Obrizan V. I. / Herald of Advanced Information Technology
2024; VVol.7 No.3: 275-283

DOI: https://doi.org/10.15276/hait.07.2024.19
UDC 004.582

ClPerf: a benchmark for continuous integration
services performance and cost analysis

Volodymyr I. Obrizan
ORCID: https://orcid.org/0000-0002-1835-4056; Volodymyr.obrizan@gmail.com
Kharkiv National University of Radio Electronics, 14, Nauki Ave. Kharkiv, 61166, Ukraine

ABSTRACT

Continuous Integration is a crucial practice in modern software development, enabling teams to automate the process of
building, testing, and merging code increments to ensure continuous delivery of high-quality software. Despite its growing adoption,
the cost and performance of Continuous Integration services often go unexamined in sufficient detail. This paper presents ClPerf, a
comprehensive benchmark designed to analyze both the performance and cost of cloud-based and self-hosted Continuous Integration
services. The study centers on a comparison between two specific services: Bitbucket Pipelines, a cloud-based offering by Atlassian,
and Hetzner, a self-hosted solution. By focusing on these platforms, the research aims to provide practical insights into the real-world
costs and execution performance of Continuous Integration services. To achieve this, CIPerf conducted automated tests on an hourly
basis over a two-month period, measuring critical timeframes such as resource provisioning, environment setup, and the actual test
execution times. The results showed significant differences in both the cost efficiency and the consistency of performance between
the two services. For instance, Bitbucket Pipelines, while convenient in its cloud-based offering, demonstrated higher variability in
provisioning times compared to the stable, predictable performance of Hetzner’s self-hosted environment. The analysis also explored
how these performance metrics influence key software development metrics, including deployment frequency and developer
productivity. ClPerf provides a clear methodology for developers and organizations to objectively assess their Continuous Integration
service options, ultimately helping them optimize their workflows. Moreover, this benchmark can serve as an ongoing tool to
monitor service performance over time, identifying potential degradations or improvements in service quality, thus offering long-
term value for teams that rely on Continuous Integration for their development processes.

Keywords: Continuous integration; performance Benchmark; Bitbucket Pipelines; service performance; DevOps metrics;
developer experience; Lead Time; automated testing; test setup; networkX Benchmark

For citation: Obrizan V. I. “ClPerf: a benchmark for continuous integration services performance and cost analysis”. Herald of Advanced
Information Technology. 2024; Vol. 7 No.3: 275-283. DOI: https://doi.org/10.15276/hait.07.2024.19

1. INTRODUCTION, There are several ways to reduce costs related
FORMULATION OF THE PROBLEM to continuous integration. Algorithms reduce
number of test runs:

a) batch testing algorithms [2, 18] group builds
in batches, run one test suite per a group and bisects
the group in case of a failure to find out a code
commit which introduces the error;

b) test outcome prediction algorithms use

Continuous integration (CI) is a software
development practice which requires running builds
of separate software system components, integrating
them into final deliverables and subsequently
running static code analysis checks and automatic

tests. It is a widely adopted practice: in 2016 70 %\, chine_learning classifiers or similar algorithms to

of the most popular projects on GitHub use CI [1]. predict build failures and skip builds which will pass
_There are se_veral places to perform such with high probability [3, 4], [5, 20].

continuous integration: , Some authors consider the cost factor of Cl as
a) a local deve.loper S compu’ter; developers’ efforts and time to set-up and maintain it
b) computers In a corporate's data center (self- [6, 19]. However, mentioned papers don’t consider

hosted, or on-premises co_ntmuou; server_s); . Cl costs as a cost paid to cloud based Cl SaaS for
c) cloud-based continuous integration services computing resources. Some authors report that Cl is

(Saas). Publicly available continuous .integrati_on used to test performance of systems under test but
S{:IELS Ere pc_)pullgr nowa_daysg notable: Atlgssmbn not the performance of Cl system itself [7, 8].
Bitbucket Pipelines, GitHub Actions, GitLab, Place of CI in the DevOps cycle. DevOps

Amazon ,WEb Serviges, CodePipeline, Microsoft Research and Assessment (DORA) group at Google
Azure, Circle Cl, Travis Cl, and lots more. has identified four key metrics that indicate the

© Obrizan V.. 2024 performance of a software development team [9]:

This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/deed.uk)

ISSN 2663-0176 (Print) Information technology in computer systems 275
ISSN 2663-7731 (Online)

http://hait.od.ua/index.php/journal/theme2

Obrizan V. 1. / Herald of Advanced Information Technology

2024; Vol.7 No.3: 275-283

Table 1. Pros and Cons of different placement of

ClI jobs
Deployemnt Pros Cons
Local Quick turnaround, Computer is busy
computer high performance, while running the
low cost Cl job
Self-hosted The local computer | Additional costs
is free while maintaining a
running the CI job; | server
Ability to configure
hardware; Better
security
Cloud-based | The local computer | Additional costs of
provider is free while renting a server;
running the Cl job | Low performance;
Slow turnaround;
Security issues

Source: compiled by the author

a) Deployment Frequency — How often an
organization successfully releases to production;

b) Lead Time for Changes — The amount of
time it takes a commit to get into production;

c) Change Failure Rate — The percentage of
deployments causing a failure in production;

d) Time to Restore Service How long it takes an
organization to recover from a failure in production.
They outline four grades of DevOps performers:
Elite, High, Medium, and Low. For example, the
Lead Time for Changes metric for Elite performers
must be less than one hour. Thus, a CI job can’t take
more than one hour to satisfy an Elite performers
grade.

