
Development of Checkability in FPGA Components
of Safety-Related Systems
Oleksandr Drozda, Kostiantyn Zashcholkina, Oleksandr Martynyuka,
Olena Ivanovaa and Julia Drozda

aOdessa National Polytechnic University, Ave. Shevchenko 1, Odesa, 65044, Ukraine

Abstract
The paper is dedicated to the development of FPGA-designing (Field Programmable Gate Array) compo-
nents for safety-related systems as an important direction in improving the functional safety of high-risk
facilities and the control systems themselves in order to counter accidents and their consequences. The
critical application of the computer system diversifies its operating mode into normal and emergency,
as well as increases the requirements for fault tolerance of circuits as a basis for functional safety. Fault-
tolerant solutions do not become fail-safe in conditions of insufficient checkability, which is inherent
in modern safety-related systems and manifests itself in the problem of hidden faults. They can ac-
cumulate during normal mode and eliminate fault tolerance in emergency mode. FPGA projects with
LUT-oriented (Look-Up Table) architecture inherit this problem in the LUT memory, which is used only
in emergency mode. The proposed method develops the FPGA components’ checkability by using the
version redundancy of their program code. Periodic change of the program code version in normal mode
allows to address the memory, which was previously used only with the transition to emergency mode.
All versions support the component’s FPGA functionality while maintaining its hardware implementa-
tion. The method evaluates the controllability and observability of the LUT memory and determines
versions that increase its checkability.

Keywords
Safety-related system, normal and emergency modes, hidden faults, FPGA component, LUT-oriented
architecture, memory bits of LUT unit, program code version, controllability, observability, checkability

1. Introduction

Information technology, implemented in computer systems, has already outgrown the most
daring predictions of its usefulness and, in the form of safety-related systems, has occupied
the niche of humanity’s defender from risky activities. Indeed, we have created an extensive
infrastructure of high-risk objects in energy and transport by placing them on the ground, water,
air and space. These facilities are represented by power plants and power networks, ground
and air high-speed transport systems, chemical industries and warehouses for storing their
dangerous products, as well as various types of weapons [1, 2].

ICT&ES-2020: Information-Communication Technologies & Embedded Systems, November 12, 2020, Mykolaiv, Ukraine
" drozd@ukr.net (O. Drozd); const-z@te.net.ua (K. Zashcholkin); anmartynyuk@ukr.net (O. Martynyuk);
en.ivanova.ua@gmail.com (O. Ivanova); yuliia.drozd@opu.ua (J. Drozd)
� 0000-0003-2191-6758 (O. Drozd); 0000-0003-0427-9005 (K. Zashcholkin); 0000-0002-3043-5924 (O. Martynyuk);
0000-0002-4743-6931 (O. Ivanova); 0000-0001-5880-7526 (J. Drozd)

© 2020 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:drozd@ukr.net
mailto:const-z@te.net.ua
mailto:anmartynyuk@ukr.net
mailto:en.ivanova.ua@gmail.com
mailto:yuliia.drozd@opu.ua
https://orcid.org/0000-0003-2191-6758
https://orcid.org/0000-0003-0427-9005
https://orcid.org/0000-0002-3043-5924
https://orcid.org/0000-0002-4743-6931
https://orcid.org/0000-0001-5880-7526
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


We are all in the zone of defeat in the event of technological disasters, but we do not plan to
abandon the development of this infrastructure.

Risk is considered as the product of two factors, the first of which is determined by the
probability of an accident, and the second factor is estimated by the cost of consequences from
the expected accident [3, 4].

How do these factors develop? The second factor is growing along with the quantitative
and qualitative growth of high-risk facilities. We see not only an increase in the number of
these objects, but also their density of placement, as well as a progressive proximity to densely
populated regions. No less dangerous is the qualitative growth of energy facilities in increasing
power characteristics. All this increases the possible losses from the accident. Containment
of risk growth is based on the balance in the development of factors, when the growth of the
second factor is compensated by a decrease in the probability of an accident.

The mission of risk limitation is fully dedicated to safety-related systems, which, according
to international standards, are aimed at ensuring the functional safety of both the facility and
the system itself to prevent and mitigate accidents [5, 6].

Achieving the functional safety necessary and sufficient for further development in conditions
of expansion by high-risk facilities requires a permanent analysis of the associated problems,
their origins, advanced state and solutions. We refer to such problems the limited checkability
of circuits in digital components of safety-related systems. This problem receives new content
in the perspective direction of FPGA-designing (Field Programmable Gate Array) of digital
components.

We propose to consider the analysis of this problem and the associated problem of hidden
faults, as well as the development of a method to increase the checkability of FPGA components
for critical systems. Section 2 provides an overview of the status of the problem and its features
in FPGA-designing. Section 3 describes the method of developing the FPGA components’ check-
ability when solving the problem of hidden faults. The results of the program implementation
of the proposed method are shown by an example of an iterative array multiplier in section 4.

