji3, aHali3 4yTIMBOCTI Ta aHajli3 BEJIUYMH IEpiofiB
IUKITY, SKi TOJUIAIOTE MPOCTIP Ha MiJMHOXWHH, M0 HE MEPETHHAIOTHCS. Y Pe3ylbTaTi MiTBEpKYIOThCS OUiKyBaHI Xopormi JudysiiiHi
BJIACTUBOCTI WX (QyHKIiH 3MinryBaHHs. [I[poIeMOHCTPOBAHO MOXKITHBICTD 3aCTOCYBAHHS UUX (DYHKIIH A5t minbpyBaHHS 300paKeHb.
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S. Grybniak, D. Dmitrishin. Basic principles for constructing mixing functions based on the simplest linear and nonlinear
mappings. This article is dedicated to exploring the possibility of using the simplest principles of nonlinear discrete dynamic systems theory
in computer cryptography, which are characterized by their chaotic behavior. The main problem of using chaotic systems in computer
calculations is that the number of possible states in a computer is finite. Therefore, computer models of chaos are only an approximation of
the true chaotic behavior, and each trajectory of the approximated system is periodic. From a mathematical point of view, encryption in
information systems involves transforming the space of finite messages, which is similar to the phase space in the theory of dynamical
systems. The mixing function specifies such encryption. The main requirements for the mixing function are the absence of collisions, i.e.,
bijectivity of the mapping, good diffusion properties, and, in addition, the inverse transformation should not be more complicated than the
direct one. The article demonstrates that it is possible to utilize the diffusion properties of nonlinear dynamical systems in spaces with a finite
number of states by using the simplest nonlinear mapping, Tent. To enhance the diffusion properties, a superposition of the nonlinear Tent
map and the linear permutation map (in the more general case of the Hill map) was used. The main advantages of the constructed functions
are their simplicity of implementation, speed of calculations in mixing problems, and strong cryptographic persistence. Correlation analysis,
sensitivity analysis, and analysis of the lengths of cycle periods that divide the space into non-overlapping subsets have been conducted for
these functions. As a result, the expected good diffusion properties of these mixing functions are confirmed. The possibility of applying these
functions to image encryption is demonstrated.

Keywords: nonlinear discrete systems, mixing function, encryption

Introduction

Cryptographic functions are used in information security tasks. There are a large number of di-
verse functions used in cryptography, based on various algorithms for their construction. The need to
implement information protection in systems with limited computational resources leads to the need
for the development of new cryptographic algorithms. The main properties of functions used in these
algorithms are the properties of scattering and mixing [1].

From a mathematical point of view, encryption in information systems is often presented as the
implementation of various transformations G:X — X on sets of finite messages X ={x,...,X}.

Assuming that x,...,x, are different m-digit positive integers than encode possible messages, where
k<10™ and x; <10", j=1,... k. In this case, transformations G must possess the property of ab-
sence of collisions, i.e. G(x;)=G(x) < x, =Xx,. In addition, the inverse transformation G™ should
not be more difficult than the direct one. If k =10" —1, then the function G(x) is called a complete
mixing function or a permutation function. In this case X ={1,2,...,10" —1}.
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The practical implementation of mixing functions for large values of requires overcoming signif-
icant difficulties associated with describing and setting mixing parameters, developing mathematical
and software support, and developing new mathematical models and methods.

Analysis of publications on the research topic

One of the most common mathematical methods used to construct mixing functions are nonlinear dy-
namics methods [2 — 5]. This can be explained by the fact that both in cryptography and in nonlinear sys-
tems, a nonlinear transformation of the space of the source information (phase space) is performed. On the
one hand, this transformation is fully determined, on the other hand, it has aperiodic ergodicity and extreme
sensitivity to initial conditions [6, 7], which allows for the generation of a pseudorandom chaotic sequence
possessing characteristics that coincide with the basic requirements of cryptography. The structure of dis-
crete-time dynamical systems is relatively simple, computer implementation is convenient, and computa-
tion speed is high. However, the values of the elements of the resulting chaotic sequence in phase space are
distributed non-uniformly, i.e., insufficiently mixed, which leads to security risks [8].