Role of CI service in developer experience
(DevEx). DevEx defines how software engineers
feel about, think about, and value their work. The
report shows that such metrics as “Satisfaction with
automated test speed and output”, “Satisfaction with
time it takes to deploy a change to production”,
“Time it takes to generate CI results”, “Deployment
lead time (time it takes to get a change released to
production)”.

Object of the research — cloud-based and self-
hosted CI services. Subject of the research — CI
service performance and costs to run tests. The goal
of the research is to develop and apply a benchmark
to analyze and compare the performance and cost
efficiency of cloud-based and self-hosted continuous
integration (CI) services, providing insights for
developers and organizations to make data-driven
decisions in selecting CI solutions.

2. OPERATION OF CONTINUOUS
INTEGRATION SERVICES

The following section provides a detailed
breakdown of how a typical Cl service operates,
from the initial code push to the final deployment of
build artifacts.

1. A software developer submits a code
increment by committing and pushing to a git
repository.

2. A continuous integration service listens for
code push events.

3. When the CI service gets a CODE_PUSH
event it evaluates whether to initiate a build process
based on predefined rules.

These rules may include:

a) Branch filters (e.g., only build for specific
branches);

b) File path filters (e.g., ignore changes to
documentation files);

¢) Commit message filters (e.g., skip builds for
minor changes);

d) Author filters (e.g., ignore commits from
certain users); e) Time-based rules (e.g., limit build
frequency).

4. Build initiation: If the commit passes the
evaluation, the CI system initiates the build process.
Otherwise, the commit is ignored for CI purposes.

5. Environment setup: A clean, isolated
environment is prepared for the build and tests.

6. Code retrieval: The latest code is fetched
from the repository.

7. Dependency resolution: Required libraries
and dependencies are installed.

8. Compilation: The code is compiled (if
necessary for the language used).

9. Unit testing: Automated unit tests are run to
check individual components.

10. Integration testing: Broader tests are
executed to ensure components work together.

11. Code quality checks: Static code analysis
and linting tools may be run.

12. Artifact generation: Deployable artifacts
(e.g., executables, containers) are created.

13. Reporting: Results of the build and tests are
compiled and reported.

14. Notification: Developers are notified of the
build status, especially if issues arise.

15. Artifact storage: Successful builds are
stored for potential deployment.

276 Information technology in computer systems

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

http://hait.od.ua/index.php/journal/theme2

Obrizan V. . /

Herald of Advanced Information Technology

2024; Vol.7 No.3: 275-283

3. COST AND PERFORMANCE OF CLOUD-
AND SELF-HOSTED CI SERVICES

Comparison of a Cl job execution cost using
major Cl service vendors.

Table 2. Comparison of fees associated with
different CI services providers

Service Job execution cost*
Bitbucket Pipelines (cloud) [10] | $0.010/min
GitLab (cloud) [11] $0.010/min
GitHub Actions (cloud) [12] $0.005/min
Hetzner (self-hosted) [13] $0.001/min

* the lowest proposed hardware configuration pricing is presented.
Source: compiled by the author

To compare job execution cost with a self-
hosted CI service we choose Hetzner datacenter and
their EX44 dedicated server proposal (Intel® Core™
i5-13500, 64 GB RAM). It is priced as €
39.00/month (roughly $43.26 / month). We assumed
31 days x 24 hours = 744 hours in a single month,
which gives us $43.26 / 744 / 60 = 0.001 $/min.

Performance and exact specification of
underlying hardware of cloud-based CI services is
not clear and not advertised by the vendors. In most
cases they advertise computer nodes by number of
available cores (1, 2,...), by architecture (X86,
ARM, AMDG64), by available RAM. And it is
sometimes unclear if the provided computing
resources are dedicated (fully available to the client
only) or shared (the same hardware resources are
used by several ClI service tenants).

4. THE CIPERF BENCHMARK

Main principles:

1. Independence. It is neither controller nor
sponsored by any major Cl service provider. ClI
service providers can’t cherry-pick benchmark tests
to highlight their service in good light and hide the
worst sides of their service.

2. Open. It is open-sourced and easy to
reproduce the benchmark results.

3. Actuality. It is run once per hour to observe
Cl service degradation or improvements over time.

4.1. The Benchmark organization

The benchmark project is stored as a public
Bitbucket git repository [14]. Bitbucket Pipelines —
Atalssian’s CI/CD service is configured for this
repository to be triggered on each code push. There

is a clone of this repository on a standalone
computer hosted at Hetzner [15]. Every hour an
automatic script creates a small change into the local
repository, commits the change and pushes the
change to the Bitbucket-hosted repository. Bitbucket
Pipelines listens for the changes and triggers a build
automatically.

The configuration of a Bitbucket Pipeline is
defined in a YAML file, typically named bitbucket-
pipelines.yml, which resides in the root directory of
a project’s repository. This file specifies the steps to
be executed during the CI process, including
environment setup, dependency installation, and
testing. In the example configuration for ClPerf, the
pipeline is designed to run on a Python 3.10
environment and includes steps for installing
necessary dependencies, such as PostgreSQL client
tools and Python libraries. The script first updates
the system's package manager, installs required
software, and sets up a Python virtual environment.
Following this, automated tests for the NetworkX
library are run using the pytest framework, while
performance metrics are recorded. The pipeline also
connects to a PostgreSQL database to log
benchmark results, such as the total execution time
and performance test duration.