2. State of Art in Checkability Development

The main functional safety challenges are failures, and therefore the basis for functional safety
is the use of fault-tolerant solutions, including various types of redundancy, reconfiguration
and majority structures [7, 8].

The greatest risk comes from common cause failures and hidden faults. Common cause
failures received a wide response in international standards which indicate copying decisions
as a reason [9, 10]. Measures to counteract common cause failures include the introduction of
restrictions on copying based on the development of multi-version technologies and various
types of diversity [11, 12].

It should be noted that the danger of common cause failures lies in their hidden nature, when
copying an erroneous solution in the redundant channels limits the checkability and allows to
choose this solution as correct by a majority vote, which is fully trusted.

However, hidden faults that occur in addition to copying have their own history and pose no
less danger to the functional safety of safety-related systems. Hidden faults are not reflected in



international standards, although this type of fault is directly associated with safety-related
systems, as well as their designing for operation in two modes: normal and emergency.

The problem of hidden faults is the possibility of their accumulating in digital circuits over
a long normal mode due to the absence of input data in this mode that manifest these faults.
Emergency mode updates input data, which show accumulated faults in reduction or elimination
of fault tolerance introduced into circuit solutions during designing [13, 14].

This problem is known from unsuccessful attempts to solve it using imitation modes that
recreate alarm conditions to detect hidden faults. These modes showed a dangerous character
on two sides: 1) the creation of emergency conditions as a result of unauthorized access due
to fault or human factor; 2) a planned imitation mode with emergency protection shutdown
leaded to Chernobyl disaster [15, 16].

Dangerous imitation modes create emergency conditions for increasing the circuit checkabil-
ity, which turns out to be insufficient in relation to hidden faults. Checkability is best known
as testability, which is its simplest form, fully determined by the structure of the circuit. The
checkability of the circuits is based on their controllability and observability [17, 18].

In the operating mode, the circuit checkability, including controllability and observability,
receives additional dependence on the input data and together with them forms an area of
effective use of on-line testing, the logical methods of which can detect only faults that appear
in the form of an error [19, 20]. In safety-related systems, different inputs of normal and
emergency mode convert the checkability into dual-mode form, also different in these modes.
This difference causes a problem of hidden faults.

Safe ways to improve the checkability of circuits follow from its analysis using a resource-
based approach [21, 22].

This approach analyses the integration of the computer world created by human into the
natural one and identifies three levels of development of models, methods and means that form
the resources to solve any problem: replication, diversification and self-sufficiency as the goal
of development.

At the replication level, integration occurs by stamping resources in the absence of conflict
contact with the outside world, that is, in open resource niches. The basis for such integration
is productivity, with which, in the natural world, birth rate exceeds mortality, for example, in
bacteria. With the closure of resource niches, stamped clones are doomed to extinction and can
only survive by manifesting particularities that raise them to the level of diversification.

At this level, productivity gives way to trustworthiness, that is, adequacy to the natural world.
Integration takes place in close contact with the natural world by structuring according to its
features. The history of the computer world distinguishes two such features: parallelism and
fuzziness.

Structuring for these features is illustrated by an example of the development of hardware
support for approximate computing in personal computers from coprocessors Intel287/387
optional delivery to several floating-point pipelines in Pentium and several thousand such
pipelines in a graphics processor used for parallel computing in CUDA (Compute Unified Device
Architecture) technology [23, 24]. Successful structuring led to an improvement in the basic
indicators of personal computers by millions of times: the clock frequency rose from kHz to
GHz, and the amount of memory increased from Mbytes to Tbytes.

In the computer world, we can see all levels of resource development, but replication dom-



inates. In hardware, replication is represented by matrix structures composed of identical
elements. Arithmetic operations are performed using iterative array multipliers and dividers,
parallel shifters and adders [25, 26]. Software modules are also stamped and connected to create
new software products, clogging them with redundant elements [27, 28]. This replication is
enabled and stimulated by the open resource niches of the growing performance and memory
of today’s computers. Green technologies that reflect the level of diversification limit replica-
tion in hardware and software solutions and close the resource niche of uncontrolled energy
consumption [29, 30].

The efficiency of matrix structures corresponds to the characteristic of replication as a lowest
level of resource development. A typical pattern of matrix structures is an iterative array
multiplier performing a key operation of approximate calculations. Multiplication is such an
operation, since it is used to represent numbers in floating-point formats and is inherited by all
two-operand operations with mantissas, as well as translates the properties of the product to
their results [31, 32]. The iterative array multiplier performs an operation with n-bit binary
codes in one clock cycle with the help of a matrix of n2 operational elements, 2n – 2 of which
form a serial connection with providing alternately useful use of all elements. For n = 32, each
of the thousand operating elements is used in the clock cycle only by 1.6%. In the case of n = 64,
the number of operational elements reaches four thousand, and their usability is halved [33, 34].

