PAGE
43

Міністерство освіти і науки України
Національний університет
«Одеська політехніка»
Кафедра іноземних мов
Методичні вказівки до практичних занять
з англійської мови

за спеціальністю

121 «Інженерія програмного забезпечення»

Одеса

Одеська політехніка
2023
Міністерство освіти і науки України
Національний університет
«Одеська політехніка»
Кафедра іноземних мов
Методичні вказівки до практичних занять
з англійської мови

за спеціальністю

121 «Інженерія програмного забезпечення»

Затверджено

на засіданні кафедри

іноземних мов

Протокол № 7

від 3 квітня 2023
Одеса

Одеська політехніка
2023
Методичні вказівки до практичних занять з професійної англійської мови за спеціальністю 121 «Інженерія програмного забезпечення» для студентів І курсу/ Укл.: Л.Ю. Цапенко, Л.М. Шапа, О.В.Гвоздь, О.В. Лебедєва – О. Одеська політехніка :, 2023.- 54 с.

Автори:
Л.Ю. Цапенко, кандидат філол. наук, доцент

Л.М. Шапа, кандидат філол. наук, доцент

О.В.Гвоздь, ст.викладач

О.В.Лебедєва, ст.викладач.

Передмова

Метою “Методичних вказiвок” є формування впродовж 90 годин занять у студентів (вхідний рівень володіння мовою – В1) вмiнь та навичок читання за тематикою спеціальності 121 «Інженерія програмного забезпечення» на І курсі навчання ІКС (вихідний рівень володіння мовою – В2). За рахунок тренування і виконання читання текстів і комунікативних завдань студенти зможуть досягти практичного володіння англійською мовою за фахом.

Практичне володіння іноземною мовою в рамках даного курсу припускає наявність таких умінь, які дають можливість:

· вільно читати оригінальну літературу іноземною мовою у відповідній галузі знань;

· оформляти витягнуту з іноземних джерел інформацію у вигляді перекладу або резюме;

· робити повідомлення і доповіді іноземною мовою на теми, пов'язані з науковою роботою майбутнього фахівця;

· вести бесіду за фахом.

Кожний урок складається з тексту й комплексу мовних вправ, які розраховані на удосконалення навичок активізації словарного і граматичного мінімуму професійного спрямування.

“Методичні вказiвки” забезпечують підготовку до міжнародного усного спілкування англійською мовою для спеціальних цілей, а саме - оволодіння лексичними, граматичними і стилістичними навичками, а також умінням читати, перекладати, згортати і розгортати усну англомовну інформацію наукового функціонального стилю, що передбачено вимогами Програми вивчення іноземних мов у нефілологічному ВНЗ.

Змiст
4Передмова

6Unit 1

9Unit 2

12Unit 3

15Unit 4

18Unit 5

21Unit 6

24Unit 7

26Unit 8

29Unit 9

32Unit 10

35Unit 11

38Unit 12

40Unit 13

43Unit 14

47Unit 15

50Keys 121 2023

54References

Unit 1

Engineering and computer graphics

The computer revolution has rapidly changed the way the world works. Developments in radio, television, radar, transistors, computers, and robotics have fundamentally altered human life. The field of Computer Engineering is at the epicenter of this development. It encompasses a wide range of topics including operating systems, computer architecture, computer networks, robotics, artificial intelligence, and computer-aided design. Computer engineering is a closely related field concerned with the design and practical application of computer hardware and software systems to the solution of technological, economic, and social problems. The computer engineer analyzes a problem and selects from a variety of tools and technologies those most appropriate for its solution. A computer engineer can expect to be involved in hardware design, software creation, and systems integration.

Computer graphics is a sub-field of computer science which studies methods for digitally synthesizing and manipulating visual content. Although the term often refers to three-dimensional computer graphics, it also encompasses two-dimensional graphics and image processing. Computer graphics have come long way ahead in terms of technology and creativity.

Computer graphics is one of the most visible and exciting aspects of computer science. And unlike some fields of computer science, it has a rigorous foundation in theory and mathematics. Computer graphics is a very large field. It covers two dimensional and three dimensional graphics and animation, graphics programming, theory, and techniques
Cartoon animation is one such feature that is being used extensively in website designing. In animation different series of drawings are segregated together in order to create movement. Resolution of vision requires at least 24 frames per second in a particular frame.

The term computer graphics includes almost everything on computers that is not text or sound. Today almost every computer can do some graphics, and people have even come to expect to control their computer through icons and pictures rather than just by typing.

The aim of computer graphics is to visualize real objects and imaginary or other abstract items. In order to visualize various things, many technologies are necessary and they are mainly divided into two types in computer graphics: modeling and rendering technologies.

Rendering is the process of generating an image from a model (or models in what collectively could be called a scene file), by means of computer programs. A scene file contains objects in a strictly defined language or data structure; it would contain geometry, viewpoint, texture, lighting, and shading information as a description of the virtual scene. The data contained in the scene file is then passed to a rendering program to be processed and output to a digital image or raster graphics image file. The rendering program is usually built into the computer graphics software, though others are available as plug-ins or entirely separate programs. The term "rendering" may be by analogy with an "artist's rendering" of a scene. Though the technical details of rendering methods vary, the general challenges to overcome in producing a 2D image from a 3D representation stored in a scene file are outlined as the graphics pipeline along a rendering device, such as a GPU. A GPU is a purpose-built device able to assist a CPU in performing complex rendering calculations. If a scene is to look relatively realistic and predictable under virtual lighting, the rendering software should solve the rendering equation. The rendering equation does not account for all lighting phenomena, but is a general lighting model for computer-generated imagery. 'Rendering' is also used to describe the process of calculating effects in a video editing file to produce final video output.

Computer graphics is now used in various fields; for industrial, educational, medical and entertainment purposes. Computer graphics specialists are the experts who use computers and related technologies to create and manipulate electronic images. These specialists apply their talents to three-dimensional cartoons, video games, television and film. They use CAD (computer-aided design) systems to design models of building, cars or entire environments. In the ever-changing world of computer technologies and design, computer graphics specialists must be on the cutting edge of both hardware and software developments.

Exercise.1.Translate and memorize the words:

to alter, to encompass, artificial, appropriate, to manipulate, dimension, to be segregated, rigorous, frame, in order to, rendering, entirely, purpose, cutting edge.
Exercise.2. Answer the questions:

1. What does the field of Computer Engineering encompass?
2. What does computer graphics refer to?
3. What device is able to assist a CPU in performing complex rendering calculations?
4. Which fields is computer graphics used in?
5. What do computer graphics specialists use CAD for?
6. What is the most visible and exciting aspects of computer science?
7. What can computer engineer expect to be involved in?

Exercise.3.Match the right part with the left:

	1. Computer engineering is a closely related field concerned with ……
	a. a general lighting model for computer-generated imagery.

	2. If a scene is to look relatively realistic and predictable under ……
	b. the design and practical application of computer hardware and software systems to the solution of technological, economic, and societal problems.

	3. Computer graphics specialists are the experts who use computers and related technologies …..
	c. virtual lighting, the rendering software should solve the rendering equation.

	4. The rendering program is usually built into the computer graphics…..
	d. to create and manipulate electronic images.

	5. The rendering equation does not account for all lighting phenomena, but is …..
	e. software, though others are available as plug-ins or entirely separate programs.

Exercise.4.Fill in the gaps using the following words:

field graphics professionals designers media earn skilled
 Motion graphic designers or motion designers are skilled 1… who create graphic artworks for movies, online videos, television programs, etc. They are highly 2… persons who use visual effects and animations for creating attractive works. This career is a fairly new 3… that is becoming popular each day with new technologies and different ideas. As you know, there are different types of designers like web designers, graphic 4…. , product designers, etc.; those motion graphic designers need to be trickier and technologically up to date to perform well in the market.

Opportunities for motion designers are increasing each day with the development of social media and electronic media. When you open a social 5… account, you can see thousands of videos, including ads, entertainers, informative videos, etc. Every such video includes 6…. at some point. Thus opportunities are created for motion graphic designers. Also, if you are good at creating motion, you can work as a freelancer. You can even work by sitting at home and 7… money. Many online sites are available to provide freelance jobs in this field.

Exercise.5. Compose a story on one of the topics (up to 100 words):
· How computer graphics is useful in engineering?
· What are the usage areas of computer graphics?
Unit 2

 Fundamentals of programming and algorithmic languages.

Programming is a process of designing programs, a plan of action. The purpose of programming is to create a set of instructions that computers use to perform specific operations or to exhibit desired behaviors. It is a process of designing, writing, testing, debugging, and maintaining the source code of computer programs. This source code is written in one or more programming languages (such as Java, C++, C#, Python, etc.)

Before starting to program, it is very important to have an appreciation for how the computer is going to look at your program. When your program is executed, the computer will do nothing unless your program tells it to do so. This includes reading input from the user or a file, doing something with that input, and giving the results in a predictable manner (usually either to screen or to print).

 At their core, computers are machines. Machines operate on the basis of command: you tell them to do something and they do it. This is an essential aspect of computers to be recognized by anyone who wants to program: the computer does what you tell it to do and does it faster than you could. If you do not give the computer the right commands in the expected way, you will not get the right results in the way you expect.

 There are two parts to every executing program: data and code. The first is the information to be processed. The second is comprised of three kinds of statements: assignment, iteration, and operation. The kind of statement determines what the computer will do with it. This differs by programming language. No one programs in the language that the computer itself uses (binary). Instead every language is translated for the computer. The vocabulary of the programming language is a set of terms called "reserved words". Reserved words are trigger words. When the computer reads them, it triggers a response, an action. Depending on what the term is, the computer will do something immediately (e.g., 'break') or will look for more information.