This setup allows Bitbucket Pipelines to
automatically trigger tests upon code changes,
ensuring that performance data is consistently
captured and analyzed. Bitbucket-pipelines.yml is a
configuration file for Bitbucket CI service [16]:

image: python:3.10

pipelines:
default:
- step:
name: Test
caches:
- pip
script:
- startediat=$(date -ulseconds)
- start time=$ (date +%s)
- apt-get update
- apt-get install -y time postgresqgl-
common
- YES=yes
- yes "" | /usr/share/postgresqgl-
common/pgdg/apt.postgresgl.org.sh
- apt install -y postgresgl-client-16
- python -m venv venv
- source venv/bin/activate
- pip install --upgrade pip
- pip install -r requirements/default.txt
-r requirements/test.txt
- pip install -e .
- /usr/bin/time -ap -o benchmark.txt
pytest --pyargs networkx
- useritime:$(grep 'user' benchmark.txt |
awk '{print int($2)}")
- end time=$ (date +%s)
- total time=$(($end time - $start time))

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

Information technology in computer systems

277

http://hait.od.ua/index.php/journal/theme2

Obrizan V. 1. / Herald of Advanced Information Technology

2024; Vol.7 No.3: 275-283

- psgl -h $DBHOST -U $DBUSER -p $DBPORT -
d statistics -c "INSERT INTO public.runs
(total_sec, performance_test_sec, vendor,
benchmark_id, commit, started_at) VALUES
(Stotal time, Suser_time, 'Bitbucket Pipelines',
'networkxl"', '$BITBUCKET_COMMIT', 'Sstarted_at');"

- "echo Total time, sec: Stotal_time.
Benchmark time, sec: Suser time."

This configuration includes two main parts:

1. Installation of needed dependencies
(postgresqgl client, Python packages).

2. Automatic tests for the NetworkX library.
The benchmark records the following timestamps:
code_pushed, ci_job_started,
dependencies_installed, test_completed (Table 3).

Table 3. Main events of the CI process

Timestamp Description

code_pushed Recorded right after successful
code push: the code repository
accepted the source codes.

ci_task
started

Recorded on execution the very
first line of bitbucket-
pipelines.yml script. It means
the computer is provisioned for
a task by continuous integration
service.

dependencies_ Recorded after all dependencies
installed are installed (command line
tools, Python libraries).

test_completed Recorded after automatic tests

are completed.

Source: compiled by the author

The chain of events code pushed —
ci_task started — test_completed is on the critical
path for the “Lead Time for Changes” DORA metric
and the “Time it takes to generate CI results”
developer experience metric.

Meaning of selected time frames for the
benchmark (Table 4):

The provisioning timeframe refers to the period
between the moment the Cl system detects a code
push (or a trigger event) and when the actual job
starts executing on the allocated computing
resources. In other words, it measures the time
required for the CIl service to prepare the
infrastructure needed to run the build and tests,
which includes allocating or spinning up virtual
machines, containers, or any other required
resources.

During the provisioning phase, the CI system
ensures that a clean and isolated environment is
ready for the upcoming tasks. The length of the
provisioning timeframe can vary depending on the
ClI provider, the underlying infrastructure, and the

current load on shared cloud resources. For instance,
cloud-based CI services often experience variability
in provisioning times due to resource availability,
while self-hosted CI services may have consistently
shorter provisioning times since dedicated hardware
is already available. The provisioning timeframe
directly impacts the overall efficiency of the ClI
pipeline, especially for teams that rely on rapid
feedback from their builds and tests.

Table 4. Main timeframes of the CI process

Timeframe | Formula Description
provisioning | ci_task Time in seconds,
started — needed for a CI
code_pushed provider to
provision
computing
resources (a
computer) to
execute a CI job.
test_setup dependencies_ Time in seconds,
installed — needed for a
ci_task_ computer provided
started by a Cl service to
install
dependencies.
computing test_ completed | Time in seconds,
- needed for a ClI-
dependencies_ service-provided
installed computer to
complete automatic
tests for the
NetworkX library.
Source: compiled by the author
The test setup timeframe represents the

duration required to set up the testing environment
in a Continuous Integration (CI) process.
Specifically, it measures the time taken from the
start of the ClI job (after the computing resources are
provisioned) to the point when all necessary
dependencies are installed, and the environment is
fully configured for testing. This stage includes
actions like downloading necessary libraries,
installing required software packages, setting up
configurations, and preparing any other resources
required to run the tests. In Cl workflows, the
test setup phase is critical because any delays in
setting up the environment can prolong the overall
Cl job, thereby increasing lead times and reducing
efficiency.

The computing benchmark is a unit-test suite
for NetworkX Python library [17]. It consists of
functional tests for different graph algorithms. We
consider this as a good choice for computing

278 Information technology in computer systems

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

http://hait.od.ua/index.php/journal/theme2

Obrizan V. . /

Herald of Advanced Information Technology

2024; Vol.7 No.3: 275-283

benchmark, because of the pure computational
nature of graph algorithms, thus no 1/0 (disk,
network) resources are exercised during the
benchmark.

4.2. Benchmark results

Analysis of ClPerf benchmark running hourly
on Bitbucket Pipelines starting 29.06.2024 to
08.09.2024, 1710 runs in total.