At the same time, operational elements are actively used throughout the clock cycle, partici-
pating in parasitic switches, the number of which repeatedly exceeds the number of functional
transitions of signals and determines the main part of the dynamic component of energy
consumption [35, 36]. The static component is formed under the influence of large sizes of
matrices.

However, the low efficiency of matrix structures in elements utilization and power consump-
tion is only the tip of the iceberg. The main problem of matrix circuits is manifested in their
use for processing data in parallel codes, which generally exhibit limited diversity. For example,
a code of size n = 64 takes 264 different values, but can actually be used on a small set of them.
Such conditions often occur in the normal mode of safety-related systems, which can operate
for a long time at the noise level with a change of numerical data only in lower bits.

The resource-based approach identifies the problem of hidden faults as a challenge of growth,
when the safety-related system rises to the level of diversification of the operating mode by
dividing it into normal and emergency with the resulting diversification of the checkability of
the circuits. At the same time, the system components continue to be stamped at the replication
level based on matrix structures [37, 38].

Such a vision implies that the problem should be solved by raising the components to the
level of system. The simplest solution consists in reduction of matrix structures. However, in
reality, such a solution is difficult to implement, since the dominance of matrix structures has
been going on for several decades, which have been spent on creating a powerful infrastructure
in their defense. The most convincing argument for matrix solutions is modern CAD, including
FPGA-designing, which is used in the development of components for safety-related systems
[39, 40].

A characteristic feature of FPGA-designing is the organization of a computational process in
LUT-oriented (Look-Up Table) architecture using matrices of the Configurable Logic Blocks
or Logic Elements. FPGA-designing is supported by built-in matrix multipliers and prepared



carry propagation paths for fast addition of parallel codes, as well as libraries of ready-made
solutions based on matrix structures [41, 42].

The problem of hidden faults can be solved within matrix structures by analogy with opposing
common cause failures, which, as noted above, also show a hidden nature indicating a deficiency
of checkability. The common cause failures issue addressed for safety-related systems is also
a growth challenge because it is based on a copy that reflects the replication level. Therefore,
improving the checkability of matrix structures can be achieved through the use of multi-version
technologies by developing the version redundancy of FPGA components.

3. Main Provisions of the Method

The proposed method is aimed at development of checkability of circuits in LUT-oriented
architecture for FPGA components of safety-related systems. In this architecture, calculations
are performed by decomposing them into Boolean functions performed by LUT units. The
description of the function in the form of program code is recorded in the LUT memory of the
unit during its programming as part of the FPGA project. The architecture that uses LUT units
to generate functions of four variables is most common. These units contain 16 bits of memory
addressed by 4-bit code 𝑑𝑐𝑏𝑎2 on inputs D, C, B and A [43].

The problem of hidden faults is manifested in LUT-oriented architecture in LUT memory
bits, addressed only in emergency mode. These bits are not observed during the normal mode
and can therefore accumulate faults, i.e., they are uncheckable in that mode.

In practice, the checkability of the LUT memory is improved by manually adjusting the
input data by changing them throughout the normal mode range. This adjustment is used to
detect faults in components with a slight change in input data during normal mode. However,
this approach does not apply to LUT bits addressed only in emergency mode. They remain
uncheckable.

The version redundancy of LUT-oriented architecture consists in the ability to program it
with many versions while preserving the hardware solution and its functionality. The version
redundancy carrier is a pair of LUT units with the output of the first unit connected to the input
of the second unit. The program code of such a pair has two versions, which are formed with
a direct and inverse value of the signal propagating between the LUT units of the pair. The
transition to the inverse value is achieved by inverting all the memory bits of the first LUT unit.
The inversion generated at the input of the second LUT unit is compensated by permutation of
bits in its memory [44, 45]. The second LUT unit, all inputs of which are connected to outputs
of LUT nodes, forms with each of them two versions of program code and 16 versions in total.

Versions are numbered using hexadecimal characters. The values of 1 in their respective
binary codes denote the inverse value of the signal at the LUT inputs. For example, codes
00002 and 10102 number initial version 016 and version 𝐴16 with inversion at inputs D and C,
respectively. The LUT memory bits are numbered with hexadecimal characters according to
the 𝑑𝑐𝑏𝑎2. Codes 00002 and 11112 are provided to the LUT inputs to access bits 016 and 𝐹16,
respectively.

An important feature of the versions is the ability to move bits in the memory of the second
LUT unit.



Statement. If all the used inputs of the second LUT unit are connected to the outputs of the
preceding LUT units, then there is always a version that provides for the exchange of places
between any two memory bits of the second LUT unit.