 Assignment statements are perhaps the simplest of the three. In assignment, the value on the right side of the equal sign ('=') is assigned to a variable name on the left.

Control statements have the sole purpose of regulating the flow of the program. Like a traffic signal, a control statement, or loop, tells the computer whether to go or stop. It does this by expressing the conditions under which an action should occur. If the conditions are not met, the entire loop is ignored by the computer.

Operation statements are the lifeblood of a program. These statements tell the computer what to do. Some commands expect to be told explicitly upon which input to act or where it should to direct the output. If this information is expected and not given, the command will be unclear to the computer, and the program will quit unexpectedly.

A programming language acts as a translator between you and the computer. Rather than learning the computer's native language (known as machine language), you can use a programming language to instruct the computer in a way that is easier to learn and understand.

A specialized program known as a compiler takes the instructions written in the programming language and converts them to machine language.

Programming a computer in an algorithmic language necessitates the availability of special software in the form of programming processors (compilers, interpreters) — which are intermediaries between the program in the algorithmic language and the machine. A complete processor executes the following functions: input of the program, lexical analysis (isolation and classification of lexemes), syntactic and semantic analysis, with indications of formal errors, synthesis of an intermediate form (representation of the program in the internal language of some abstract computer, which is convenient for the subsequent processing or execution of the program), optimization (systematic transformations of the intermediate forms which improves certain characteristics of the program such as its size, speed and demands on memory), code generation (construction of the machine program) and execution of the program.

Exercise.1 Read and memorize using a dictionary
to exhibit, debugging, predictable, core, to be comprised, assignment, iteration, trigger, sole, loop, explicitly, subsequent.
Exercise.2. Answer the questions:

1. What is the purpose of programming? 2. What are the two parts to every executing program? 3. What is the purpose of control statements? 4. What can be considered as the lifeblood of a program.? 5. How does a programming language act? 6. What kind of functions does a complete processor execute?

Exercise.3.Match the right part with the left:

	1. Some commands expect to be told explicitly upon which ….
	a. … that computers use to perform specific operations or to exhibit desired behaviors

	2. Like a traffic signal, a control statement, or loop, tells …….
	b….. a set of terms called "reserved words"

	3. The vocabulary of the programming language is. …..
	c… you will not get the right results in the way you expect.

	4. If you do not give the computer the right commands in the expected way,.. ….
	d……. the computer whether to go or stop..

	5. The purpose of programming is to create a set of instructions.….
	e…. input to act or where it should to direct the output.

Exercise.4.Fill in the gaps using the following words:

can be challenging language defines interpret operating system

compiler appropriate
Machine 1… is a code or object code consisting of binary digits 0 and 1. A computer system can easily understand and 2… these binary digits. Since a central processing unit (CPU) can directly understand and interpret it, machine language is considered a native language. Understanding machine language 3…, as it utilizes a binary system where commands are written in the form of 1s and 0s, which is not easily interpretable. There is only one language understood by computers-machine language. The 4… of a computer system identifies the specific machine language used in that particular system.
The operating system 5… how the program should write so that it can be converted to machine language and the system takes 6… action. The computer programs and scripts can also be written in other programming languages like C, C++, and JAVA. However, a computer system cannot directly understand these languages, so there is a need for a program that can convert these computer programs to machine language. The is used to convert the programs to machine language, which computer systems can easily understand. The 7… generates the binary file and executable file. Example of machine language for the text “Hello World”:-01001000 0110101 01101100 01101100 01101111 00100000 01010111 01101111 01110010 01101100 01100100

Exercise.5. Compose a story on one of the topics (up to 100 words):

· What are the fundamentals of programming language?
· What is the meaning of algorithmic language?
Unit 3

 Fundamentals of programming and algorithmic languages (part 2)

Algorithmic language is a formal language intended for describing computational processes or, equivalently, for writing down algorithms to be executed by computers. One distinguishes between problem-oriented algorithmic languages (high-level languages), which are not related to any specific machine, and machine-oriented algorithmic languages (low-level languages), which take the specific features of a given machine into account (instruction set, addressing modes, etc.).

The term "algorithmic language" usually refers to a problem-oriented language, as opposed to machine code, which is a notation that is directly interpreted by a machine. For the well-formed texts of an algorithmic language (programs, cf. Program) a general algorithm defines their execution in a unique way, which is the distinction between algorithmic languages and non-algorithmic programming languages, for which the execution process for a text is fully undetermined or the text merely serves as material for the synthesis of an algorithm.

As in natural languages, an algorithmic language is constructed over an alphabet of basic symbols (in which the program is written down) in the form of a hierarchical system of grammatical elements, between which relations are given (similarly to the words, phrases and sentences in a natural language, whose connections are given by syntactic rules). The lowest level elements, formed by chains of basic symbols, are called lexemes, or lexical units.

The further levels of elements of an algorithmic language are formed by notions, or non-terminals. The relation that may hold between the notions of an algorithmic language is that of being a (direct) constituent of (i.e. an immediate constituting part), while the individual constituents of a given notion are related to each other by concatenation (textual sequence). A tree whose root is the initial notion, whose terminal vertices (leafs) are lexemes and basic symbols, whose internal vertices are concepts and whose branches are constituent relations, is called a production or syntax tree of a program. The construction of such a tree is known as the syntactic analysis or parsing of a program.

Notions and lexemes have attributes, i.e. certain sets fixed by the description of the algorithmic language. Determining the attributes of the elements occurring in a program is called its semantic analysis. A substantial part of the semantic analysis is a check on the compatibility of the attributes.

In specific algorithmic languages, the alphabet of basic symbols usually consists of the letters of the Roman alphabet, digits, pairs of delimiters (parentheses), separators (punctuation marks) and symbols for certain operations. The principal classes of lexemes are numerals to represent numbers, literals to represent texts, and identifiers to denote the various objects of the program that are defined in the program itself. The principal such objects are variables, labels (which name different parts of the program) and procedures (which denote functions). The meanings and the names of certain identifiers are defined by the description of an algorithmic language (reserved words).

Among the concepts of an algorithmic language are basic structures — definitions, expressions and operators. Descriptions are sources of attribute information which is assigned to the defining occurrence of the lexeme. Essentially, attributes characterize the type of values calculated by executing the program, their representation and the way in which they are stored in the memory of the computer.

Loops and procedures are the most characteristic tools of an algorithmic language, providing as they do a concise notation for very long computations.

The number of algorithmic languages which may be employed with computers is very large (more than one thousand), but only a few of them are extensively used. These include Algol; Algol-68; Cobol; Lisp; PL/I; Simula; Fortran;.

Exercise.1.Translate and memorize the words:
to distinguish, to oppose, merely, chain, constituent, terminal, vertice, attribute, pairs of delimiters, parentheses, to assign, occurrence, concise.
Exercise.2. Answer the questions:

1. What is an algorithmic language?
2. What is the difference between problem-oriented algorithmic and machine-oriented algorithmic languages?
3. What is an algorithmic language is constructed over?
4. What is a syntax tree of a program?
5. What is the lowest level element, formed by chains of basic symbols?
6. What do attributes characterize?

Exercise.3.Match the right part with the left:

	1. The principal classes of lexemes are numerals to represent numbers, literals to represent texts, and identifiers ….
	a. … its semantic analysis.

	2. Loops and procedures are the most characteristic tools of an algorithmic language, providing …….
	b…. to denote the various objects of the program that are defined in the program itself

	3. Descriptions are sources of attribute information …..
	c…. as they do a concise notation for very long computations.

	4. The term "algorithmic language" usually refers to a problem-oriented language, as opposed.. ….
	d….which is assigned to the defining occurrence of the lexeme.

	5. Determining the attributes of the elements occurring in a program is called. ….
	e….. to machine code, which is a notation that is directly interpreted by a machine.

Exercise.4.Fill in the gaps using the following words:
advantage human-readable high-level easily understand compiler machines
Programmers developed 1… languages in response to the issues they faced while writing programs. The older language poses portability issues, as code written on one machine cannot be 2… transferred to other machines. This led to the development of high-level language. The high-level language is easy to 3… , and the code can be written easily as the programs written are user-friendly in a high-level language. Another 4 … of code written in a high-level language is that it is independent of a specific computer system, allowing for easy transferability to other 5… . The high-level language uses the concept of abstraction and also focuses on programming language rather than focusing on computer hardware components like register utilization or memory utilization.

Programmers develop higher-level languages to write 6 … programs that are easily understandable by any user. The programming style can be easily understood by humans when using high-level language syntax compared to low-level language. The only requirement in a high-level language is the need for a 7… . The computer system does not directly understand the program written in a high-level language. Before the execution of high-level programs, it needs to be converted to machine-level language. Examples of high-level languages are C++, C, JAVA, FORTRAN, Pascal, Perl, Ruby, and Visual Basic.

Exercise.5. Compose a story on one of the topics (up to 100 words):

· What are types of computer languages?
· Fundamentals of computer programming.

Unit 4

Object Oriented Programming
Object-oriented programming (OOP) is a programming language model organized around "objects" rather than "actions" and data rather than logic. Historically, a program has been viewed as a logical procedure that takes input data, processes it, and produces output data.

The programming challenge was seen as how to write the logic, not how to define the data. Object-oriented programming takes the view that what we really care about are the objects we want to manipulate rather than the logic required to manipulate them.

Designing computer programs with the approach of object oriented programming begins with defining the objects that are to be manipulated by the program. Once the objects are identified, the programmer will begin to identify the relationship between each object. This process is usually referred to as data modeling. Essentially, the programmer is seeking to place the objects into a classification, thus helping to define the data that is part of the inheritance brought to the task by each object. In fact, the process of defining these classes and subclasses of data is normally called inheritance.