On the other hand, permutation functions based on linear operators (perhaps with an additional
modulus comparison operation) mix the elements of the phase space well [9]. Such permutation func-
tions were first constructed and used by L. Hill [10, 11]. The main advantages of the Hill cipher are
resistance to complete enumeration even with relatively small key sizes, simplicity, and speed of ap-
plication. However, there is a significant disadvantage inherent in all cryptographic functions with
pronounced linear operation properties: vulnerability to chosen plaintext attacks. In this regard, to in-
crease cryptostrength, nonlinear operations must be added to linear ciphers. Combining linear opera-
tions, as in the Hill cipher, with nonlinear ones led to the creation of substitution-permutation net-
works (for example, the Feistel network [12]). Currently, methods for constructing mixing functions
that use superpositions of linear and nonlinear operations are still actively used [13].

Purpose and Objectives of the Research

The main objective of this article is to demonstrate the possibility of constructing mixing func-
tions based on simple linear and nonlinear mappings. Specifically, a permutation operator is proposed
as a linear mapping, and the classical tent map is suggested as a nonlinear mapping. Other objectives
include conducting correlation analysis of the constructed mappings, sensitivity analysis, cycle length
analysis, exploring the possibility of generalizing algorithms for constructing mixing functions and
applying them to image encryption.

Auxiliary results

Next, we will use the classical Tent mapping [14]:

2X,Xx<1/2,

f(x):2(1/2—|x—1/2|)={2 Lox1/2"

[0,1]—f> [0,1], and mapping q -Tent (q - an odd number):

f (x)=2(q/2—|x—q/2|)={ 2%, X012,
¢ 2(q-x),x>q/2,
fq
[0.q]—[0,a] .

These mappings have identical properties (they differ from each other by extension/compression)

and are interconnected by the relations:
f.(x)=1(x), f,(x)=qf(x/q).

Let us note some important properties of the Tent mapping.

Property 1. If p,/q=f(p/q)(q isan odd number), then the numerator is uniquely restored p,
namely, p=p,/2,if p /2 isaneven number,or p=q—(p,/2),if p, /2 isan odd number.

Thus, if p is an even number, then the preimage is uniquely restored from the image.

Property 2. The set of proper fractions with even numerators and odd denominators is invariant
under the tTent mapping; on this set, the Tent mapping is reversible.
Property 3. If p, and p, are even numbers, then f_(p,) = f,(p,) ifand only if p, =p,.
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As will be shown later, the use of mapping f,(x) is more convenient than mapping f(x), firstly,

from a computational point of view, and secondly, the fraction p/q can be reduced, and such a reduc-

tion is not desirable for the future algorithm.

Also note that the future algorithm requires that computational procedures using the awning
mapping be performed without rounding, and hence exclusively with ordinary fractions. The point is
that a chaotic system cannot be implemented on a computer because of the finiteness of the number of
states. Each subsequent state of the system must not coincide with any previous state of the trajectory.
Otherwise (for example, as a result of rounding) the trajectory turns into a cyclic orbit or degenerates
into a stationary point, as in the tent mapping. Consider the sequence generated by the Tent mapping

{f™(x,)}, Where f@(x)=f(x), f®(x)=f(f“?(x)). We use the EXEL package. Pick a starting
point x,=2/3. Then theoretically it should be f®(x,)=x,, k=12,... However, the calculations
give different results: f®(x,)=1, f®(x,)=0. The first impression is that the problem arose be-
cause the number 2/3 is not represented as a terminating decimal. Then pick x, =0.4. Theoretically
we should obtain f®(x,)=08, f®(x,)=0.4 etc. However, as a result of calculations, we obtain
f(x,)=1, f®(x,)=0. Exactly the same results will be obtained in calculations in the MAPLE
package (and in other similar packages) if we set x, = HFloat(evalf(2/3)) or x, =HFloat(0.4). For

any other initial values x,, we will again receive f®?(x,)=0.