Indeed, the 𝑑𝑐𝑏𝑎2 code values 00012, 00102, 01002, and 10002 change the memory bit number
to 1, 2, 4, and 8 upwards or downwards at a bit value of 0 or 1, respectively. Changing the
number consists in storing or inverting its individual bits and can be performed by adding
modulo two with a code denoting inversion by a value of 1.

For example, we want to change the bit number 𝑎 = 10112 to 𝑎 = 10012. The code 𝑐 = 𝑎 ⊕ 𝑏
takes the value 00102, which determines the version number 216 and changes the bit number
𝑎 to the number 𝑏 = 𝑎 ⊕ 𝑐, as well as the bit number 𝑏 to the number 𝑎 = 𝑏 ⊕ 𝑐. Thus, the
modulo-two sum of numbers for bits that are swapped uniquely determines the version number
that provides such exchange.

As an alternative to manual regulation, the method suggests changing not the input data, but
the versions of the program code. This approach can be useful not only for critical systems,
but also for testing FPGA projects of any purpose. In this case, at least one addressable bit for
at least one input word must be defined for each LUT unit. The addressable bits can then be
swapped with the remaining bits by changing the program code.

Thus, the method provides controllability of all bits in the memory of the second LUT units.
The first LUT units of the pair are closer to or directly connected to the inputs of the circuit and
therefore do not create difficulties in verifying controllability.

For safety-related systems, the method is performed in four steps.
At the first step, FPGA component operation is simulated on input data of normal and

emergency mode. For each second LUT unit, the simulation defines 𝑁 and 𝐸 sets of memory
bits addressed in normal and only emergency mode, respectively. Bits 𝑎 and 𝑏, 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝐸 are
controllable and uncontrollable in normal mode.

In the second step, the method evaluates the observability of bits of the set 𝑁 in normal mode
by simulating calculations performed by the FPGA component on the input data of that mode.
For the input data addressing bit 𝑎, the FPGA operation of the component is simulated at the
initial and inverse values of the bit. The simulation determines the results of the calculations
for each value of bit 𝑎 and compares them. The erroneous result refers the bit 𝑎 to a set of 𝑁𝑂
bits observed in normal mode.

In the third step, the method increases the controllability of the LUT memory in normal
mode. The method defines a table whose rows and columns are denoted by bit numbers 𝑏 and 𝑎
of sets 𝐸 and 𝑁𝑂 , respectively. At the intersection of row 𝑏 and column 𝑎 , the table is populated
with the version number 𝑐 = 𝑎 ⊕ 𝑏, which provides exchange for bits 𝑏 and 𝑎. To control the
LUT memory in normal mode, the 𝑏 bits of each row must be exchanged with bit 𝑎 of at least
one column, that is, select the versions at their intersection. The table can contain duplicate
versions, since the modulo-two sum can be the same for different arguments. Therefore, the
choice of versions is aimed at finding their minimum number necessary to move all bits of the
set 𝐸. Such a problem can always be solved if the inputs of the project FPGA circuit can take
direct and inverse values, for example, if these inputs are outputs of LUT units of previous
circuits. Then all LUT units of the FPGA component can be considered as second LUT units of a
pair with a full set of versions of program code. The sequential change of the selected versions
ensures the memory controllability of all LUTs in the normal mode and their full checkability,



taking into account that bits 𝑏 change places with bits of a set of 𝑁𝑂 observed in the normal
mode. In the case of using non-invertible LUT inputs, each such input reduces the number of
versions by half, and part of the bits of the set 𝐸may not be provided by the version. Such bits 𝑏
constitute a multiple of uncontrollable 𝐸𝑁𝐶 bits that can accumulate faults during normal mode.

In the fourth step, the FPGA component is simulated on input data of the emergency mode
to estimate the observability of the LUT memory used. For input data addressing bit 𝑏 of the
𝐸𝑁𝐶set, the FPGA operation of the component is simulated at an initial and inverse value of the
bit. The simulation determines the results of the calculations for each value of bit 𝑏 and compares
them. Matching the results for all the input data considered and presence at least one erroneous
result refers the 𝑏 bit to the sets of 𝐸𝑁𝑂 and 𝐸𝑂 bits, which are respectively unobservable
and observable in the emergency mode. Such unobservable 𝑏 bits should be excluded from
the 𝐸𝑁𝐶 set because they have no effect on the emergency mode. The 𝐸𝑂 = 𝐸𝑁𝐶 ⧵ 𝐸𝑁𝑂 set
contains uncheckable bits of the FPGA component. The initial FPGA component contains
𝐸𝑁 𝐼 = 𝐸 ⧵ 𝐸𝑁𝑂uncheckable memory bits. Thus, the proposed method reduces the number
of uncheckable bits by 𝑒 = 𝑒𝑁 𝐼 − 𝑒𝑁 , where 𝑒𝑁 𝐼 and 𝑒𝑁 the capacity of the sets 𝐸𝑁 𝐼 and 𝐸𝑁 ,
respectively. The increase in checkability can be estimated as 𝐶 = 𝑒/𝑒𝑁 𝐼 .

