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The task set in the article is to intellectualize the search for the causes of failures of 

subsystems (components), intersystem (intercomponent) connections of ship 

complex technical systems based on the assessment of the technical condition of 

systems by diagnostic features and predicting the risk of failures in their 

composition. The purpose of the article is to ensure the reliability of complex 

technical systems. The novelty of the results obtained lies in the fact that in the 

course of the study the principles of functioning of an intelligent system for 

searching for the causes of failures of a complex technical system with insensitivity 
to incomplete technological data about it were formulated. The principle of 

functioning of an intelligent system for searching for the causes of failures of a 

complex technical system by assessing and predicting the risk of failures of 

subsystems (components), intersystem (intercomponent) connections, its structure, 

in terms of technical and technological foundations of construction, is implemented 

on the example of a ship power plant. The result of the research is also the 

developed model for searching for the causes of failures of complex technical 

systems, which can be considered as a conceptual model with relative insensitivity 

to incomplete technological data about the system. Intellectualization of the search 

for the causes of failures of a complex technical system, taking into account 

hierarchical levels, makes it possible to determine vulnerable subsystems 

(components) on the basis of assessing the technical condition by diagnostic features 

and predicting the risk of failures. 

Keywords: complex technical system, subsystem, component, intersystem and 

interelement communications, diagnostics, forecasting, model, failure risk 

assessment, intelligent system, search for failure causes 

 

Introduction. Odern complex technical systems (CTS) are diverse in equipment, 

consist of many interconnected and interdependent subsystems, components [1,2]. The 

complication of the composition and the increase in the number of CTS installed on 

ships lead to an increase in the failure rate of such systems, to the need to repair CTS 

equipment, and hence to ship downtime. The use of intelligent systems for searching for 

the causes of failures of subsystems (FS), components (FC), intersystem (FIC) and 

intercomponent links (FI) %TS based on the assessment of their technical condition 

(T%) by diagnostic features and predicting the risk of failures in systems can 

significantly extend the life cycle ship %TS [3,4,5]. This article is devoted to the 

solution of this problem. 

Studies of ship CTS survivability models show that the defeat of any FS, FC in 

systems gives rise to a significant number of possible scenarios and options for the 

development of emergency conditions of such systems, and hence to possible marine 

accidents and incidents [6,7], the statistics of which are reflected in the well-known 

bases [8,9,10,11,12]. According to statistics, one of the main %TS - ship power plant 

(SPP) accounts for 60-80% of all failures of ship systems]. 

The operational reliability of CTS is effectively achieved by the system 

operation strategy as a result of searching for the causes of failures based on equipment 

diagnostic data [13,14,15,16,17], predicting their TS [18,19,20,21,22]. 
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The reliability of ship CTS can be reflected in the form of an assessment of the 

risk of failures [23,24,25,26,27,28]. For maritime shipping, the International Maritime 

Organization (IMO) has developed a consolidated text formalized safety assessment 

should comprise the following steps: identification of hazards; risk analysis; risk control 

options; 4 cost assessment benefit;  recommendations for decision-making [29]. To 

analyze the risk of failure of system components, the world-wide Reliability Centered 

Maintenance method [30] is also widely used. 

Currently, the volume of implementation of automation tools and artificial 

intelligence technologies continues to grow in various industries [31]. In accordance 

with the requirements of the Register of Maritime Navigation, all modern ships must be 

equipped with automation systems for technical means using digital technologies, as 

well as artificial intelligence technologies [1,32,33,34,35]. Such systems should 

constantly monitor FS, FC of ship CTS, analyze trends in changes in the T%, search for 

the causes of system equipment failures. To implement such tasks, appropriate 

algorithmic and software tools are needed. 

In artificial intelligence, knowledge representation models are actively 

developing - Bayesian Belief Networks (BBN) [36,37,38]. They can be used to assess 

the risk of failures in CTS, providing a probabilistic basis for modeling the relationships 

between different failure modes and their root causes. 

The algorithms used to search for the causes of failures FS, FC, FIC and FI 

based on the diagnosis of the vehicle, as a rule, are based on the control of tolerances of 

individual diagnostic parameters. However, the analysis and integral assessment of the 

technical condition of subsystems and complexes, the development of control actions in 

most cases is carried out by ship operators on the basis of heuristic rules. 

Thus, the problems associated with ensuring the reliable operation of ship CTS 

require improvement and search for appropriate new methods, models and algorithms. 