Benchmark statistics for Bitbucket Pipelines:

Table 5. Benchmark statistics for Bitbucket
Pipelines

Min, | Mean, | p95, | p99, | Max, | Average,

Timeframe sec sec sec | sec | sec sec Stddev

provisioning| 12 | 21 | 35| 54 [1990| 26 63

test setup | 23 | 38 | 64 | 92 | 163 41 13

computing | 127 | 167 |205|223| 246 | 169 19

Source: compiled by the author
Statistics for a local personal computer:

Table 6. Benchmark statistics for a local personal

computer
. Min, | Mean, | p95, | p99, | Max, | Average,
Timeframe | sec sec sec | sec |sec sec Stddev
provisioning 0 o 0 O 0 0 0

test_setup 57 64| 70, 74| 75 65 4

computing | 111| 120| 134| 134| 134 121 8

Source: compiled by the author

Statistics for a self-hosted server (Hetzner):

Table 7. Benchmark statistics for a self-hosted
server

Min, | Mean, | p95, | p99, | Max, | Average,

Timeframe | sec | sec | sec | sec | sec sec | Stddev

provisioning| 0 0 0] 0| O 0 0

test setup | 27 | 29 |31 31| 31 29 1

computing | 83 | 85 | 86 | 86 | 86 85 1

Source: compiled by the author
5. DISCUSSION AND TAKEAWAYS

The ClIPerf benchmark highlights several
important findings regarding the cost and
performance of continuous integration (CI) services.
The comparison between cloud-based (Bitbucket
Pipelines) and self-hosted (Hetzner) solutions
reveals clear distinctions in both pricing models and

performance metrics, providing valuable insights for
organizations looking to optimize their CI
workflows.

1. Cost Efficiency: The cost analysis shows that
self-hosted solutions like Hetzner are significantly
more cost-effective than cloud-based services such
as Bitbucket Pipelines, especially for long-running
or frequent Cl jobs. While Bitbucket Pipelines
charges approximately $0.010 per minute of job
execution, the self-hosted Hetzner service costs only
around $0.001 per minute. This tenfold difference
highlights the potential savings for organizations
that are willing to manage their own infrastructure,
particularly for projects with extensive CI usage.

2. Performance Variability: The performance of
Bitbucket Pipelines exhibits greater variability
compared to the self-hosted Hetzner solution. While
Hetzner consistently delivers fast provisioning and
computing times, Bitbucket shows a higher standard
deviation in key timeframes, particularly in
provisioning, where the p99 value reaches up to
1,990 seconds. This variability can lead to
unpredictable delays in the CI process, which could
hinder developer productivity, especially for teams
that rely on rapid feedback from CI pipelines.

3. Provisioning Time: One of the most striking
differences is in the provisioning time, where
Hetzner performs significantly better with no delay
in resource allocation, as it is a dedicated server. In
contrast, Bitbucket Pipelines shows variability, with
provisioning times ranging from 12 to 1.990
seconds. This indicates that shared cloud resources
can introduce significant delays, particularly during
peak usage periods, making it challenging to
maintain a high level of CI performance.

4. Test Setup and Computing Time: Hetzner
also outperforms Bitbucket Pipelines in test setup
and computing times. While the difference in
computing time (the actual test execution) is notable,
the most significant gap is in test setup, where
Bitbucket takes nearly 30% longer on average to
install dependencies and prepare the environment.
This overhead can be detrimental for Cl pipelines
that require frequent setup of complex environments.

5. Developer Experience and Lead Time for
Changes: The unpredictability of provisioning and
setup times in cloud-based solutions like Bitbucket
can negatively impact developer experience (DevEX)
and key DevOps metrics such as Lead Time for
Changes. In contrast, the consistent performance of
the Hetzner self-hosted server offers a more reliable
and predictable CI experience, which can enhance

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

Information technology in computer systems 279

http://hait.od.ua/index.php/journal/theme2

Obrizan V. 1. / Herald of Advanced Information Technology

2024; Vol.7 No.3: 275-283

overall developer
efficiency.

6. Scalability vs. Control: While cloud-based ClI
services offer ease of setup, scalability, and reduced
infrastructure management overhead, they come at
the cost of performance consistency and higher job
execution fees. Self-hosted solutions, like Hetzner,
provide better control, cost savings, and
performance stability but require additional effort in
managing hardware and software environments.
Organizations must weigh these trade-offs based on
their CI needs and operational constraints.

satisfaction and operational

5.1. Takeaways

1. Cost Savings for Heavy Cl Usage:
Organizations with frequent or long-running CI jobs
can achieve significant cost savings by opting for
self-hosted solutions like Hetzner. However, the
cost-benefit analysis should include the potential
overhead of maintaining a self-hosted infrastructure.

2. Performance Stability: For teams that
prioritize consistency and rapid feedback in their ClI
processes, self-hosted solutions may offer better
reliability and predictability compared to cloud-
based services, which can exhibit high variability
due to shared resources.

3. Cloud-Based Services for Simplicity and
Scalability: While cloud-based CI services like
Bitbucket Pipelines introduce variability in
performance, they are still appealing for smaller
teams or projects that need fast scalability and
minimal infrastructure management.

4. Cl Monitoring: ClPerf can serve as a
valuable tool for ongoing monitoring of CI service
performance, helping teams detect potential service
degradation over time. This makes it useful for both
cloud and self-hosted environments, ensuring that Cl
processes remain optimized and responsive.

In conclusion, the ClIPerf benchmark provides
concrete data to guide organizations in selecting the
most appropriate Cl service based on their unique
cost, performance, and management requirements.
Future work could explore additional CI services to
further expand the analysis, offering a more
comprehensive view of the Cl ecosystem.

6. CONCLUSIONS AND FUTURE WORK

This paper presents ClPerf, a benchmark
designed to analyze and compare the cost and
performance of cloud-based and self-hosted
Continuous Integration (CI) services. Through an
extensive study involving Bitbucket Pipelines
(cloud) and Hetzner (self-hosted) over two months,

the results demonstrate substantial differences in
both cost efficiency and performance stability
between these two options.