The erroneous result can also be analyzed for the hazard it poses in emergency mode for the
FPGA component and system. Hazard bits 𝑏 form the 𝐸𝐻 set of dangerous uncheckable bits.
Other uncheckable bits relate to non-dangerous bits.

4. Case Study of the Method

The proposed method was tested on a number of FPGA projects, among which the most
characteristic pattern is the project of iterative array multiplier considered for n = 4. The FPGA
project was obtained using CAD Quartus Prime 20.1 Lite Edition on the Intel Cyclone 10 LP
FPGA chip: 10CL025YU256I7G [46, 47]. The resulting circuit comprises 8 inputs, 8 outputs and
30 LUT units, 28 of which have connections to the inputs of the circuit and 22 are the second
LUT units of the pair. They allow us to create versions of code: 2, 3, 11 and 6 LUT units can use
16, 8, 4 and 2 versions, respectively.

The program implementation of the proposed method was obtained using Delphi 10 Seattle
demo version.

Simulation is done by sequentially implementing functions of LUT units pre-ordered by
ranking the circuit. The method is investigated at various values of the threshold that separates
the input data into those used in normal and emergency mode. Input data are generated by
multiplicands that are below the threshold in normal mode. Reaching the threshold or exceeding
it with at least one multiplicand is identified as going into emergency mode. The simulation is
performed for eight threshold values in the set range.

The method is executed step by step. In the first step, the simulation determines the sets
𝑁 and 𝐸 of controllable and uncontrollable bits addressed in the memory of each LUT unit
throughout the normal mode and only in the emergency mode, respectively.

The second step narrows the 𝑁 set to the 𝑁𝑂 set of bits observed in the normal mode. Thus,
the 𝑁𝑂 set contains bits that are both controllable and observable throughout the normal mode,
and therefore, they relate to checkable in this mode and do not allow the accumulation of hidden



faults.
In the third step, the simulation determines the versions for moving the uncontrollable bits

of the 𝐸 set to the position of the checkable bits of the 𝑁𝑂 set. Transition to these versions
ensures the checkability of the moved bits of the 𝐸 set. For the case of connecting LUT units to
non-invertible inputs of the circuit, the simulation determines the 𝐸𝑁𝐶 set of uncontrollable
bits that cannot be moved to the checkable positions and therefore cannot be prevented from
accumulating faults in the normal mode.

The fourth step breaks the 𝐸𝑁𝐶 set of uncontrollable bits into the sets 𝐸𝑁𝑂 and 𝐸𝑂 of bits,
which are respectively unobserved and observed in the emergency mode. Bits of the 𝐸𝑁𝑂 set do
not cause the problem of hidden faults because the faults accumulated during normal mode
remain hidden also in emergency mode. In addition, the 𝐸𝑂 set of bits are reduced to the 𝐸𝐻
set of bits whose distortion is dangerous to the component and the system. In the conducted
experiments, the danger is seen in the distortion of the most significant bits, to which the n
higher bits of the result have been assigned.

The simulation results represented by the main panel of the method program implementation
are shown in Figure 1.

Figure 1: Main panel of the method program implementation

The main panel shows the set value range for threshold 𝑆 (2 to 9) and number 20 of the LUT



unit. Shift of the range and the number change of the LUT unit is carried out with step 1 in a
circle when clicking on the corresponding inscription. For the selected unit 20, the panel shows
the matrices of memory bits and their values for each threshold value. The two inputs A and D
of this LUT unit are inputs of the FPGA project circuit. Inputs B and C are connected to the
outputs of the previous LUT units and allow to create 4 versions of program code, fully used in
cases 𝑆 = 2 and 𝑆 = 3 The versions used are shown below the LUT memory and begin with the
initial version 016. The memory bits are colored green and yellow for sets 𝑁 and 𝐸, respectively.

For 𝑆 = 2 and 𝑆 = 3, only one bit 016 belongs to set 𝑁 and using versions 216, 416, and
616 changes places with bits 216, 416, and 616 of the 𝐸 set. The remaining bits 116, 316, 516,
716,𝐴16 − −𝐹16 of the 𝐸 set are non-displaceable and also belong to the 𝐸𝑁𝐶 set. Bits 816 and 916
are not used in both modes.

For the following values of threshold 𝑆 , the LUT memory increases the number of bits in the
𝑁 set and reduces their presence in the 𝐸 set. The bits that can be moved reduce the number of
versions used for this to one version 616.