Object oriented programming also helps to sort objects in a manner that allows for the phenomenon of polymorphism to take place. That is, different objects will be able to respond to a common message, but each in a different way that is unique to that object. At the same time, object oriented programming allows for the encapsulation of an object, effectively hiding or protecting the data associated with the object from easy view without security access.

The first step in OOP is to identify all the objects you want to manipulate and how they relate to each other, an exercise often known as data modeling. Once you've identified an object, you generalize it as a class of objects and define the kind of data it contains and any logic sequences that can manipulate it. Each distinct logic sequence is known as a method. A real instance of a class is called an "object" or, in some environments, an "instance of a class." The object or class instance is what you run in the computer. Its methods provide computer instructions and the class object characteristics provide relevant data. You communicate with objects - and they communicate with each other - with well-defined interfaces called messages.

The concepts and rules used in object-oriented programming provide these important benefits:

· The concept of a data class makes it possible to define subclasses of data objects that share some or all of the main class characteristics. Called inheritance, this property of OOP forces a more thorough data analysis, reduces development time, and ensures more accurate coding.

· Since a class defines only the data it needs to be concerned with, when an instance of that class (an object) is run, the code will not be able to accidentally access other program data. This characteristic of data hiding provides greater system security and avoids unintended data corruption.

· The definition of a class is reusable not only by the program for which it is initially created but also by other object-oriented programs (and, for this reason, can be more easily distributed for use in networks).

· The concept of data classes allows a programmer to create any new data type that is not already defined in the language itself.

Simula was the first object-oriented programming language. Java, Python, C++, Visual Basic .NET and Ruby are the most popular OOP languages today. The Java programming language is designed especially for use in distributed applications on corporate networks and the Internet. Ruby is used in many Web applications. Curl, Smalltalk, Delphi and Eiffel are also examples of object-oriented programming languages.

One of the advantages of object oriented programming is that the process makes good use of modularity. That is, objects and tasks are grouped in a way that each module is capable of independent consideration. This can be a great help when making enhancements to a program, as modularity makes it possible to address the task of making alternations to the setup of one portion of the programming without impacting the structure and function of the other modules.
Exercise.1.: Read and memorize using a dictionary

Object-oriented programming, rather than, challenge, inheritance, encapsulation, security access, data modeling, distinct, logic sequence, thorough data analysis, unintended, modularity, enhancement
Exercise.2. Answer the questions:

1. What is object-oriented programming?
2. What is the advantage of object oriented programming?
3. How can a program be viewed historically?
4. What does designing computer programs with the approach of object oriented programming begin with?
5. What is the next step of the programmer once the objects are identified? 6. How do we communicate with objects?

Ex.2.Match the right part with the left:

	1. Once you've identified an object, you generalize it as a class of objects and define …
	a.. ….allows for the phenomenon of polymorphism to take place.

	2. Object oriented programming also helps to sort objects in a manner that …….
	b. ….hiding or protecting the data associated with the object from easy view without security access.

	3. The Java programming language is designed especially for use..…..
	c. any new data type that is not already defined in the language itself.

	4. The concept of data classes allows a programmer to create……..
	d. ……in distributed applications on corporate networks and the Internet.

	5. At the same time, object oriented programming allows for the encapsulation of an object, effectively.….
	e…….. the kind of data it contains and any logic sequences that can manipulate it.
.

Ex.4.Fill in the gaps using the following words:
accuracy inside unintended created object reuse unnecessary
What are the main principles of OOP?
Object-oriented programming is based on the following principles:

· Encapsulation. This principle states that all important information is contained inside an 1… and only select information is exposed. The implementation and state of each object are privately held 2… a defined class. Other objects do not have access to this class or the authority to make changes. They are only able to call a list of public functions or methods. This characteristic of data hiding provides greater program security and avoids 3… data corruption.

· Abstraction. Objects only reveal internal mechanisms that are relevant for the use of other objects, hiding any 4… implementation code. The derived class can have its functionality extended. This concept can help developers more easily make additional changes or additions over time.

· Inheritance. Classes can reuse code from other classes. Relationships and subclasses between objects can be assigned, enabling developers to 5… common logic while still maintaining a unique hierarchy. This property of OOP forces a more thorough data analysis, reduces development time and ensures a higher level of 6… .

· Polymorphism. Objects are designed to share behaviors and they can take on more than one form. The program will determine which meaning or usage is necessary for each execution of that object from a parent class, reducing the need to duplicate code. A child class is then 7… , which extends the functionality of the parent class. Polymorphism allows different types of objects to pass through the same interface.

Ex.5. Compose a story on one of the topics (up to 100 words):

· Benefits of OOP.

· Disadvantages of OOP.

Unit 5

Languages of machine oriented programming.

Computer programming language is any of various languages for expressing a set of detailed instructions for a digital computer. Such instructions can be executed directly when they are in the computer manufacturer-specific numerical form known as machine language, after a simple substitution process when expressed in a corresponding assembly language, or after translation from some “higher-level” language.

Although there are over 2,000 computer languages, relatively few are widely used. Since the 1950s, computer scientists have devised thousands of programming languages. Many are obscure, perhaps created for a Ph.D. thesis and never heard of since. Others became popular for a while then faded due to lack of support or because they were limited to a particular computer system. Some are variants of existing languages, adding new features like parallelism- the ability to run many parts of a program on different computers in parallel.

Machine and assembly languages are “low-level,” requiring a programmer to manage explicitly all of a computer’s idiosyncratic features of data storage and operation. In contrast, high-level languages shield a programmer from worrying about such considerations and provide a notation that is more easily written and read by programmers.

 The first generation of codes used to program a computer, was called machine language or machine code, it is the only language a computer really understands, a sequence of 0s and 1s that the computer's controls interprets as instructions, electrically.

The second generation of code was called assembly language. Аssembly language turns the sequences of 0s and 1s into human words like 'add'. Assembly language is always translated back into machine code by programs called assemblers.

The third generation of code was called high level language or HLL, which has human sounding words and syntax (like words in a sentence). In order for the computer to understand any HLL, a compiler translates the high level language into either assembly language or machine code. All software programming languages need to be eventually translated into machine code for a computer to use the instructions they contain.

A machine language consists of the numeric codes for the operations that a particular computer can execute directly. The codes are strings of 0s and 1s, or binary digits (“bits”), which are frequently converted both from and to hexadecimal (base 16) for human viewing and modification. Machine language instructions typically use some bits to represent operations, such as addition, and some to represent operands, or perhaps the location of the next instruction. Machine language is difficult to read and write, since it does not resemble conventional mathematical notation or human language, and its codes vary from computer to computer.

Assembly language is one level above machine language. It uses short mnemonic codes for instructions and allows the programmer to introduce names for blocks of memory that hold data. One might thus write “add pay, total” instead of “0110101100101000” for an instruction that adds two numbers.

Assembly language is designed to be easily translated into machine language. Although blocks of data may be referred to by name instead of by their machine addresses, assembly language does not provide more sophisticated means of organizing complex information. Like machine language, assembly language requires detailed knowledge of internal computer architecture. It is useful when such details are important, as in programming a computer to interact with input/output devices (printers, scanners, storage devices, and so forth).

Ex.1. Read and memorize using a dictionary

to devise, obscure, to fade, due to, lack, idiosyncratic, compiler, to execute, to resemble, notation, so forth
Ex.2. Answer the questions:

1. What is a computer programming language?
2. What languages are considered to be “low-level”?
3. Which generation of codes was called machine language?
4. What program translates assembly language back into machine code?
5. What does the acronym HLL stand for?
6. What kind of knowledge does assembly language require?

Ex.3.Match the right part with the left:

	1. Assembly language is designed to be ….
	a. ..the operations that a particular computer can execute directly.

	2. A machine language consists of the numeric codes for …..
	b. ..easily translated into machine language

	3. Machine language instructions typically use some bits to represent ……..
	c… machine code for a computer to use the instructions they contain.

	4. All software programming languages need to be eventually translated into ….
	d……. into either assembly language or machine code.

	5. In order for the computer to understand any HLL, a compiler translates the high level language …
	e….. operations, such as addition, and some to represent operands, or perhaps the location of the next instruction.

Ex.4.Fill in the gaps using the following words:

is transported extremely binary bits machine language digital output

What is Machine Language?

Machine language is a low-level language made up of binary numbers or 1 … that a computer can understand. It is also known as machine code or object code and is 2 … tough to comprehend. The only language that the computer understands is machine language. All programmes and programming languages, such as Swift and C++, produce or run programmes in 3 … before they are run on a computer. When a specific task, even the smallest process executes, machine language 4 … to the system processor. Computers are only able to understand binary data as they are 5… devices.

In the computer, all data like videos, programs, pictures are represented in 6… . The CPU processes this machine code or binary data as input. Then, an application or operating system gets the resulting 7 … from the CPU and displays it visually. For example, the ASCII code 01000001 represents the letter "A" in machine language, yet it is shown on the screen as "A".

:10
Ex.5. Compose a story on one of the topics (up to 100 words):

· What Does Machine-Oriented High-Level Language Mean?

· What are differences between Low-Level to High-Level Languages.
Unit 6

System programming and operating systems

All programmers write executable code for computers, but what sets system programmers apart from application programmers is the purpose of the software they write. Application programming produces software that makes a computer's hardware generate something for the user, be it a spreadsheet or the graphics for a game. System programming produces software that accesses and controls the inner workings of a computer's hardware and operating system.