The scientific novelty of this research lies in
the development of ClPerf, a unique, independent
benchmark specifically designed to measure and
compare both the performance and cost of cloud-
based and self-hosted continuous integration (CI)
services. Unlike previous studies, CIPerf provides a
reproducible, open-source framework that evaluates
the CI infrastructure itself, offering detailed insights
into provisioning times, test setup durations, and
computational efficiency, which have not been
systematically analyzed in the context of CI service
cost-performance trade-offs before.

The practical significance of this research is
that it provides developers, teams, and organizations
with a reliable tool (CIPerf) to objectively assess the
performance and cost efficiency of continuous
integration (CI) services. By offering concrete data
on provisioning times, test setup, and execution
costs, ClPerf helps decision-makers optimize their
Cl workflows, reduce operational expenses, and
enhance developer productivity through informed
selection of CI services, whether cloud-based or
self-hosted. Additionally, it can be used to monitor
performance degradation or improvements over
time, ensuring consistent and efficient software
development practices.

Key conclusions from this study include:

1. Cost-Performance Trade-offs: Self-hosted ClI
solutions, such as Hetzner, offer significantly lower
job execution costs compared to cloud-based
services like Bitbucket Pipelines. However, they
require more operational oversight and infrastructure
management, which may not be ideal for smaller
teams or organizations prioritizing ease of use.

2. Performance Variability: Cloud-based
services exhibit higher variability in provisioning
and job execution times, potentially causing delays
in the CI pipeline. In contrast, self-hosted solutions
provide more consistent performance, especially in
terms of provisioning and test setup times.

3. Developer Experience: For teams that
prioritize rapid feedback in their CI processes, the
performance stability of self-hosted solutions like
Hetzner can enhance developer experience and
reduce overall lead time for changes. On the other
hand, cloud-based services offer convenience and
scalability but may introduce unpredictable delays.

4. Benchmarking Utility: CIPerf proves to be a
valuable tool for objectively measuring the
performance of CI services. It provides a

280

Information technology in computer systems

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

http://hait.od.ua/index.php/journal/theme2

Obrizan V. . /

Herald of Advanced Information Technology

2024; Vol.7 No.3: 275-283

reproducible framework that can be used to monitor
CI service degradation or improvements over time,
ensuring that organizations can optimize their CI
workflows based on real data.

There are several avenues for future research
that can build on the findings of this study:

1. Inclusion of More CI Services: Future work
could expand the scope of CIlPerf to include
additional ClI
services such as GitHub Actions, Travis Cl, and
CircleCl. This would provide a broader comparative
analysis across a wider range of cloud-based and
self-hosted solutions, offering more comprehensive
insights for organizations choosing CI tools.

2. Exploration of Different Workloads: The
current benchmark focuses on a specific test suite
(NetworkX). Future research could explore different
types of workloads, including more 1/O-intensive

tests, larger codebases, or multi-language projects, to
assess how CI services perform under varying
conditions.

3. Real-World Application: While the current
study runs automated tests in a controlled
environment, future research could integrate ClPerf
into real-world software development pipelines,
analyzing how CI performance affects development
cycles, release times, and developer productivity in
diverse organizational contexts.

4. Cost-Benefit Analysis of Hybrid CI Models:
Another potential area of exploration is the cost-
benefit analysis of hybrid CI models, where
organizations use a combination of cloud-based and
self-hosted CI systems. This could provide insights
into how teams can balance scalability, cost, and
performance based on their specific needs.

REFERENCES

1. Hilton, M., Tunnell, T., Huang, K., Marinov, D. & Dig, D. “Usage, costs, and benefits of continuous
integration in open-source projects”. Proceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering. 2016. p. 426437, https://www.scopus.com/inward/record.uri?eid=2-s2.0-
84989159511&d0i=10.1145%2f2970276.2970358&partnerD=40&md5=7e96113dc1lefb43fh7b51e2d6ed14763.
DOI: https://doi.org/10.1145/2970276.2970358.

2. Fallahzadeh, E., Bavand, A. H. & Rigby, P. C. “Accelerating continuous integration with parallel
batch testing”. Proceedings of the 31st ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. 2023. p. 55-67.
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85180557197&d0i=10.1145%2f3611643.3616255&
partnerlD=40&md5=bc128a0694c9accelbb7d45ba94d4fce. DOI: https://doi.org/10.1145/3611643.3616255.

3. Jin, X. & Servant, F. “A cost-efficient approach to building in continuous integration”. Proceedings
of the ACM/IEEE 42nd International Conference on Software Engineering. 2020. p. 13-25,
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85094315421&d0i=10.1145%2f3377811.3380437&
partnerlD=40&md5=bb745a103bef9f097daf338a82b09882. DOI: https://doi.org/10.1145/3377811.3380437.

4. Jin, X. “Reducing cost in continuous integration with a collection of build selection approaches”.
Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 2021. p. 1650-1654,
https://mww.scopus.com/inward/record.uri?eid=2-s2.0-85116277591&doi=10.1145%2f3468264.3473103&
partnerD=40&md5=d990ab64f1533ee41c7cd50853d356d1. DOI: https://doi.org/10.1145/3468264.3473103.

5. Hong, Y., Tantithamthavorn, C., Pasuksmit, J., Thongtanunam, P., Friedman, A., Zhao, X. &
Krasikov, A. “Practitioners’ challenges and perceptions of Cl Build Failure Predictions at Atlassian”.
Companion Proceedings of the 32nd ACM International Conference on the Foundations of Software
Engineering. 2024. p. 370-381, https://www.scopus.com/inward/record.uri?eid=2-s2.0-
85197077100&d0i=10.1145%2f3663529.3663856&partnerID=40&md5=04601519ed25be40a18966¢c3celle
2ff. DOI: https://doi.org/10.1145/3663529.3663856.