The overall results of the conducted experiments summarize the analysis of all LUT units for
each threshold value 𝑆 and demonstrate in the table their change with increasing threshold. In
Figure 1 it is shown the reduction in the number of bits in the 𝐸𝑁 𝐼 , 𝐸𝑁𝐶 , 𝐸𝑂 , 𝐸𝐻 sets the different
level of improvement in checkability 𝐶 of the FPGA project.

The 𝐸𝑁 𝐼 set of uncheckable bits of the initial FPGA project decreases from 308 to 47 due to
an increase in the amount of normal mode input data with an increase in the threshold 𝑆. The
factor of increasing the range of input data in the normal mode contributes to a decrease in the
number of bits in the 𝐸𝑁𝐶 , 𝐸𝑂 , 𝐸𝐻 sets too.

The 𝐸𝑁𝐶 set of non-displaceable, uncontrollable bits addressed only in emergency mode are
reduced from 232 to 7. The 𝐸𝑂 set of uncheckable bits in the improved FPGA project is reduced
from 217 to 6 and shows a significant decrease in the number of uncheckable bits compared to
the initial FPGA project. On average, the reduction is 64 bits and varies from 14 (𝑆 = 8) to 94
(𝑆 = 3) bits. The 𝐸𝐻 set reduces the number of uncheckable hazardous bits from 186 to 6.

For the threshold 𝑆 in the range of 2 – 9, the proposed method provided an improvement in
the checkability of the FPGA project by an average of 41% from 𝐶=15% (𝑆 = 8) to 𝐶=91% (𝑆 = 9).
In the range of 2 – 7, the checkability of the FPGA project is increased by an average of 37%.

5. Conclusions

Safety-related systems face a problem of hidden faults in FPGA designing digital components,
which does not allow fault-tolerant solutions to become fail-safe in conditions of insufficient
checkability. In FPGA components, this problem is manifested in the LUT memory, where faults
can accumulate over a long normal mode in the absence of input data showing these faults in
the form of error in results checked by on-line testing methods.

Manual adjustment of input data performed in normal mode does not apply to memory bits
addressed in LUT units only in emergency mode. This part of memory is not protected from
uncontrolled accumulation of faults in normal mode. Fault-tolerant solutions embedded during
the FPGA designing for supporting emergency mode cannot resist the many accumulated faults
that first appear in this mode. To solve this problem, it is necessary to improve the checkability



of FPGA components.
The resource-based approach reveals the essence of the problem of hidden faults as a growth

challenge when components lag behind the development of the system. Components are
traditionally developed on the basis of matrix structures, which at the replication level do not
cause problems of hidden faults, since computers are used in a single operating mode and the
fault remains hidden for the entire time. In the domain of critical applications, systems rise to
the level of diversification in the checkability of circuits and require solving emerging problems
at this level. The matrix structures inherent in FPGA designing need to be raised to the level of
diversification.

The experience gained in counteracting common cause failures shows the way to diversify
matrix structures by developing version redundancy. The proposed method enhances the FPGA
component checkability by developing the version redundancy in program code of the FPGA
project.

The method is carried out in four steps, which allow to estimate the controllability and
observability of bits in the LUT memory, to create and use versions of program code for
moving uncheckable bits to checkable positions. Sequential transformation of versions allows
to completely solve the problem of hidden faults in the case of invertible inputs of the circuit in
the FPGA project and significantly increasing its checkability otherwise.

References

[1] D. J. Smith, K. G. Simpson, The Safety Critical Systems Handbook, Elsevier, 2020. URL:
https://doi.org/10.1016/c2019-0-00966-1. doi:10.1016/c2019-0-00966-1.

[2] M. A. Yastrebenetsky, V. Kharchenko (Eds.), Nuclear Power Plant Instrumentation and
Control Systems for Safety and Security, IGI Global, 2014. URL: https://doi.org/10.4018/
978-1-4666-5133-3. doi:10.4018/978-1-4666-5133-3.

[3] S. Choe, F. Leite, Assessing safety risk among different construction trades: Quan-
titative approach, Journal of Construction Engineering and Management 143 (2017)
04016133. URL: https://doi.org/10.1061/(asce)co.1943-7862.0001237. doi:10.1061/(asce)
co.1943-7862.0001237.

[4] O. Ivanchenko, V. Kharchenko, B. Moroz, L. Kabak, S. Konovalenko, Risk assessment
of critical energy infrastructure considering physical and cyber assets: Methodology
and models, in: 2018 IEEE 4th International Symposium on Wireless Systems within
the International Conferences on Intelligent Data Acquisition and Advanced Computing
Systems (IDAACS-SWS), IEEE, 2018. URL: https://doi.org/10.1109/idaacs-sws.2018.8525594.
doi:10.1109/idaacs-sws.2018.8525594.

[5] Functional Safety of Electrical / Electronic / Programmable Electronic Safety Related
Systems – Part 1: General requirements, Technical Report, Geneva: IEC, 2010.