Application programming generally involves issuing system commands to utilize the basic functions of a computer's hardware and operating system, such as storing a particular piece of data in the computer's physical memory or a file on the hard drive. These kinds of programs are not concerned with details of how the hard drive or physical memory is working. Conversely, system programmers concern themselves with the details of how an operating system and hardware components work. This allows them to build the software that defragments hard drives and checks the integrity of a computer's physical memory.

In addition to being able to build such tools, system programmers are typically experts in the core functioning of operating systems.

An operating system (commonly abbreviated OS and O/S) is the software component of a computer system that is responsible for the management and coordination of activities and the sharing of the limited resources of the computer. The operating system acts as a host for applications that are run on the machine. As a host, one of the purposes of an operating system is to handle the details of the operation of the hardware. This relieves application programs from having to manage these details and makes it easier to write applications. Almost all computers, including handheld computers, desktop computers, supercomputers, and even video game consoles, use an operating system of some type. Some of the oldest models may however use an embedded operating system that may be contained on a compact disk or other data storage device. OS is the first program loaded into memory when the computer is turned on and, in a sense, brings life to the computer hardware. Without it, you cannot use your word processing software, spreadsheet software, or any other applications.

Knowledge of an operating system's core is also necessary in order to maximize an application's performance on a particular hardware configuration. For example, very busy online retailers need their websites and transaction processing systems to run as efficiently, and reliably, as possible. Using his or her knowledge about the internal mechanics of operating systems and hardware components, such as how to make a particular operating system optimize its thread handling or which algorithms run fastest on which hardware components, a system programmer can help fine tune an application's performance.

This detailed access to the inner workings of hardware and operating system components requires system programming to be done in a language that allows this kind of low level hardware access. Languages such as Java®, Python™, or Ruby on Rails® are what programmers refer to as high level languages. This means that they make application programming easier by not making the programmer handle the fine details of hardware management. System programming requires exactly this kind of access, so system programmers use a low level language such as C or C++. Operating system creates an interface between user and the system hardware. Language processors are those which help to convert computer language to machine level language.

Exercise.1. Read and memorize using a dictionary

apart from, to utilize, conversely, integrity, host, to handle, to relieve, to handle, to fine, retailer, to convert
Exercise. 2 . Answer the questions:
1. What sets system programmers apart from application programmers? 2. What kind of software does application programming produce? 3. What should all programmers be familiar with to perform specialized installations and automate system maintenance tasks? 4. Why is knowledge of an operating system's core necessary for the programming engineers? 5. What kind of languages do programmers refer to as high level languages?

Exercise.3. Match the right part with the left:

	1. Application programming produces software that makes …..
	a. ….processing systems to run as efficiently, and reliably, as possible

	2. This means that they make application programming easier by ……
	b…. to be done in a language that allows this kind of low level hardware access.

	3. For example, very busy online retailers need their websites and transaction …..
	c…. not making the programmer handle the fine details of hardware management.

	4. This detailed access to the inner workings of hardware and operating system components requires system programming …..
	d…..are typically experts in the core functioning of operating systems.

	5. In addition to being able to build such tools, system programmers …..
	e….. a computer's hardware generate something for the user, be it a spreadsheet or the graphics for a game.

Exercise.4.Fill in the gaps using the following words:
have blurred constraints software single differentiates customers provide

What is Systems Programming?

Systems programming involves the development of the individual pieces of software that allow the entire system to function as a 1 … unit.

In more recent years, the lines between systems programming and software programming 2… . One of the core areas that 3 … a systems programmer from a software programmer is that systems programmers deal with the management of system resources. Software programmers operate within the 4 … placed upon them by the system programmers.

This distinction holds value because systems programming deals with “low-level” programming. Systems programming works more closely with computer resources and machine languages whereas software programming is primarily interested in user interactions. Both types of programming are ultimately attempting to 5… users with the best possible experience, but systems programmers focus on delivering a better experience by reducing load times or improving efficiency of operations.

Modern 6… have increasingly high expectations. As such, organizations must constantly be seeking ways to improve their output to provide customers with an ever-improving product. Achieving this is done through intelligent systems design and an agile approach to development. Bringing everyone together to work towards a singular goal is the main pursuit of the DevOps approach to 7… development.

Exercise 5. Compose a story on one of the topics (up to 100 words):

· What is system programming and operating system?
· What is the difference between OS and programming language?
Unit 7

Programming technology and creation of software product.

Software is the essential key to enable the working of any computer system. Creating software involves using the right programming language that will enable the hardware to work efficiently, thus achieving the goals that are assigned to it. The process of software creation goes through SDLC in which it is guaranteed that the software is appropriately tested and that it meets the requirements of the client. The following are the stages through which the software goes through:

- Planning: The conceptualization of the software is brought about particularly with regard to the purpose of the software.

· Analysis: The Software engineer has to understand the requirements of the software and whether or not the software meets the standards of the client.

· Design: A basic blueprint of the software is made so as to gain an understanding of what the software will encompass.

· Development: The coding of the software is typed by the programmer and software engineer. Thus the software is brought about.

· Testing: The software is tested for any fault in order to ensure quality.

· Implementation: The software is loaded into the system to check its overall operability.

· Maintenance: Any errors and problems that may occur during the functioning of the software are immediately rectified, ensuring the quality of the software.

Creating software involves various phases or cycles which are called Software Development Life Cycles (SDLC). SDLC enable the software engineer, client, tester and consumer to configure in the right kind of software that is needed for a particular purpose. A software can be created for various services which include; insurance, banking, tourism, hotel management and other important industries.

The Software Development Life Cycle (SDLC) refers to a methodology with clearly defined processes for creating high-quality software. in detail, the SDLC methodology focuses on the following phases of software development:
· Requirement analysis

· Planning

· Software design such as architectural design

· Software development

· Testing

· Deployment

What is the software development life cycle?

SDLC or the Software Development Life Cycle is a process that produces software with the highest quality and lowest cost in the shortest time possible. SDLC provides a well-structured flow of phases that help an organization to quickly produce high-quality software which is well-tested and ready for production use.

The SDLC involves six phases as explained in the introduction. Popular SDLC models include the waterfall model, spiral model, and Agile model.

Exercise 1. Read and memorize using a dictionary

 to achieve, to assign, basic blueprint, to gain, to encompass, fault, immediately, to rectify, to configure, deployment, agile.
Exercise 2. Answer the questions:
1. Is software the essential key to enable the working of any computer system?
2. What does creating software involve?
3. What are the stages through which the software goes through?
4. What does the abbreviation SDLC mean?
5. What enables the software engineer, client, tester and consumer to configure in the right kind of software that is needed for a particular purpose?
6. What are some phases of software development?
7. What are the most popular SDLC models?
Exercise 3. Match the right part with the left:

	1. Assembly language is always translated back into machine code ….
	a…. thousands of programming languages.

	2. Creating software involves using the right programming language that will enable ….
	b…. for a computer to use the instructions they contain.

	3. The Software engineer has to understand the requirements of ……
	c… by programs called assemblers.

	4. Since the 1950s, computer scientists have devised ….
	d….. the hardware to work efficiently, thus achieving the goals that are assigned to it.

	5. All software programming languages need to be eventually translated into machine code ..

	e…. the software and whether or not the software meets the standards of the client.

Exercise 4. Fill in the gaps using the following words:

goals lowering cycle quality end-user save deployment
How the SDLC Works

SDLC works by 1 … the cost of software development while simultaneously improving 2… and shortening production time. SDLC achieves these apparently divergent 3 … by following a plan that removes the typical pitfalls of software development projects. That plan starts by evaluating existing systems for deficiencies.

Next, it defines the requirements of the new system. It then creates the software through the stages of analysis, planning, design, development, testing, and 4 … . By anticipating costly mistakes like failing to ask the 5 … or client for feedback, SLDC can eliminate redundant rework and after-the-fact fixes.

It’s also important to know that there is a strong focus on the testing phase. As the SDLC is a repetitive methodology, you have to ensure code quality at every 6 …. . Many organizations tend to spend few efforts on testing while a stronger focus on testing can 7 … them a lot of rework, time, and money. Be smart and write the right types of tests.

Exercise 5. Compose a story on one of the topics (up to 100 words):

· Stages of SDLC.
· Which SDLC model is the best and most commonly used?
Unit 8
System software

The flexibility of software systems is one of the main reasons why more and more software is being incorporated in large, complex systems. Once a decision has been made to manufacture hardware, it is very expensive to make changes to the hardware design. However, changes can be made to software at any time during or after the system development. Even extensive changes are still much cheaper than corresponding changes to system hardware. Historically, there has always been a split between the process of software development and the process of software evolution (software maintenance). People think of software development as a creative activity in which a software system is developed from an initial concept through to a working system. However, they sometimes think of software maintenance as dull and uninteresting. Although the costs of maintenance are often several times the initial development costs, maintenance processes are sometimes considered to be less challenging than original software development. This distinction between development and maintenance is increasingly irrelevant. Hardly any software systems are completely new systems and it makes much more sense to see development and maintenance as a continuum. Rather than two separate processes, it is more realistic to think of software engineering as an evolutionary process where software is continually changed over its lifetime in response to changing requirements and customer needs.

Change is inevitable in all large software projects. As new technologies become available, new design and implementation possibilities emerge. Therefore, whatever software process model is used, it is essential that it can accommodate changes to the software being developed. Change adds to the costs of software development because it usually means that work that has been completed has to be redone. This is called rework. For example, if the relationships between the requirements in a system have been analyzed and new requirements are then identified, some or all of the requirements analysis has to be repeated. It may then be necessary to redesign the system to deliver the new requirements, change any programs that have been developed, and re-test the system.

There are two related approaches that may be used to reduce the costs of rework:

1. Change avoidance, where the software process includes activities that can anticipate possible changes before significant rework is required. For example, a prototype system may be developed to show some key features of the system to customers.