They should be aimed not only at the prompt detection of equipment failure conditions, 

at solving problems of assessing and predicting the risk of system failures, but also at 

finding their causes under conditions of relative insensitivity to incomplete 

technological data on FS, FC. Since all modern ships must be equipped with automation 

systems for technical means using technologies based on artificial intelligence, the 

introduction of approaches based on such methods, models and algorithms should 

ensure the reliable operation of ship CTS. That is, taking into account the specifics and 

existing problems in ensuring reliability during the operation of ship CTS, the 

intellectualization of the search for the causes of failures based on the evaluation of T% 

systems by diagnostic features and predicting the risk of failures in their composition is 

an important direction in the development of modern technologies aimed at ensuring the 

safety and reliability of complex systems. systems and is an urgent task. 

Statement of the problem: intellectualization of the search for the causes of 

failures of FS, FC, FIC and FI of ship CTS based on the assessment of the T% of 

systems by diagnostic features and predicting the risk of failures in their composition 

and eliminating the consequences of their occurrence. 

Purpose of the work: ensuring the reliability and safety of the work of ship CTS. 

Main part. The initial data for constructing an intellectualization model for searching 

for the causes of failures of components of a complex technical system based on &% 

assessment and predicting the risk of failures of complex systems using the example of 

an SPP based on BBN are: scheme and principle of operation of the SPP; failure 

probabilities FS, FC, FIC and FI of CTS links [39]. When modeling the BBN of the SPP 

for various values of the risk of failure of the input element BBN, the probabilities of 

loss of operability FS, F%, FIC and FI of connections for 20,000 hours of operation of 

the SPP were determined (Fig. 1). 
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 From the retrospective analysis of the research results in the simulation of the 

SPP, the components that affect the overall performance of the system are identified. In 

the study of emergency situations, the analysis of incidents in the CTS, the main goal is 

to determine the cause of the accident. It follows from the research results that the 

maximum non-operating state during the operation of the SPP is 20,000 hours. 

corresponds to the CSPSC subsystem. Since the CSPSC subsystem is dependent at the 

level of the hierarchical structure of the SPP, therefore, it is necessary to check the 

subsystem in order to find the cause of its failure. Namely, to check the subsystems and 

all related subsystems at other levels of the BBN scheme. 

 

 
Fig.1. Probability of loss of operability of SPP subsystems 

 

The scheme for searching for the cause of failure, for example, the CSPSC 

subsystem in the diagnostic model of the technical condition of the power plant using 

BBN is shown in Fig.2. For the BBN blocks of the SPP, we single out the blocks IE, 

CAS, SPP, CSPSC and intersystem communications IE-CAS, CAS - SPP, SPP - 

CSPSC for detailed consideration as an example to explain the principle of the model. 

Sets of risk of failures IE, CAS, SPP, CSPSC and interconnections IE-CAS, CAS - SPP, 

SPP - CSPSC at the initial moment of time and taking into account the dynamics of 

technical conditions in time based on a priori data on the failure rates BBN when the 

subsystems of the SPP IE, CAS, SPP, CSPSC and intersystem communications IE-

CAS, CAS - SPP, SPP - CSPSC. 

 

 
Fig.2. Scheme for searching for the cause of failure of the CSPSC subsystem in the 

diagnostic model of the technical condition of the SPP BBN 
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The search for the cause of failure of the CSPSC subsystem was performed in 

accordance with the algorithm shown in Fig. 3. 

Symbols of subsystems, components of the SPP in BBN (Fig. 2): Input element - 

IE; Fire fighting system - FFS; Compressed air system - CAS; Manual control of the 

main engine - MCME; Control system - CS; Remote automated control system of the 

main engine - RACSME; Intermediate component - P1; Ship power plant - SPP; Main 

engine - ME; Ballast drainage system - BDS; Emergency drive propulsion and steering 

complex - ED PSC; Control system for propulsion and steering complex - CSPSC; 

Boiler plant - BP; Transfer of power from the main engine to the propeller - TPMEP; 

Intermediate component = P2; Propulsion and steering complex - PSC; Output 

component - EXIT. 

 
Fig. 3. Algorithm for troubleshooting the CSPSC subsystem 

 

The technique for building a model based on BBN can be represented as follows: 

1. Building BBN: 

1.1. Vertices and intersystem (intercomponent) BBNs are created, denoting FS, 

FC, FIC and FI STS, taking into account their TC: 

1.1.1. Each FS, FC may be in the following technical condition: 
þü )(

)(

CS

CS

m

nWork  - operational state nS(C) - th FS (FC)  mS(C)  - th level; 

þü qb

za
CSI

workNot ,

)(
)(

_  - partial (complete) failure nS(C) - th FS (FC) mS(C)  - th level. 