6. Hilton, M., Tunnell, T., Huang, K., Marinov, D. & Dig, D. “Usage, costs, and benefits of continuous
integration in open-source projects”. Proceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering. 2016. p. 426-437, https://www.scopus.com/inward/record.uri?eid=2-s2.0-
84989159511&d0i=10.1145%2f2970276.2970358&partnerID=40&md5=7e96113dclefb43fb7b51e2d6ed14
763. DOI: https://doi.org/10.1145/2970276.2970358.

ISSN 2663-0176 (Print) Information technology in computer systems 281

ISSN 2663-7731 (Online)

http://hait.od.ua/index.php/journal/theme2
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84989159511&doi=10.1145%2f2970276.2970358&partnerID=40&md5=7e96113dc1efb43fb7b51e2d6ed14763
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84989159511&doi=10.1145%2f2970276.2970358&partnerID=40&md5=7e96113dc1efb43fb7b51e2d6ed14763
https://doi.org/10.1145/2970276.2970358
https://doi.org/10.1145/3611643.3616255
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85094315421&doi=10.1145%2f3377811.3380437&partnerID=40&md5=bb745a103bef9f097daf338a82b09882
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85094315421&doi=10.1145%2f3377811.3380437&partnerID=40&md5=bb745a103bef9f097daf338a82b09882
https://doi.org/10.1145/3377811.3380437
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85116277591&doi=10.1145%2f3468264.3473103&partnerID=40&md5=d990ab64f1533ee41c7cd50853d356d1
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85116277591&doi=10.1145%2f3468264.3473103&partnerID=40&md5=d990ab64f1533ee41c7cd50853d356d1
https://doi.org/10.1145/3468264.3473103
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85197077100&doi=10.1145%2f3663529.3663856&partnerID=40&md5=04601519ed25be40a18966c3ce10e2ff
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85197077100&doi=10.1145%2f3663529.3663856&partnerID=40&md5=04601519ed25be40a18966c3ce10e2ff
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85197077100&doi=10.1145%2f3663529.3663856&partnerID=40&md5=04601519ed25be40a18966c3ce10e2ff
https://doi.org/10.1145/3663529.3663856
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84989159511&doi=10.1145%2f2970276.2970358&partnerID=40&md5=7e96113dc1efb43fb7b51e2d6ed14763.
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84989159511&doi=10.1145%2f2970276.2970358&partnerID=40&md5=7e96113dc1efb43fb7b51e2d6ed14763.
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84989159511&doi=10.1145%2f2970276.2970358&partnerID=40&md5=7e96113dc1efb43fb7b51e2d6ed14763.
https://doi.org/10.1145/2970276.2970358

Obrizan V. 1. / Herald of Advanced Information Technology
2024; Vol.7 No.3: 275-283

7. Yu, L., Alégroth, E., Chatzipetrou, P. & Gorschek, T. “A Roadmap for Using Continuous Integration
Environments”. Communications of the ACM. 2024. p. 82-90,
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85194381501&d0i=10.1145%2f3631519&
partner|D=40&md5=7476310c4de33d8a5d431fa2b166b79d. DOI: https://doi.org/10.1145/3631519.

8. Melone, C. & Jones, S. “Verifying functionality and performance of HPC applications with
continuous integration”. Practice and Experience in Advanced Research Computing 2023: Computing for
the Common Good. 2023. p. 460-462, https://www.scopus.com/inward/record.uri?eid=2-s2.0-
85176236613&d0i=10.1145%2f3569951.3597557 &partnerl D=40&md5=8eflde2e309c9b29543c56 2fcf756b10.
DOI: https://doi.org/10.1145/3569951.3597557.

9. “Google Cloud. 2022. Using the Four Keys to Measure Your DevOps Performance”. Google Cloud
Blog. 2024. — Available from: https://cloud.google.com/blog/products/devops-sre/using-the-four-keys-to-
measure-your-devops-performance.

10. “Atlassian. ~ 2024. Bitbucket ~ Pricing”. Atlassian. 2024. - Awvailable from:
https://www.atlassian.com/software/bitbucket/pricing.

11. “GitLab. 2024. GitLab Pricing”. GitLab. 2024. — Available from: https://about.gitlab.com/pricing.

12. “GitHub. 2024. About Billing for GitHub Actions”. GitHub Docs. 2024. — Available from:
https://docs.qgithub.com/en/billing/managing-billing-for-github-actions/about-billing-for-github-actions.

13. “Hetzner. 2024. Dedicated Root Server EX Line”. Hetzner. 2024. — Available from:
https://www. hetzner.com/dedicated-rootserver/matrix-ex.

14, “lirs. 2024, NetworkX Benchmark”. Bitbucket. 2024. — Available from:
https://bitbucket.org/lirs/networkx_benchmark.

15. “Hetzner. 2024. Hetzner Homepage”. Hetzner. 2024. — Available from: https://www.hetzner.com.

16. “Atlassian. 2024. Bitbucket Pipelines Configuration Reference”. Atlassian Support. 2024. —
Available from: https://support.atlassian.com/bitbucket-cloud/docs/bitbucket-pipelines-configuration-
reference/

17. Hagberg, A. A., Schult, D. A. & Swart, P. J. “Exploring network structure, dynamics, and function
using NetworkX”. Proceedings of the 7th Python in Science Conference (SciPy2008). 2008. p. 11-15.
DOI: https://doi.org/10.25080/TCWV9851

18. Kamath, D. M., Fernandes, E., Adams, B. & Hassan, A. E. “On combining commit grouping and
build skip prediction to reduce redundant continuous integration activity”. Empirical Software Engineering,
2024; 29: 6, https://mwww.scopus.com/inward/record.uri?eid=2-s2.0-85202786343&d0i=10.1007%2fs10664-
024-10477-1&partnerD=40&md5=d51af9fe4e85¢1d918c2bf05d04a3512.