2. Change tolerance, where the process is designed so that changes can be accommodated at relatively low cost. This normally involves some form of incremental development. Proposed changes may be implemented in increments that have not yet been developed. If this is impossible, then only a single increment (a small part of the system) may have to be altered to incorporate the change.

Two ways of coping with change and changing system requirements are discussed here. These are:

1. System prototyping, where a version of the system or part of the system is developed quickly to check the customer’s requirements and the feasibility of some design decisions. This supports change avoidance as it allows users to experiment with the system before delivery and so refine their requirements.

2. Incremental delivery, where system increments are delivered to the customer for comment and experimentation. This supports both change avoidance and change tolerance. It avoids the premature commitment to requirements for the whole system and allows changes to be incorporated into later increments at relatively low cost.

Exercise 1. Read and memorize using a dictionary

Manufacture, hardware, extensive, initial concept, software maintenance, challenging, irrelevant, avoidance, increment, to be altered, feasibility.
Exercise 2. Ask questions to the given answers.

1) Question: ________________________
 Answer: No, changes can be made to software at any time during or after the system development.
2) Question: ________________________
 Answer: The distinction between development and maintenance is increasingly irrelevant.
3) Question: ________________________
 Answer: It may then be necessary to redesign the system to deliver the new requirements, change any programs that have been developed, and re-test the system.
4) Question: ________________________
 Answer: There are two related approaches that may be used to reduce the costs of rework.
5) Question: ________________________
 Answer: Change avoidance and change tolerance.

Exercise 3. Match the left part with the right.

	1.Hardly any software systems are completely new systems and
	a. large software projects.

	2.A prototype system may be developed to

	b. some form of incremental development.

	3.Change is inevitable in all
	c. may have to be altered to incorporate the change.

	4.If this is impossible, then only a single increment
	d. it makes much more sense to see development and maintenance as a continuum.

	5.This normally involves
	e. show some key features of the system to customers.

Exercise 4. Fill in the gap with an appropriate word and word combination.

Technologies changes requirements has to implementation costs software process be redone identified
As new 1,,,,,, become available, new design and 2, …. possibilities emerge. Therefore, whatever 3,…… model is used, it is essential that it can accommodate 4,……to the software being developed. Change adds to the 5,……of software development because it usually means that work that has been completed has to 6,…… . This is called rework. For example, if the relationships between the 7,….. in a system have been analyzed and new requirements are then 8…….. , some or all of the requirements analysis 9, ……. be repeated.

Exercise 5. Compose a story on one of the topics (up to 100 words):

· Agile software development

· Changes in software evolution models and theories
Unit 9

Programming and global computer networks

What is Web Programming? Programming is the art of telling a computer what to do. Programming is giving written instructions in a logical manner that the computer can understand. Essentially, you give the computer small steps of instructions, and the computer goes down the list, executing each one in order. Programming allows you to make new software and have the computer do new things. Web site programming is the same except you write applications or web pages that are used by a web browser.

Web Site Programming is the practice of writing applications that run on a web server and can be used by many different people. Many applications work really well as a web application. Some examples of popular web applications include Flickr, Gmail, and Google Maps. You are able to upload and view pictures, send email and lookup directions using these web applications and they are all made possible through web site programming.

When you access your page with a browser, your web server will parse, or read through, your HTML page line by line and when it comes across a programming language, it will execute the code. For example, it writes out the current date on the page and then sends the page back to your web browser. Your web browser just sees a normal web page with a date but the server will generate a different web page when it is loaded on a different date. Web site programming allows you to turn a simple, static HTML page into a dynamic, masterpiece. It allows others to interact with your web site and use the application on any computer with Internet access. Web site programming is often easier than programming applications that will run directly on the computer. Essentially, if you want to make or edit anything dynamic on your website, such as a forum, a guestbook, or even a form submission, you will need to know how to do some web site programming.

All web programming is done with web programming languages. Just as there is a diversity of programming languages available and suitable for conventional programming tasks, there is a diversity of languages available and suitable for Web programming. There is no reason to believe that any one language will completely monopolize the Web programming scene, although the varying availability and suitability of the current offerings is likely to favor some over others. These languages can include static technologies like HTML, XHTML, CSS, JavaScript, and XML. However, most web site programming is done using server-side web programming languages. This code runs on the server and then gives static information back to the web browser. The most popular web programming languages are: PHP, ASP.NET, Ruby on Rails, Perl, ASP classic, Python, and JSP.

HTML (Hyper Text Markup Language) is the basic language understood by all WWW (World Wide Web) clients. HTML is a markup language rather than a complete programming language. An HTML document (program) is ASCII text with embedded instructions (markups) which affect the way the text is displayed. HTML is limited in its computational power. This is intentional in its design, as it prevents the execution of dangerous programs on the client machine. Thanks to the diversity of operating systems and hardware platforms, currently in use on the Web, a great efficiency results from only dealing with a single form of an application. The success of HTML has proven this, and Java has seconded it. The ability to deliver a platform-independent application is of great appeal to developers, who spend a large portion of their resources developing and maintaining versions of their products for the different hardware/software platform combinations.

Viruses have proven that executing binary code acquired from an untrusted, or even moderately trusted, source is dangerous. Code that is downloaded or uploaded from random sites on the web should not be allowed to damage the user's local environment. Downloading binary code compiled from conventional languages is clearly unsafe, due to the power of the languages. Even if such languages were constrained to some ostensibly safe subset, there is no way to verify that only the safe subset was used or that the compiler used was trustworthy (after all, it is under someone else's control). HTML proved that downloading source code in a safe language and executing it with a trusted interpreter was safe.

Exercise 1.Read and memorize using a dictionary

Essentially, run on a web server, parse, interact with, diversity of, embedded instructions, computational power, prevent, to be of great appeal to, acquire from, conventional languages, constrained to, be trustworthy

Exercise 2 Answer the questions:

1. What is web programming?

2. How do we call the practice of writing applications that run on a web server and can be used by many different people?

3. Give the example of some popular web applications.

 4. What static technologies are used in web programming?

5. What does the acronym HTML stand for?

6. How will web server operate when you access your page with a browser?

Exercise 3 Match the right part with the left:

	1. Programming allows you to…..
	a…… on a web server and can be used by many different people.

	2. Your web browser just sees a normal web page with a date but the server …
	b. ….make new software and have the computer do new things

	3. When you access your page with a browser, your web server ……
	С. …..will generate a different web page when it is loaded on a different date

	4. You are able to upload and view pictures, send email and lookup directions using …..
	d….. will parse, or read through, your HTML page line by line

	5. Web Site Programming is the practice of writing applications that run …….
	e……these web applications and they are all made possible through web site programming.

Exercise 4 Choose the correct verb forms.

1. The flexibility of software systems is one of the main reasons why more and more software (was being incorporated - is being incorporated - is being incorporating) in large, complex systems.
2. However, they sometimes (thought –think – are thinking) of software maintenance as dull and uninteresting.
3. It (must –may –might) then be necessary to redesign the system to deliver the new requirements, change any programs that have been developed, and re-test the system.
4. System prototyping, where a version of the system or part of the system (is developed – are developed – were developed) quickly to check the customer’s requirements and the feasibility of some design decisions.

Exercise 5. Compose a story on one of the topics (up to 100 words):

· Web Programming

· Programming and global computer networks
Unit 10

Computer circuit engineering

Electronic circuit engineering is an area of science and technology that deals with problems of the design and study of circuits of electronic devices used in, for example, radio engineering, communications, computer technology, and automation. The principal tasks of electronic circuit engineering are the determination of the structures of electronic circuits that perform certain functions and the calculation of the parameters of the circuit elements.

On the basis of an electronic circuit, the corresponding device (system component) is developed. The device must operate reliably for a specified time under the conditions actually encountered in use.

Electronic devices may be made from discrete electronic and electrical elements—such as resistors, capacitors, diodes, and transistors—or from integrated circuits. Electronic circuits consisting of one or more integrated circuits are dealt with in micro-circuit engineering, which is the branch of microelectronics that is concerned with the designing of integrated circuits. In addition to the design and calculation of electronic circuits, microcircuit engineering deals with the problem of developing the structure of integrated circuits on the basis of the electronic circuits. The creation of a new integrated circuit is a complicated problem requiring the joint efforts of micro circuitry specialists, physicists, production engineers, and designers and the use of integrated experimental and theoretical methods, including the computer simulation of the circuit and its operating conditions.

The theoretical basis of electronic circuit engineering (including micro circuitry) is provided by the theory of linear and nonlinear electric circuits, electrodynamics, mathematical programming, automatic theory, and so on. With the development of microelectronics, large-scale integrated circuits (LSI) are being created that constitute functional devices representing entire systems. Accordingly, electronic circuit engineering is in a number of respects merging with systems engineering.

Integrated circuit engineering is the design of semiconductor chips used in electronic equipment. These chips include large numbers of transistors embedded with complex fine wiring to connect them. Their complexity generally increases over time, enabling the development of more advanced electronic equipment at lower cost. Engineers who work on such systems can be involved in a number of different steps of the process and may work in academia, government agencies, or private companies with an interest in chips.

Part of integrated circuit engineering involves physical and chemical processes. Engineers who focus on this area of the field look at how to physically construct chips and ways to improve existing production methods. They consider new materials, environmental controls to limit contamination, and ways to assemble components for efficiency. Some look specifically at ecological concerns and ways to develop chips and related products with a lower environmental cost.