The reason for such incorrect calculations can be explained by the fact that the number from the
segment [0, 1] is represented in the computer in binary notation as a finite sum of numbers of the form

a, /2j((x]. €{0,1}), i.e. are a binary rational number, it is equal to A/2"™ (A is an integer and

0<A<2"). The number m is called order. But then f(A/2")=A/2"" (A is an integer and
0<A<2™), f@AI2")=A12"7, ..., f™P(A/2")=0. On the computers where the iterated

sequence was calculated, the maximum order turned out to be 53.

If the g -tent mapping is used on a subset of even natural numbers, then the permutation operator
is defined on the set of vectors with components consisting of single-digit natural numbers. The linear
permutation operator is defined by a permutation matrix consisting of zeros and ones, with exactly one
unit in each row and column. This operator is invertible, and the inverse matrix is equal to the trans-
pose of the original matrix. Thus, both the tent map operator and the permutation operator bijectively
map the aforementioned sets onto themselves.

Main result

Let us introduce the following notation. Let there be sets of finite messages X . Let the message

be some number xe X, x<10™. Let’s take this message as:
x=E10"" +&,10" " +...+ ¢, ,10+¢, ,&,€{01....9}, j=1....m.

Equivalent notation is x=[§,&,... &, ,&.].
Number x=[¢ &,...& &, ] is corresponded to the vector X ={¢, ,&,,...,&,, ,&,}. This corre-
spondence is one-to-one. Let’s denote it as X =¢(x), and the inverse x=¢*(X). We introduce the

permutation operator w,, : X — X,

m-1 1

7y (X) =0 (M) = ¢ (M §(x)) ,
where M — mxm dimension permutation matrix.
Obviously, the inverse operator is also a permutation operator: r,,(x) =¢ (M ¢(x)), whereM™ —
transposed to M matrix.
Based on nonlinear operators f (x), fq(”(x) we introduce nonlinear operators (1/2)f (2x),

@r/2) fq‘T’(Zx) , Where q=2-10"-1. These operators map one-to-one X — X . Back to them
@r2)(f,)*(2x), @/2)(f7)*(2x).
The mixing algorithm is defined by the formulay = G(x,T,M), where the mixing function:
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G(xT,M)=¢"(M((1/2) " (2x))) =m,, ((L/ 2) 1,7 (2x)) .
Inverse function:
G (x,T,M)=(1/2)(f”) " (2 (M§(x))) = 1/ 2)(f,") " (2m,, (X)) -

Also the mixing function.

The mixing function can also be considered as an encryption function, in which the parameter T
and matrix M are the keys.

Naturally, the superposition of mixing functions is a mixing function, i.e. G(G(x,T,,M,),T,,M,),
depending on two parameters T, and T,, and two matrices M, and M,, i.e. cryptographic strength
can increase with superposition.

Correlation analysis
To perform a correlation analysis, we will conduct an experimental test. Let’s put m=4,

0010 1000
0001 0010
T=372,T,=25L M= o M=
1000 0001

Consider three mixing functions:
G1(X) =(1/2) fq(Tl)(zx) ; Gz(x) = G(X’Tl’ Ml) ; Gs(x) = G(G(XleiMl)sz’Mz) |
where g=2-10" —1=19999.
The first function uses exclusively non-linear transformation q -tent; in the second, a linear mix-
ing transformation is added; in the third one, the superposition of the previous function with different

parameter values is used. For every function G, (x) construct mappings x={i/10" 107

i=1 -

y={(@/10™)G, ()}, k=123, and analyze the statistical indicator of linear dependence, namely,

i=1"

the correlation coefficient:
10™
¥ = (1/1om)(2((i 110" = X)(y, —Y_)]/(chy),
i=1

10™ 0™

where X =Y =(1/10")Y(i/10") = (1/10") Y (1/10")G, (i) = 05.
i=1 i=1
Calculate G(yk) =0.28864626, k =1,2,3, then the correlation coefficients

o, =-0.0001489%..., cs(xj) =-0.00014533..., G(;) =0.00039123....