[6] Safety Classification for I&C Systems in Nuclear Power Plants – Current Status & Difficul-
ties, Technical Report 2015/008, World Nuclear Association, 2015.

[7] A. Romankevich, A. Feseniuk, V. Romankevich, T. Sapsai, About a fault-tolerant multi-
processor control system in a pre-dangerous state, in: 2018 IEEE 9th International Con-

https://doi.org/10.1016/c2019-0-00966-1
http://dx.doi.org/10.1016/c2019-0-00966-1
https://doi.org/10.4018/978-1-4666-5133-3
https://doi.org/10.4018/978-1-4666-5133-3
http://dx.doi.org/10.4018/978-1-4666-5133-3
https://doi.org/10.1061/(asce)co.1943-7862.0001237
http://dx.doi.org/10.1061/(asce)co.1943-7862.0001237
http://dx.doi.org/10.1061/(asce)co.1943-7862.0001237
https://doi.org/10.1109/idaacs-sws.2018.8525594
http://dx.doi.org/10.1109/idaacs-sws.2018.8525594


ference on Dependable Systems, Services and Technologies (DESSERT), IEEE, 2018. URL:
https://doi.org/10.1109/dessert.2018.8409129. doi:10.1109/dessert.2018.8409129.

[8] I. P. Atamanyuk, Y. P. Kondratenko, Computer’s analysis method and reliability assessment
of fault-tolerance operation of information systems, in: CEUR Workshop Proceedings,
2015, pp. 507–522.

[9] M. Rausand, Risk assessment. common cause failures, 2020. URL: https://www.ntnu.edu/
documents/624876/1277591044/ccf.pdf/f435f724-469d-4492-860a-66eca10e6bd2.

[10] Nuclear power plants – Instrumentation and control systems important to safety – Require-
ments for coping with common cause failure, Technical Report IEC 62340:2007, Geneva:
IEC, 2007.

[11] O. Drozd, V. Romankevich, M. Kuznietsov, M. Drozd, O. Martynyuk, Using natu-
ral version redundancy of FPGA projects in area of critical applications, in: 2020
IEEE 11th International Conference on Dependable Systems, Services and Technolo-
gies (DESSERT), IEEE, 2020. URL: https://doi.org/10.1109/dessert50317.2020.9125050.
doi:10.1109/dessert50317.2020.9125050.

[12] H. Asad, I. Gashi, Diversity in open source intrusion detection systems, in: Developments
in Language Theory, Springer International Publishing, 2018, pp. 267–281. URL: https:
//doi.org/10.1007/978-3-319-99130-6_18. doi:10.1007/978-3-319-99130-6_18.

[13] O. Drozd, V. Nikul, V. Antoniuk, M. Drozd, Hidden faults in FPGA-built digital components
of safety-related systems, in: 2018 14th International Conference on Advanced Trends in
Radioelecrtronics, Telecommunications and Computer Engineering (TCSET), IEEE, 2018.
URL: https://doi.org/10.1109/tcset.2018.8336320. doi:10.1109/tcset.2018.8336320.

[14] A. Drozd, S. Antoshchuk, J. Drozd, K. Zashcholkin, M. Drozd, N. Kuznietsov, M. Al-Dhabi,
V. Nikul, Checkable FPGA design: Energy consumption, throughput and trustworthiness,
in: Green IT Engineering: Social, Business and Industrial Applications, Springer Inter-
national Publishing, 2018, pp. 73–94. URL: https://doi.org/10.1007/978-3-030-00253-4_4.
doi:10.1007/978-3-030-00253-4_4.

[15] D. Gillis, The apocalypses that might have been, 2007. URL: https://www.damninteresting.
com/the-apocalypses-that-might-have-been/.

[16] E. Blakemore, The chernobyl disaster: What happened, and the long-term impacts, 2019.
URL: https://www.nationalgeographic.com/culture/topics/reference/chernobyl-disaster.

[17] Standard Testability Method for Embedded Core-based IC, Technical Report IEEE Std1500-
2005, IEEE, 2005.

[18] V. Hahanov, A. Hahanova, S. Chumachenko, S. Galagan, Diagnosis and repair method of
soc memory, WSEAS transactions on circuits and systems 7 (2008) 698–707.

[19] A. Drozd, J. Drozd, S. Antoshchuk, V. Nikul, M. Al-dhabi, Objects and methods of on-line
testing: Main requirements and perspectives of development, in: 2016 IEEE East-West
Design & Test Symposium (EWDTS), IEEE, 2016. URL: https://doi.org/10.1109/ewdts.2016.
7807750. doi:10.1109/ewdts.2016.7807750.