1.1.2. Each FIC and FI connection is in the following states: 
þü qb
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CSI

Work ,

)(
)(
 - operational state 

)(
)(

CSI
za - th FIC (FI) connection b(q) level; 
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þü qb

za
CSI

workNot ,

)(
)(

_ - partial failure (complete) 
)(

)(
CSI

za - th FIC (FI) 

communication b(q) level 

where )(CS - is the set FS (FC) CTC; 

)( CS II  - a set of FIC (FI) CTS connections; 

)(csn  - number FS (FC) CTC; 

)(csm  - number of the hierarchical level FS (FC) CTC; 

a(z) 3 FIC (FI) number of CTS communication connections; 

b(q) 3 number of the hierarchical level FIC (FI) of CTS communication links 

1.2. Links between BBN vertices are indicated, denoting FS, FC, FIC and FI CTC 

links 

2. BBN parameters are specified: 

2.1. The risk of failures at the initial moment of time for FS, FC, FIC and FI of the 

CTS connection, assuming that before the start of the CTS operation they are all 

operable: 
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The risk of failures at the initial moment of time for FS, FC, FIC and FI of the 

CTS connection, assuming that before the start of the CTS operation they are all 

inoperable: 
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2.3. The risk of failure of FS, FC, FIC and FI of the CTS connection at the current 

time, provided that some subsystems (components), intersystem (intercomponent) 

connections failed at the previous time: 
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For the BBN blocks of the SPP (Fig. 2) IE, CAS, SPP, CSPSC and 

interconnections IE-CAS, CAS - SPP, SPP - CSPSC, sets of failure risk at the initial 

time and taking into account the dynamics of technical conditions in time based on a 

priori data on failure rates: 
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Sets of risk of failures at the current moment of time, taking into account the 

previous state of subsystems and intersystem communications, can be within: 

  - the level of risk of failure is assessed as minimal, the consequences of an 

accident are minimal when: 
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- the level of risk of failure is assessed as acceptable, the consequences of the 

accident are insignificant when: 
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- the level of risk of failure is estimated as maximum, the consequences of the 

accident are significant when: 
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- the failure risk level is assessed as critical when: 
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The risk distribution of failures of subsystems (components), intersystem 

(intercomponent) links in BBN, taking into account failures and restorations, has the 

form: 

 - for failure risk distributions Control system for propulsion and steering complex 

3CSPSC SPP in BBN: 
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- for ship power plant failure risk distributions in BBN: 
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- for distributions of the risk of failure of the compressed air system of the power 

plant in BBN: 
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- for the distributions of the risk of failure of the input component of the EMS in 

BBN: 
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If after 20000 hours. operation, the CSPSC subsystem is in a working state, then a 

study is carried out on the operability of the CAS, SPP subsystems that affect the 

operability of the CSPSC, the failure of which can lead to the failure of the entire SPP. 

 After maintenance of the CSPSC subsystem, the assessments of the risk of 

failures of the SPP subsystems are recalculated. Because The SPP directly affects the 

CSPSC, so this subsystem needs to be tested. The failure of the SPP will be the 

probabilistic cause of the failure of the CSPSC subsystem. After the maintenance of the 

SPP, the data on the technical condition of the SPP subsystem is updated, and the 

assessments of the risk of failures of the SPP subsystems will be recalculated. If after 

maintenance of the CSPSC and SPP subsystems, as well as recalculation of the failure 

risk assessment for these subsystems, then it is necessary to check the CAS subsystem. 

The failure of the CAS will be the probabilistic cause of the failure of the CSPSC 

subsystem. After the CAS maintenance, the data on the technical condition of the CAS 

subsystem are updated, and the assessments of the risk of failures of the SPP 

subsystems will be recalculated. 

Thus, based on the intellectualization of the estimation of the TS FS, FC, FIC and 

FI of the CTS links by diagnostic features, it is possible to search for the causes of 

failures of the ship's CTS components. 

Conclusions. Based on the evaluation of the T% systems by diagnostic features and 

predicting the risk of failures in their composition, the search for the causes of failures 
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of FS, FC, FIC and FI of ship CTS communications was intellectualized. In the course 

of the study, the principles of functioning of an intelligent system for searching for the 

causes of CTS failures with insensitivity to incomplete technological data about it were 

formulated. The principle of functioning of the intelligent system for searching for the 

causes of CTS failures by assessing and predicting the risk of failures of FS, FC, FIC 

and FI links, its structure, in terms of technical and technological foundations of 

construction, is implemented using the example of a ship power plant. A model for 

searching for the causes of CTS failures has been developed, which can be considered 

as a conceptual model with relative insensitivity to incomplete technological data about 

the system. Intellectualization of the search for the causes of CTS failures, taking into 

account hierarchical levels, makes it possible to determine vulnerable subsystems 

(components) on the basis of assessing the technical condition by diagnostic features 

and predicting the risk of failures. 
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