Another aspect of the field involves the actual design of chips. The transistors and attached wiring need to be laid out in logical circuitry, which requires an understanding of electronics and chip design. Integrated circuit engineering can require familiarity with the kinds of systems the equipment is likely to be used in, to ensure that chips are laid out appropriately. Designers may also think about new ways to add transistors to chips in an effort to improve their performance and meet the demand for chips capable of more complex tasks.

Computers, cell phones, and numerous other electronic systems have integrated circuits at their core. These circuits are increasingly small and powerful, requiring integrated circuit engineering to consider nanoscale design needs. The array of transistors and wiring may be too small to see with the naked eye or low magnification, requiring work with microscopes and other advanced tools to lay out and test chips. Developments in the field also force integrated circuit engineers to keep up with ongoing research and professional development opportunities in order to serve their employers most effectively.

Exercise 1. Read and memorize using a dictionary

Electronic circuit engineering, deals with, determination, discrete elements, joint effort, entire system, merge, complex fine wiring, ecological concerns, meet the demand, attached, naked eye, to keep up with

Exercise 2 Answer the questions:

1. What does electronic circuit engineering deal with?

2. What are the principal tasks of electronic circuit engineering?

3. What may electronic devices be made from?

 4. What do developments in the field force integrated circuit engineers to?

 5. What does the creation of a new integrated circuit require?
Exercise 3 Match the right part with the left:

	1. Part of integrated circuit engineering involves ……
	a…. have integrated circuits at their core.

	2. The theoretical basis of electronic circuit engineering is provided by …..
	b… of the design and study of circuits of electronic devices used in, for example, radio engineering, communications, computer technology, and automation.

	3. Electronic circuit engineering is an area of science and technology that deals with problems ….
	c… physical and chemical processes.

	4. Computers, cell phones, and numerous other electronic systems …..
	d…. used in electronic equipment.

	5. Integrated circuit engineering is the design of semiconductor chips ….
	e. ..the theory of linear and nonlinear electric circuits, electrodynamics, mathematical programming.

Exercise 4 Match a line in A with the line in B

	1. design
	a. document

	2. user
	b. application

	3. specification
	c. relationship

	4. bring into
	d. goals

	5. dual
	e. dimensions

	6. screen
	f. interface

	7. make
	g. conformance with

	8. friendly
	h. sure

Exercise 5. Compose a story on one of the topics (up to 100 words):

· Electronic circuit engineering as a science.

· Modern electronic systems with integrated circuits.
Unit 11

Computer Architecture.
The term computer architecture was coined in the 1960s by the designers of the IBM System/360 to mean the structure of a computer that a machine language programmer must understand to write a correct program for a machine. Basically, computer architecture represents the programming model of the computer, including the instruction set and the definition of register file, memory, and so on. Over time, the concept of computer architecture has evolved to include both the functional specification and the hardware implementation. At the system level, it defines the processor-level building blocks, such as processors and memories, and the interconnection among the building blocks. At the microprocessor level, computer architecture determines the processor's programming model and its detailed implementation. The implementation of a microprocessor is also known as micro architecture.

The task of a computer architect is to understand the state-of-the-art technologies at each design level and the changing design tradeoffs for their specific applications. The tradeoff of cost, performance, and power consumption is fundamental to a computer system design. For high-performance server applications, chip and system costs are less important than performance. Computer speedup can be accomplished by constructing more capable processor units or by integrating many processors units on a die. For cost-sensitive embedded applications, the goal is to minimize processor die size and system power consumption.

Modern computer implementations are based on silicon technology. The two driving parameters of this technology are die size and feature size. Die size largely determines cost. Feature size is dependent on the lithography used in wafer processing and is defined as the length of the smallest realizable device. Feature size determines circuit density, circuit delay, and power consumption. Deep submicron technology allows microprocessors to be increasingly more complicated. According to the Semiconductor Industry Association, the number of transistors for high-performance microprocessors will continue to grow exponentially in the next 10 years. However, there are physical and program behavioral constraints that limit the usefulness of this complexity. Physical constraints include interconnect and device limits as well as practical limits on power and cost. Program behavior constraints result from program control and data dependencies and unpredictable events during execution.

Much of the improvement in microprocessor performance has been a result of technology scaling that allows increased circuit densities at higher clock frequencies.

On the other hand, there are a number of major technical challenges in the deep submicron era, the most important of which is that interconnect delay (especially global interconnect delay) does not scale with the feature size. If all three dimensions of an interconnect wire are scaled down by the same scaling factor, the interconnect delay remains roughly unchanged, because the fringing field component of wire capacitance does not vary with feature size. Consequently, interconnect delay becomes a limiting factor in the deep submicron era.

Understanding the following fundamental concepts in computer architecture is essential to learning computer networking.
Working with Binary and Hexadecimal Numbers. Network addresses, network masks, and encryption keys all typically utilize binary and hexadecimal numbers.
Binary-Decimal Number Conversion Calculator. This interactive form computes binary-to-decimal and decimal-to-binary conversions. Unlike ordinary calculators, this calculator displays step-by-step logic as a helpful teaching aid.

Bits are the smallest unit of data transfer in computer networking. Bits represent binary values like "on / off," "yes / no," and "true / false."
Bytes integrate many processors units on a dies. These are called byte-oriented protocols.
Addresses. Network addresses uniquely identify the network interface of a computer or similar device. Network addressing differs from memory and other types of addressing in computer architecture.
(Computer) Ports. In computer networking, a port represents a communication channel or endpoint. Computer ports can refer to either physical or virtual connections.

Computer architecture has evolved greatly over the past decades. It is now much more than the programmer's view of the processor. The process of computer design starts with the implementation technology. At some point in time, cost may be largely determined by transistor count; later as feature sizes shrink, wire density and interconnection may dominate cost. Similarly, the performance of a processor is dependent on delay, but the delay that determines performance changes as the technology changes. Memory access time is only slightly reduced by improvements in feature size. As feature sizes shrink, the array simply gets larger.

Exercise 1.Read and memorize using a dictionary

instruction set, evolve to, functional specification, implementation, design tradeoff, constraints, execution, technology scaling, interconnect delay, encryption keys, shrink, array

Ex.2. Answer the questions:

1. What does the term computer architecture mean?

2. What does it define at the system level?

 3. What does computer architecture determine at the microprocessor level?

 4. What is known as micro architecture?

5. What is the task of a computer architect?

6. What is fundamental to a computer system design?
7. How can computer speedup be accomplished?

Ex.3 Match the right part with the left:

	1. If all three dimensions of an interconnect wire are scaled down by the same scaling factor,.….
	a…. technology scaling that allows increased circuit densities at higher clock frequencies

	2 On the other hand, there are a number of major technical challenges in the deep submicron era, the most.. …….

	b. ……the interconnect delay remains roughly unchanged, because the fringing field component of wire capacitance does not vary with feature size.

	3. Computer speedup can be accomplished by constructing more capable processor units or by..…..
	c…… important of which is that interconnect delay does not scale with the feature size.

	4. Computer architecture has evolved. ….

	d…… integrating many processors units on a die.

	5. Much of the improvement in microprocessor performance has been a result of.. ….
	e. …..greatly over the past decades

Exercise 4. Fill in the gap with an appropriate word.

Is program be designed development system models
The 1 ….. are developed in sufficient detail so that the executable system can 2 ….. generated from them. The development of a 3 ……… to implement the system follows naturally from the 4 ………… design processes. Although some classes of program, such as safety-critical systems, are usually 5 ………… in detail before any implementation begins, it 6 ……….. more common for the later stages of design and program 7 ………. to be interleaved.

Exercise 5. Compose a story on one of the topics (up to 100 words):

· History of computer architecture

· Computer architecture as a science

Unit 12

Computer Architecture (Part 2)

The implementation stage of a software development is the process of converting a system specification into an executable system. It always involves a processes of a software design and programming, but if an incremental approach to development is used, may also involve refinement of the software specification. A software design is a description of the structure of the software to be implemented, the data models and structures used by the system, the interfaces between system components and, sometimes, the algorithms used. Designers do not arrive at a finished design immediately but develop the design iteratively. They add formality and detail as they develop their design with constant backtracking to the correct earlier designs.

Most software interfaces with other software systems. These include the operating system, database, middleware, and other application systems. These make up the ‘software platform’, the environment in which the software will execute. Information about this platform is an essential input to the design process, as designers must decide how best to integrate it with the software’s environment. The requirements specification is a description of the functionality the software must provide and its performance and dependability requirements. If the system is to process existing data, then the description of that data may be included in the platform specification; otherwise, the data description must be an input to the design process so that the system data organization to be defined. The activities in the design process vary, depending on the type of system being developed. For example, real-time systems require timing design but may not include a database so there is no database design involved. There are four activities that may be a part of the design process for information systems:

1. Architectural design, where you identify the overall structure of the system, the principal components (sometimes called sub-systems or modules), their relationships, and how they are distributed.

 2. Interface design, where you define the interfaces between system components. This interface specification must be unambiguous. With a precise interface, a component can be used without other components having to know how it is implemented. Once interface specifications are agreed, the components can be designed and developed concurrently.

3. Component design, where you take each system component and design how it will operate. This may be a simple statement of the expected functionality to be implemented, with the specific design left to the programmer. Alternatively, it may be a list of changes to be made to a reusable component or a detailed design model. The design model may be used to automatically generate an implementation.

4. Database design, where you design the system data structures and how these are to be represented in a database. Again, the work here depends on whether an existing database is to be reused or a new database is to be created. These activities lead to a set of design outputs.

The detail and representation of these vary considerably. For critical systems, detailed design documents setting out precise and accurate descriptions of the system must be produced. If a model-driven approach is used, these outputs may mostly be diagrams. Where agile methods of the development are used, the outputs of the design process may not be separate specification documents but may be represented in the code of the program.