DOI: https://doi.org/10.1007/s10664-024-10477-1.

19. Zheng, S., Adams, B. & Hassan, A. E. “Does using Bazel help speed up continuous integration
builds?”. Empirical Software Engineering, 2024; 29: 5, https://www.scopus.com/inward/record.uri?eid=2-
$2.0-85199025885&d0i=10.1007%2fs10664-024-10497-
x&partnerlD=40&md5=0a8c90067f577d393ce45d2273c28a79.

DOI: https://doi.org/10.1007/510664-024-10497-X.

20. Lan, W., Zhang, J., Yang, H. & Cui, Z. “A directed greybox fuzzing tool for continuous
integration”. SoftwareX. 2024; 27. Scopus: https://www.scopus.com/inward/record.uri?eid=2-s2.0-
85199041782&d0i=10.1016%2fj.softx.2024.101824&partnerID=40&md5=95f2c7d23fc81fe20e6260e4a671
2¢e56. DOI: https://doi.org/10.1016/j.s0ftx.2024.101824.

Conflicts of Interest: the authors declare no conflict of interest
Received 26.06.2024

Received after revision 30.08.2024
Accepted 16.09.2024

282 Information technology in computer systems ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

http://hait.od.ua/index.php/journal/theme2
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85194381501&doi=10.1145%2f3631519&partnerID=40&md5=7476310c4de33d8a5d431fa2b166b79d
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85194381501&doi=10.1145%2f3631519&partnerID=40&md5=7476310c4de33d8a5d431fa2b166b79d
https://doi.org/10.1145/3631519
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85176236613&doi=10.1145%2f3569951.3597557&partnerID=40&md5=8ef1de2e309c9b29543c562fcf756b10
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85176236613&doi=10.1145%2f3569951.3597557&partnerID=40&md5=8ef1de2e309c9b29543c562fcf756b10
https://doi.org/10.1145/3569951.3597557
https://cloud.google.com/blog/products/devops-sre/using-the-four-keys-to-measure-your-devops-performance
https://cloud.google.com/blog/products/devops-sre/using-the-four-keys-to-measure-your-devops-performance
https://www.atlassian.com/software/bitbucket/pricing
https://about.gitlab.com/pricing/
https://docs.github.com/en/billing/managing-billing-for-github-actions/about-billing-for-github-actions
https://www.hetzner.com/dedicated-rootserver/matrix-ex/
https://bitbucket.org/1irs/networkx_benchmark/
https://www.hetzner.com/
https://support.atlassian.com/bitbucket-cloud/docs/bitbucket-pipelines-configuration-reference/
https://support.atlassian.com/bitbucket-cloud/docs/bitbucket-pipelines-configuration-reference/
https://doi.org/10.25080/TCWV9851
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85202786343&doi=10.1007%2fs10664-024-10477-1&partnerID=40&md5=d51af9fe4e85c1d918c2bf05d04a3512
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85202786343&doi=10.1007%2fs10664-024-10477-1&partnerID=40&md5=d51af9fe4e85c1d918c2bf05d04a3512
https://doi.org/10.1007/s10664-024-10477-1
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85199025885&doi=10.1007%2fs10664-024-10497-x&partnerID=40&md5=0a8c90067f577d393ce45d2273c28a79
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85199025885&doi=10.1007%2fs10664-024-10497-x&partnerID=40&md5=0a8c90067f577d393ce45d2273c28a79
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85199025885&doi=10.1007%2fs10664-024-10497-x&partnerID=40&md5=0a8c90067f577d393ce45d2273c28a79
https://doi.org/10.1007/s10664-024-10497-x
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85199041782&doi=10.1016%2fj.softx.2024.101824&partnerID=40&md5=95f2c7d23fc81fe20e6260e4a6712e56
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85199041782&doi=10.1016%2fj.softx.2024.101824&partnerID=40&md5=95f2c7d23fc81fe20e6260e4a6712e56
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85199041782&doi=10.1016%2fj.softx.2024.101824&partnerID=40&md5=95f2c7d23fc81fe20e6260e4a6712e56
https://doi.org/10.1016/j.softx.2024.101824

Obrizan V. I. / Herald of Advanced Information Technology
2024; VVol.7 No.3: 275-283

DOI: https:/doi.org/10.15276/hait.07.2024.19
VJIK 004.582

CIPerf: beHumapk /i aHAJIi3y IPOAYKTUBHOCTI
Ta BapPTOCTI cepBiciB Oe3nepepBHOI iHTEerpamii

O6pizan Bostoaumup Iroposny”
ORCID: https://orcid.org/0000-0002-1835-4056; VVolodymyr.obrizan@gmail.com
Y XapxiBchkuii HalliOHATBHMI yHIBEPCUTET pajtioeneKTpoHiky, npociekt Hayku, 14. Xapkis, Vipaina