It can be seen that there is no linear relationship between the sequences x={i/ 10”‘}?32" and

y={(1/10M)G, (i)}* , however, a significant dependence (nonlinear) in the first two cases can be ob-
served on the charts (Fig. 1).

Sensitivity analysis

Let there be two messages Xx,,Y, € X , whose numeric representations differ by only one charac-
ter. Consider successive transformations of these messages under the action of the mixing function
G (X):x,.,=G(X), ¥V..=G.(y,), k=123, n=0,12...

Task: Calculate the mean and standard deviation of the sequence {x, —y.}", .
Consider the mean of the sequence {x, —y.}, i.e. function S =(1/(n +1))Z(xi —-y,). We write
i=0

the recurrence relation S, =(n/(n+1))S, ,+@/(n+1))(x,—-y,), n=012..., S, =X, —Y,. Let’s take,
for example, x, =[0001] =1, y, =[0002]=2. For every function G, (x) calculate the elements of the
sequence {S,}-, (Fig. 2, 3 and 4).
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Fig. 1. Mapping charts x ={i /10"}* — y={(1/10™)G,()}" :a-k=1;b-k=2;c- k=3
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—0.4 -0.15
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Fig. 2. Mapping charts: a — {(x, —y,) /10"}%° (grey colour); b — {S, /10"}°" ;
c— {S, 110"} for mixing function G, (x)
X~ §/10" S/10"
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Fig. 3. Mapping charts: a — {(x, —y,) /10"}*° (grey color); b — {S, /10"}*";

i=1 i=1
c— {S, /110"}*% for mixing function G, (x)

Consider the variance and standard deviation of the sequence {x -y}, i.e. function

D, =EZ(Xi -y, =S, and c,=4D, . We write the recurrence relation
n

i=0

D, =n—_1Dn71 +£(xn -y, -S,)*, D, =0. For the same initial values x, =[0001], y, =[0002] and for
n n

each function G, (x) we calculate the elements of the sequence {c,}, and (Fig. 5 and 6).
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Fig. 4. Mapping charts: a — {(x, —y,) /10"}*° (grey color); b — {S, /10"}°°;
¢ - {S, 110"} for mixing function G,(x)
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Fig. 5. Mapping charts {c, /10"}°° for mixing function G, (x):a- k=1;b-k=2;c- k=3
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Fig. 6. Mapping charts {c, /10"}, for mixing function G, (x):a- k=1;b-k=2;c- k=3

Similar results are obtained if other close values of the digital representations of the original mes-
sages are chosen. Based on the results of the experimental analysis, it can be concluded that the function
G,(x) mixes poorly, and there is a clear preservation of dependence between the numerical values of
messages in the process of mixing when the initial values were close The mean differences and standard
deviations tend to a constant as the number of mixing increases. Conversely, for the mixing functions
G, (x), G,(x) the mean differences and standard deviations behave without a pronounced trend (Fig. 6).

Analysis of period lengths

The mixing function G(x) maps a finite set X into yourself. This means that for any x e X iter-
ative sequence {G" (x)}", (considered, G (x) = x) will be periodic, with a period of 10" —1 at most.

When constructing mixing functions, it is important to know how the set is partitioned into sub-
sets defined by periodic orbits. It is important to know the number of these sets and their sizes, i.e.

minimum, average and maximum lengths of periodic orbits, and the number of orbits. The presence of
a large number of orbits with short lengths is dangerous, because it leads to the formation of patterns.
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It is most preferable to have a single long orbit passing through almost all space. An ensemble of sin-
gle-type orbits of medium length may also be suitable.