Exercise 1. Read and memorize using a dictionary
Executable, system specification, incremental, refinement, iteratively, backtracking, middleware, unambiguous, concurrently, to be implemented, agile model, be represented, model-driven approach.
Exercise 2. Answer the following questions.

1. How do the designers develop the design?

2. What do the activities in the design process depend on?

3. In what situations can a component be used without other components?

4. What may a component design be?

5. What lead to a set of design outputs?

Exercise 3. Give the words that have similar meanings (synonyms).
1. arrive 2. include 3. component 4. data 5.generate 6. precise

a. create b. come c. exact d. consist of e. constituent f. information

Exercise 4. Give the derivatives to the following words.

1.implement 2.develop 3.convert 4.describe 5.add 6.require 7.represent 8.function 9.specific

Exercise 5. Compose a story on one of the topics:

· Design process for information systems.

· Software design and implementation.

Unit 13

SOFTWARE ENGINEERING

Software engineering is an engineering branch associated with development of software product using well-defined scientific principles, methods and procedures. The outcome of software engineering is an efficient and reliable software product.

Software project management has wider scope than software engineering process as it involves communication, pre and post delivery support etc. Let us first understand what software engineering stands for. The term is made of two words, software and engineering.

Software is more than just a program code. A program is an executable code, which serves some computational purpose. Software is considered to be collection of executable programming codes, associated libraries and documentations. Software, when made for a specific requirement is called software product.

Engineering on the other hand, is all about developing products, using well-defined, scientific principles and methods.

[image: image1.png]

The outcome of software engineering is an efficient and reliable software product.

Characteristics of a software

· Software should achieve a good quality in design and meet all the specifications of the customer.

· Software does not wear out i.e. it does not lose the material.

· Software should be inherently complex.

· Software must be efficient i.e. the ability of the software to use system resources in an effective and efficient manner.

· Software must be integral i.e. it must prevent from unauthorized access to the software or data.

When the first digital computers appeared in the early 1940s, the instructions to make them operate were wired into the machine. Practitioners quickly realized that this design was not flexible and came up with the "stored program architecture" or von Neumann architecture. Thus the division between "hardware" and "software" began with abstraction being used to deal with the complexity of computing.

Programming languages started to appear in the early 1950s and this was also another major step in abstraction. David Parnas introduced the key concept of modularity and information hiding in 1972 to help programmers deal with the ever increasing complexity of software systems.

The origins of the term "software engineering" have been attributed to different sources, but it was used in 1968 as a title for the World's first conference on software engineering, sponsored and facilitated by NATO. The conference was attended by international experts on software who agreed on defining best practices for software grounded in the application of engineering. The result of the conference is a report that defines how software should be developed.

 The discipline of software engineering was created to address poor quality of software, get projects exceeding time and budget under control, and ensure that software is built systematically, rigorously, measurably, on time, on budget, and within specification. Engineering already addresses all these issues, hence the same principles used in engineering can be applied to software. The widespread lack of best practices for software at the time was perceived as a "software crisis".

In 1984, the Software Engineering Institute was established as a federally funded research and development center headquartered on the campus of Carnegie Mellon University in Pittsburgh, United States. Watts Humphrey founded the SEI Software Process Program, aimed at understanding and managing the software engineering process.

Exercise 1.Read and memorize using a dictionary

Outcome, pre and post delivery support, computational purpose, specific requirement, inherently, unauthorized access, complexity, poor quality, widespread, aimed at
Exercise2 Ask questions to the given answers.

1) Question: ________________________
 Answer: 1. It is an efficient and reliable software product.

2) Question: ________________________

 Answer: No, it isn't. Software does not wear out

3) Question: _______________________

Answer: The widespread lack of best practices for software at the time was perceived as a "software crisis"

4) Question: ________________________

Answer: In 1984

5) Question: _________________________

Answer: Software should achieve a good quality in design and meet all the specifications of the customer, software does not wear out , should be inherently complex , efficient and integral.
Exercise 3. Fill in the gap with an appropriate word.
engineering--- libraries ----management-- computational---- code---- process--- executable

Software project 1......has wider scope than software engineering 2........as it involves communication, pre and post delivery support etc. The term is made of two words, software and 3......Software is more than just a program 4..... A program is an executable code, which serves some 5......purpose. Software is considered to be collection of 6......programming code, associated 7......and documentations.

Exercise 4. Match the left part with the right.

	1. A program is an executable code, which serves
	a. developing products, using well-defined, scientific principles and methods.

	2. Software is considered to be collection of executable programming
	b. some computational purpose.

	3. Software, when made for a specific requirement ...
	c. code, associated libraries and documentations.

	4. Software should achieve a good quality in design and meet.....
	d. is called software product.

	5. Engineering on the other hand, is all about...
	e. all the specifications of the customer.

Exercise 5. Compose a story on one of the topics (up to 100 words):

· Software as a collection of executable programming codes

· History of programming languages
Unit 14

Software Characteristics

Software is defined as a collection of computer programs, procedures, rules, and data.

The characteristics of software include:

1. It is intangible, meaning it cannot be seen or touched.

2. It is non-perishable, meaning it does not degrade over time.

3. It is easy to replicate, meaning it can be copied and distributed easily.

4. It can be complex, meaning it can have many interrelated parts and features.

5. It can be difficult to understand and modify, especially for large and complex systems.

6. It can be affected by changing requirements, meaning it may need to be updated or modified as the needs of users change.

7. It can be affected by bugs and other issues, meaning it may need to be tested and debugged to ensure it works as intended.

[image: image2.png]Portability

Reliability

These components are described below:

· Functionality:
It refers to the degree of performance of the software against its intended purpose.

Functionality refers to the set of features and capabilities that a software program or system provides to its users. It is one of the most important characteristics of software, as it determines the usefulness of the software for the intended purpose. Examples of functionality in software include:

1. Data storage and retrieval

2. Data processing and manipulation

3. User interface and navigation

4. Communication and networking

5. Security and access control

6. Reporting and visualization

7. Automation and scripting

The more functionality a software has, the more powerful and versatile it is, but also the more complex it can be. It is important to balance the need for functionality with the need for ease of use, maintainability, and scalability.

· Reliability:
A set of attributes that bears on the capability of software to maintain its level of performance under the given condition for a stated period of time.

Reliability is a characteristic of software that refers to its ability to perform its intended functions correctly and consistently over time. Reliability is an important aspect of software quality, as it helps ensure that the software will work correctly and not fail unexpectedly.

Examples of factors that can affect the reliability of software include:

1. Bugs and errors in the code

2. Lack of testing and validation

3. Poorly designed algorithms and data structures

4. Inadequate error handling and recovery

5. Incompatibilities with other software or hardware

To improve the reliability of software, various techniques and methodologies can be used, such as testing and validation, formal verification, and fault tolerance.

A software is considered reliable when the probability of it failing is low and it is able to recover from the failure quickly, if any.

· Efficiency:

Efficiency is a characteristic of software that refers to its ability to use resources such as memory, processing power, and network bandwidth in an optimal way. High efficiency means that a software program can perform its intended functions quickly and with minimal use of resources, while low efficiency means that a software program may be slow or consume excessive resources.

Examples of factors that can affect the efficiency of software include:

1. Poorly designed algorithms and data structures

2. Inefficient use of memory and processing power

3. High network latency or bandwidth usage

4. Unnecessary processing or computation

5. Unoptimized code

To improve the efficiency of software, various techniques and methodologies can be used, such as performance analysis, optimization, and profiling.

Efficiency is important in software systems that are resource-constrained, high-performance, and real-time systems. It is also important in systems that need to handle a large number of users or transactions simultaneously.
 Usability:
It refers to the extent to which the software can be used with ease, i.e. the amount of effort or time required to learn how to use the software.

Required functions are:

· understability

· learnability

· operability

 Maintainability:
It refers to the ease with which the modifications can be made in a software system to extend its functionality, improve its performance, or correct errors.

Required functions are:

· testability

· stability

· changability

· operability

· Portability:
A set of attributes that bears on the ability of software to be transferred from one environment to another, without or minimum changes.

Required functions are:

· adaptability

· installability

· replaceability

 Exercise 1 Read and memorize using a dictionary

intangible, perishable, replicate, debugging, refer to, data retrieval, capability, versatile, consistently, incompatibility, fault tolerance, network bandwidth, consume excessive resources, network latency, to handle a large number of users, simultaneously

Exercise 2 Answer the following questions.

1. What features do characteristics of software include?

2. What does functionality refer to?

3. What does reliability mean?

4. How can we improve efficiency?

5. What are required functions of software?

6. What does maintainability mean?

Exercise 3 Read the text and put the following sentences in correct order.

1. People think of software development as a creative activity in which a software system is developed from an initial concept through to a working system.
2. Hardly any software systems are completely new systems and it makes much more sense to see development and maintenance as a continuum.
3. Although the costs of maintenance are often several times the initial development costs, maintenance processes are sometimes considered to be less challenging than original software development.
4. Historically, there has always been a split between the process of software development and the process of software evolution (software maintenance).
5. However, they sometimes think of software maintenance as dull and uninteresting.

6. This distinction between development and maintenance is increasingly irrelevant.

7. However, they sometimes think of software maintenance as dull and uninteresting.

Ex.4 Choose the correct verb forms.

1. When the first digital computers (appeares- has appeared --appeared) in the early 1940s, the instructions to make them operate (was--were--have been) wired into the machine.
2. Practitioners quickly(were realizing- realized --have realized) that this design was not flexible and (come up--came up--were coming up) with the "stored program architecture" or von Neumann architecture
3. In 1984, the Software Engineering Institute (established---was established--is establishing) as a federally funded research and development center.