AHOTAILIA

BesnepepBHa iHTerpalis € BaJIMBOIO IPAKTHKOIO B Cy4acHiH po3po0ii MporpaMHoOro 3a0e3neueHHs, 110 A03BOJIsE KOMaHIaM
aBTOMATH3yBaTH ITIPOLEC 30MpaHHs, TECTYBaHHSA Ta 3JMTTS KOJIOBMX 3MiH, 3a0e3meuyroun Oe3nepepBHY JOCTABKY BHCOKOSKICHOTO
nporpamHoro 3abesnedeHns. Hespaxaroun Ha ii 3pocraioue BIIPOBa/UKEHHS, BapTIiCTh Ta MPOAYKTHUBHICTH CEpPBICIB Oe3nepepBHOI
iHTerpanii 4acTo 3aJMINAIOTBHCS HEJOCTATHHO BHMBUEHMMHM. Y miif crarri mpencraBieno ClPerf — xomruiekcHuii OeHuMapk,
PO3pOONEHNI ISl aHaNi3y SIK MPOAYKTHBHOCTI, TaK 1 BapTOCTI XMapHHUX Ta JIOKaJIbHHX CEepBICiB Oe3nepepBHOI iHTerpamii.
JocnikeHHs 30cepe/KeHe Ha TOPIBHAHHI JIBOX KOHKpeTHHX cepBiciB: Bitbucket Pipelines, xmapHoro cepsicy Bin Atlassian, Ta
Hetzner, yiokanbHOro pimeHHs. 30cepe/PKyIounch Ha IMX IUIaTgopMax, JOCIIDKEHHS Ma€ Ha METi HaJaTH NPAKTHYHI BHCHOBKH
I0ZI0 PEealbHUX BUTPAT i NMPOAYKTHBHOCTI BUKOHAHHS 3aBJlaHb y cepBicax Oe3nepepBHOI iHTerpauii. J[yus mpocarHeHHs wiei MeTH
CIPerf npoBoaMB aBTOMaTH30BaHi TECTH LIOTOMHH MPOTATOM JIBOMiCSYHOIO NEpioy, BUMIPIOIOUM KIIIOUOBI 4YacOBi iIHTEpBaIH, TaKi
SK BUJUICHHS pECYpCiB, HaJaIITyBaHHS CepeloBMINA Ta (DaKkTHUHMK 4ac BUKOHAHHA TECTiB. Pe3ynbraTu mHOKa3ayM CyTTeBi
BIZIMIHHOCTI K Yy BapTOCTi, TaK i B CTaOLIBPHOCTI HPOMYKTMBHOCTI MiX JBoMa cepBicamu. Hampuxiax, Bitbucket Pipelines,
HE3Ba)XKAlOYM Ha 3pYyYHICTH XMapHOrO cepBicy, JEMOHCTPYBaB OiIbIy BapiaTHBHICTb 4Yacy BHJUICHHS DPECYpPCIB IOpPIBHSHO 3i
CTablIBHOIO, TIepe10auyBaHOI0 POAYKTUBHICTIO JIOKAJIBHOTO cepenoBuiia Hetzner. AHaii3 Takox JOCTIIKYBaB, SIK i TIOKa3HUKH
MPOAYKTUBHOCTI BIUIMBAIOTh HA KJIFOYOBI METPUKHM PO3POOKH NPOrpaMHOro 3a0e3NeyeHHs, BKIIOYAIOYM YacTOTY PO3rOpPTaHHs Ta
MPOAYKTHBHICTH po3poOHuKiB. CIPerf mpomonye 4iTKy MeTOIONOTiI0 Uil PO3POOHHKIB Ta OpraHi3awiil, ska J03BoJs€ 00'€KTUBHO
OLIIHIOBAaTH BapiaHTH CEpPBICiB Oe3nepepBHOI 1HTErpallii, 110 B KIHIEBOMY IiICYMKY JI0lIOMarae OonTHMI3yBaTH iXHi po0oUi MmporecH.
Kpim Toro, meit GeHUMAapK MOKE CIYKHTH TOCTIHHUM iHCTPYMEHTOM JUIS MOHITOPHMHTY HPOAYKTHBHOCTI CEpBICIB 3 YacoM,
BUSIBIIAIOUM TIOTCHIIHHE MOTIpIIEHHS a00 MOKpALIeHHS SKOCTi CepBiCy, HAJAIOYM TAKUM YMHOM JIOBIOCTPOKOBY LIHHICTb s
KOMaHJI, 10 3aJIe)KaTh BiJ Oe3rnepepBHOI iHTerpawii y cBOiX mporecax po3poOku.

KuarouoBi ciioBa: GesmepepBHa iHTerpauisi; benumapk mnpoxykTusHocti; Bitbucket Pipelines; mpoaykruHicTs cepsicy;
meTpuku DevOps; 1ocBif po3poOHHUKIB; Yac BUKOHAHHS 3MiH; aBTOMaTH30BaHE TECTYBaHHS, Yac HaJallTyBaHHs TecTiB; beHumapk
NetworkX

ABOUT THE AUTHOR

Volodymyr I. Obrizan - Doctoral student at Design Automation Department, Kharkiv National University of Radio
Electronics, 14 Nauki Avenue, Kharkiv, 61166, Ukraine

ORCID: https://orcid.org/0000-0002-1835-4056; VVolodymyr.obrizan@gmail.com;

Research field: Computer systems and networks

Oo6pizan Bosoqumup IropoBuy - 10kTopanT Kad. ABTOMaTH3allii TPOSKTYBaHHS 00YMCITIOBAIBHOT TEXHIKH. XapKiBChKH
HaIllOHAJILHUIT YHIBEpCUTET paioeneKTpoHiku, npocnekT Hayku, 14, Xapkis, Ykpaina.

ISSN 2663-0176 (Print) Information technology in computer systems 283
ISSN 2663-7731 (Online)

http://hait.od.ua/index.php/journal/theme2