Let us again consider the function G,(x) =G(G(x,T,,M,),T,,M,) with previously introduced pa-
rameter values T,,T,,M,, M, . And let us set the task: to find all subsets of the set X , defined by pe-
riodic orbits.

Numerical analysis shows that the mapping G,(x) has three fixed points, four periodic orbits of
length 2, one orbit of lengths 3, 4, 6, 16, 17, 19, 319, 9604 each. Table 1 lists the points generating the
corresponding periodic orbits.

Table 1
Periods of orbits and lists the points generating the corresponding periodic orbits

Period

) 1 2 3 4 6 16 17 19 319 9604
orbits

6234 2122 5913 1737 0109 0037 1192 0089 0016 0001
Genera 9666 5427
tive dot | 9964 6111
9653

Note that the two longest orbits contain 9923 points, which is more than 99 % of the total number
of points in the set X . Such a distribution of mapping cycles testifies to the good diffusion properties
of the mixing function, built on the simplest basic principles. On Fig. 7 shows graphs of functions
{@/10M)GP (x)}%° for different starting points.

1.0

0.9
0.8

G (x)/10™
© oo
g o N
(i) m
G x)10

o
~

©co o
R

o

02 0 06 08

4
i/o0™
a b c

Fig. 7. Mapping charts {(1/10™)G® (x)}* : a— x =[0109] (x =109/10", T =6);
b- x=[0016] (x=16/10", T =319); c — x =[0001] (x =1/10", T =9604)

Modification options for the mixing mapping
When constructing a mixing function:

G(xT,M)=¢"(M((L/2) 1" (2x))) =m,, (L 2) " (2x)) ,

permutation matrix M with dimensions mxm was used. There are m! such matrices. Note that when
m>25 m!>10", and when m>7 (m!)*>>10". Thus, when m>25 hacking the permutation func-
tion would require brute force, i.e. exhaustive search of all possible options. And to break the superpo-
sition of two mixing functions, exhaustive search is required when m > 7. However, the mixing prop-
erties of a linear operator can be further enhanced using Hill’s algorithm, namely, instead of a permu-

tation matrix, take any mxm matrix, ensuring only that the value of its determinant is not divisible by
2 0r 5. Let A issuch a matrix. Then the operator:

7, (X) = ¢ (AX(mod10)) = ¢ * (A dp(x)(mod10)),

maps X into X unambiguously [10]. The number of suitable matrices is more than 10"™ . On the
one hand, only single-digit numbers can be used as elements of the matrix A (since calculations are
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done modulo 10), on the other hand, matrices with determinants equal to zero, even, or divisible by
five should be discarded. It should be noted that M X(mod10) = M X, so the Hill-modified algorithm

is a generalization of the above algorithm.

Another way to modify the algorithm is related to dividing the original message into blocks and
applying different shuffling functions to different blocks. Moreover, after the first shuffling, it is pos-
sible to perform a second division and shuffle again, which generalizes the application of the superpo-
sition operation of shuffling functions. For example, let m=16. First, we divide the message into
blocks 4-8-4 and apply three mixing functions to each block. Then we divide the resulting message
into blocks 8-8 and again apply a pair of new mixing functions to each block. In total, there are possi-

ble options for using permutation matrices (4 !)*(8 !)* >10', for breaking the mixing operator built

using mixing functions, a complete enumeration of options is required.

Mixing images

Let’s apply the mixing function to encrypt images. Let’s take the classical image “Lena” (Fig. 8, a),
which consists of 561x 2" pixels. Let’s build 561x 2" matrix that encodes the image. Matrix ele-
ments are calculated to 16 decimal places. Round off the matrix elements to two decimal places, thus
obtaining a truncated image (Fig. 8, b). Then round the matrix elements to one decimal place (Fig. 8, c).
In the last case a significant loss of information is noticeable, the quality of the image has significantly
deteriorated.