4. The widespread lack of best practices for software at the time (was perceiving--perceived -was perceived) as a "software crisis"

Exercise 5. Compose a story on one of the topics (up to 100 words):

· Software characteristics

· Basic components of software

Unit 15
IMPORTANCE OF SOFTWARE ENGINEERING

We can’t run the modern world without software. National infrastructures and utilities are controlled by computer-based systems and most electrical products include a computer and controlling software. Industrial manufacturing and distribution is completely computerized, as is the financial system. Entertainment, including the music industry, computer games, and film and television, is software intensive. Therefore, software engineering is essential for the functioning of national and international societies.

Software systems are abstract and intangible. They are not constrained by the properties of materials, governed by physical laws, or by manufacturing processes. This simplifies software engineering, as there are no natural limits to the potential of software. However, because of the lack of physical constraints, software systems can quickly become extremely complex, difficult to understand, and expensive to change.

There are many different types of software systems, from simple embedded systems to complex, worldwide information systems. It is pointless to look for universal notations, methods, or techniques for software engineering because different types of software require different approaches. Developing an organizational information system is completely different from developing a controller for a scientific instrument. Neither of these systems has much in common with a graphics-intensive computer game. All of these applications need software engineering; they do not all need the same software engineering techniques.

While all software projects have to be professionally managed and developed, different techniques are appropriate for different types of system. For example, games should always be developed using a series of prototypes whereas safety critical control systems require a complete and analyzable specification to be developed. You can’t, therefore, say that one method is better than another

There are still many reports of software projects going wrong and ‘software failures’. Software engineering is criticized as inadequate for modern software development. However, many of these so-called software failures are a consequence of two factors:

1. Increasing demands. As new software engineering techniques help us to build larger, more complex systems, the demands change. Systems have to be built and delivered more quickly; larger, even more complex systems are required; systems have to have new capabilities that were previously thought to be impossible. Existing software engineering methods cannot cope and new software engineering techniques have to be developed to meet these new demands.

2. Low expectations. It is relatively easy to write computer programs without using software engineering methods and techniques. Many companies have drifted into software development as their products and services have evolved. They do not use software engineering methods in their everyday work.

Consequently, their software is often more expensive and less reliable than it should be. We need better software engineering education and training to address this problem. Software engineers can be rightly proud of their achievements.

Of course we still have problems developing complex software but, without software engineering, we would not have explored space, would not have the Internet or modern telecommunications. All forms of travel would be more dangerous and expensive. Software engineering has contributed a great deal and its contributions in the 21st century will be even greater.
Exercise 1. Read and memorize using a dictionary

computer-based systems, intangible properties of materials, physical constraints, embedded systems, series of prototypes, software, failures consequence, meet new demands, reliable.
Exercise 2. Match the left part with the right.

	1.Consequently, their software is often more expensive ...
	a. by physical laws, or by manufacturing processes.

	2.We need better software engineering education and training
	b. and less reliable than it should be.

	3.Software engineers can be....
	c. to address this problem.

	4. Software engineering has contributed a great deal and its
	d. rightly proud of their achievements.

	5. They are not constrained by the properties of materials, governed
	e. contributions in the 21st century will be even greater.

Exercise 3. Match English words with their definitions
	1. Software
	а. fixed into the surface of something

	2. Demand
	b. the first example of something, such as a machine or other industrial product, from which all later forms are developed

	3.Embedded
	c. collection of executable programming code, associated libraries and documentations.

	4. Prototype
	d. a need for something to be sold or supplied

Exercise 4. Look at the sentences and correct them if necessary.

1. As new software engineering techniques help us to build larger, more complex systems, the demands change.

2.Systems have to be built and damaged more quickly; larger, even more complex systems are required; systems have to have new capabilities that were previously thought to be impossible. 3.Existing software engineering methods cannot cope and new software engineering techniques have to be developed to meet these new demands.
4. It is rather difficult to write computer programs without using software engineering methods and techniques.

5.Many companies have drifted into hardware development as their products and services have evolved.

6.They do not use software engineering methods in their research work.

Exercise 5. Compose a story on one of the topics (up to 100 words):

· Increasing demand for software engineering

· Software failures

Keys 121 2023

Unit 1 Engineering and computer graphics

Ex 3 1b 2c 3d 4e 5a

Ex 4 1 professionals 2. skilled 3. field 4. designers 5. media 6. graphics 7. earn

Unit 2 Fundamentals of programming and algorithmic languages
Ex 3 1e, 2d, 3b, 4c, 5a

Ex 4 1. language, 2. interpret, 3. can be challenging, 4. operating system, 5. defines, 6. appropriate, 7. compiler

Unit 3 Fundamentals of programming and algorithmic languages (part2)

Ex 3 1.b, 2c, 3d, 4e, 5 a

Ex 4 1. high-level 2. easily 3. understand 4. advantage 5. machines 6. human-readable 7. compiler

Unit 4 Object Oriented Programming

Ex 3 1e, 2a, 3d, 4c, 5b

Ex 4 1. object 2. inside 3. unintended 4. unnecessary 5. reuse 6. accuracy 7. created

Unit 5 Languages of machine oriented programming.

Ex 3 1b, 2e, 3a, 4c, 5d,

Ex 4 1. bits 2. extremely 3. machine language 4. is transported 5. digital 6. binary
7. output

Unit 6 System programming and operating systems

Ex 3 1e, 2c, 3a, 4b, 5d,

Ex 4 1. single 2. have blurred 3. differentiates 4. constraints 5. provide 6. customers 7. software

Unit 7 Programming technology and creation of software product.

Ex 3 1b, 2d, 3e, 4a, 5c,

Ex 4 1. lowering, 2. quality, 3. goals, 4. deployment, 5. end-user, 6. cycle, 7. save

Unit 8 System software

Ex.2

1. Is it expensive to make changes to the software design?

2. How can we characterize the distinction between development and maintenance?

3. Why may it be necessary to redesign the system?

4. How many approaches are there to reduce the cost of the work?

5. What are the approaches to reduce the cost of the work?

Ex 3 1d, 2e, 3a , 4c, 5b

Ex.4 As new 1. technologies 2. implementation possibilities emerge. 3. software process 4. changes 5. costs 6. be redone 7. requirements 8. identified 9. has to.

Unit 9 Programming and global computer networks

Ex 3. 1b 2c 3d 4e 5a

Ex.4 1. is being incorporated, 2. think 3. may 4. is developed

Unit 10 Computer circuit engineering

Ex 3. 1c 2e 3 b 4 a 5 c

Ex.4. 1. design goals 2. user interface 3. specification document 4. bring into conformance with 5. dual application 6. screen dimensions 7. make sure 8. friendly relationship

Unit 11 Computer Architecture.

Ex.3. 1 b 2c 3d 4e 5a

Ex. 4 1.models; 2.be; 3.program; 4.system; 5.designed; 6. is; 7.development

Unit 12 Computer Architecture (Part 2)

Ex 3. 1. arrive b. come 2. include d. consist of 3. component e. constituent 4. data f. information 5.generate a. create 6. precise c. exact

Ex.4 1.implementation, implementer 2. development 3 converter, convertible 4.description 5. addition, addable or addible 6.requirement 7.representative, representation 8.functional 9.specifically

Unit 13 Software engineering

Ex 2

1. What is the outcome of software engineering?

2. Is software a wear-out product?

3. What was perceived as a "software crisis"?

4. When was the Software Engineering Institute established in Pitsburg?

5. What are the characteristics of a software?

Ex.3. 1. management 2. process 3. engineering 4. code 5. computational 6. executable 7.
libraries

Ex.4 1b 2c 3d 4e 5a

Unit 14 Software Characteristics

Ex.3 Historically, there has always been a split between the process of software development and the process of software evolution (software maintenance). People think of software development as a creative activity in which a software system is developed from an initial concept through to a working system. However, they sometimes think of software maintenance as dull and uninteresting. Although the costs of maintenance are often several times the initial development costs, maintenance processes are sometimes considered to be less challenging than original software development. This distinction between development and maintenance is increasingly irrelevant. Hardly any software systems are completely new systems and it makes much more sense to see development and maintenance as a continuum.

Ex 4 1. appeared/were 2. realized/came up 3. was established 4. was perceived

Unit 15 Importance of software engineering

Ex.2 1b 2c 3d 4e 5a

Ex.3 1c 2d 3e 4a 5b

References

References

 http://dl.acm.org/citation.cfm?id=1242075
http://www.sccs.swarthmore.edu/users/08/ajb/tmve/wiki100k/docs/Texture_mapping.html
http://python.about.com/od/throughacomputerseye/ss/begprogramming_all.htm
http://www.encyclopediaofmath.org/index.php/Algorithmic_language
https://study.com/academy/lesson/programming-logic-syntax-the-programming-toolbox.html
http://www.personal.psu.edu/glh10/ist110/topic/topic07/topic07_04.html
http://inventors.about.com/od/sstartinventions/a/software.htm
http://www.britannica.com/EBchecked/topic/130670/computer-programming-language
http://www.wisegeek.com/what-is-system-programming.htm
http://computer.howstuffworks.com/operating-system.htm
http://inventors.about.com/od/sstartinventions/a/software.htm
http://ezinearticles.com/?Strategic-Product-Creation-Software-Creation-Guide&id=673603
http://www.wisegeek.com/what-is-system-programming.htm
http://www.host-shopper.com/what-is-web-programming.html
http://www.objs.com/survey/lang.htm
http://www.wisegeek.com/what-is-integrated-circuit-engineering.htm
http://encyclopedia2.thefreedictionary.com/Electronic+Circuit+Engineering
https://www.geeksforgeeks.org/software-engineering-software-characteristics/