Fig. 8. Lena image: a — original, b — truncated (to two decimal places), ¢ — truncated (to one decimal place)

Multiply the elements of these matrices by 100 and represent them as one-dimensional arrays
containing 561-2'° two-digit numbers. Or as arrays containing 561-2" single digit numbers. Let’s

split the arrays into blocks of eight numbers. There are 561-2° blocks of these in each array. For each
element of a block, i.e. eight-digit numbers, apply the mixing function. We will get a new set of blocks
of two arrays, from which we will compose matrices, and output images that are encoded by these ma-
trices. We will get two mixing images of truncated (to two decimal places and to one decimal place)
“Lena” images (Fig. 9, aand 10, a).

The same mixing function was applied to each block of both arrays. Parameters of the mixing
function: T,=373, T,=251, m ={2,4138,7,6,5}, m,={8,3,7,2,6,1,4,5}. Mixing matrices M,
and M, are encoded by sequences m,,m, (the ordinal number of the element in the sequence deter-

mines the row number, and the value of this element determines the column number, at the intersec-
tion of which a one stands in the permutation matrix). These mixing images are reversible without loss
of information, i.e. the inverse images coincide with the original truncated images.

a b

Fig. 9. Mixing the “Lena” image (truncated to two decimal places):
a — with splitting into blocks of 8 elements; b — with splitting into blocks of 24 elements
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To improve the quality of mixing, let’s split the arrays into blocks consisting of twenty-four
numbers. There are 187-2° such blocks in each array. For each block element (a twenty-four-digit
number), we apply the mixing function with the following parameters: T, =573, T, =751,

m, ={13, 24, 20, 19, 9, 10, 2, 4, 23, 22, 1, 21, 16, 3, 18, 17, 8, 7, 15, 14, 6, 5, 12, 11},
m, ={16, 17, 8, 9, 18, 3, 10, 7, 14, 2, 23, 6, 11, 12, 1, 22, 21, 4, 13, 24, 5, 20, 19, 15}.

b

Fig. 10. Mixing of the “Lena” image (truncated to one decimal place):
a — with splitting into blocks of 8 elements, b — with splitting into blocks of 24 elements

In Figures 9 and 10 you can see how the mixing quality improves as the size of the array parti-
tioning blocks corresponding to the matrices encoding the original image increases.

Conclusions

In this article, the possibility of using simple principles of dynamic systems theory in computer
cryptography has been studied. The main problem with using chaotic systems in computer calculations
is that the number of possible states in a computer is finite. Therefore, computer models of chaos are
only an approximation of true chaotic behavior. Such an approximation can only convey the property
of the original system in the initial iterations. Due to the sensitivity of the system to initial conditions,
the trajectories of the original and approximated systems diverge very quickly, with each trajectory of
the approximated system becoming periodic.

However, the use of the diffusion properties of nonlinear dynamic systems in spaces with a finite
number of states is possible. Moreover, even with the simplest nonlinear mapping, the Tent map, it is
possible to construct mixing functions that uniquely map the state space to itself, with good diffusion
properties. Superpositions of the nonlinear Tent mapping and the permutation linear mapping (more
generally, the Hill mapping) were used for this purpose. For the constructed functions, a correlation
analysis, sensitivity analysis, and most significantly, an analysis of cycle lengths that divide the state
space into non-intersecting subsets were performed in the case of spaces with a finite number of states.
As a result, the expected good diffusion properties of these mixing functions were confirmed. The
possibility of using these functions for image encryption was demonstrated. These functions can also
be applied in local networks, simplifying mixing and encryption algorithms, which should significant-
ly reduce computation time without losing network cryptostability. Based on the obtained mixing
functions, it is planned to construct cryptographic hash functions in the future.
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