[20] D. Koppad, D. Sokolov, A. Bystrov, A. Yakovlev, Online testing by protocol decomposition,
in: 12th IEEE International On-Line Testing Symposium (IOLTS'06), IEEE, 2006. URL:
https://doi.org/10.1109/iolts.2006.45. doi:10.1109/iolts.2006.45.

[21] J. Drozd, A. Drozd, M. Al-dhabi, A resource approach to on-line testing of computing
circuits, in: 2015 IEEE East-West Design & Test Symposium (EWDTS), IEEE, 2015. URL:

https://doi.org/10.1109/dessert.2018.8409129
http://dx.doi.org/10.1109/dessert.2018.8409129
https://www.ntnu.edu/documents/624876/1277591044/ccf.pdf/f435f724-469d-4492-860a-66eca10e6bd2
https://www.ntnu.edu/documents/624876/1277591044/ccf.pdf/f435f724-469d-4492-860a-66eca10e6bd2
https://doi.org/10.1109/dessert50317.2020.9125050
http://dx.doi.org/10.1109/dessert50317.2020.9125050
https://doi.org/10.1007/978-3-319-99130-6_18
https://doi.org/10.1007/978-3-319-99130-6_18
http://dx.doi.org/10.1007/978-3-319-99130-6_18
https://doi.org/10.1109/tcset.2018.8336320
http://dx.doi.org/10.1109/tcset.2018.8336320
https://doi.org/10.1007/978-3-030-00253-4_4
http://dx.doi.org/10.1007/978-3-030-00253-4_4
https://www.damninteresting.com/the-apocalypses-that-might-have-been/
https://www.damninteresting.com/the-apocalypses-that-might-have-been/
https://www.nationalgeographic.com/culture/topics/reference/chernobyl-disaster
https://doi.org/10.1109/ewdts.2016.7807750
https://doi.org/10.1109/ewdts.2016.7807750
http://dx.doi.org/10.1109/ewdts.2016.7807750
https://doi.org/10.1109/iolts.2006.45
http://dx.doi.org/10.1109/iolts.2006.45


https://doi.org/10.1109/ewdts.2015.7493122. doi:10.1109/ewdts.2015.7493122.
[22] O. Drozd, V. Kharchenko, A. Rucinski, T. Kochanski, R. Garbos, D. Maevsky, Development

of models in resilient computing, in: 2019 10th International Conference on Dependable
Systems, Services and Technologies (DESSERT), IEEE, 2019. URL: https://doi.org/10.1109/
dessert.2019.8770035. doi:10.1109/dessert.2019.8770035.

[23] M. Andrecut, Parallel GPU implementation of iterative PCA algorithms, Journal of
Computational Biology 16 (2009) 1593–1599. URL: https://doi.org/10.1089/cmb.2008.0221.
doi:10.1089/cmb.2008.0221.

[24] NVIDIA CUDA Compute Unified Device Architecture. Programming Guide, Technical
Report Version 1.0, NVIDIA Corporation, 2007.

[25] A. Palagin, V. Opanasenko, The implementation of extended arithmetics on FPGA-based
structures, in: 2017 9th IEEE International Conference on Intelligent Data Acquisition and
Advanced Computing Systems: Technology and Applications (IDAACS), IEEE, 2017. URL:
https://doi.org/10.1109/idaacs.2017.8095239. doi:10.1109/idaacs.2017.8095239.

[26] S. Chernov, S. Titov, L. Chernova, V. Gogunskii, L. Chernova, K. Kolesnikova, Algorithm
for the simplification of solution to discrete optimization problems, Eastern-European
Journal of Enterprise Technologies 3 (2018) 34–43. URL: https://doi.org/10.15587/1729-4061.
2018.133405. doi:10.15587/1729-4061.2018.133405.

[27] O. Pomorova, O. Savenko, S. Lysenko, A. Kryshchuk, K. Bobrovnikova, A technique for the
botnet detection based on DNS-traffic analysis, in: Computer Networks, Springer Interna-
tional Publishing, 2015, pp. 127–138. URL: https://doi.org/10.1007/978-3-319-19419-6_12.
doi:10.1007/978-3-319-19419-6_12.

[28] T. Hovorushchenko, O. Pomorova, Ontological approach to the assessment of information
sufficiency for software quality determination (2016).

[29] V. Hahanov, E. Litvinova, S. Chumachenko, Green cyber-physical computing as sustainable
development model, in: Green IT Engineering: Components, Networks and Systems
Implementation, Springer, 2017, pp. 65–85.

[30] G. Gangadharan, S. Murugesan, Harnessing green it: Principles and practices, 2012.
[31] IEEE Standard for Floating-Point Arithmetic, Technical Report IEEE Std 754™-2008, IEEE,

3 Park Avenue New York, NY 10016-5997, USA, 2008.
[32] Synopsys dwfc flexible floating-point overview, 2016.
[33] J. Drozd, O. Drozd, S. Antoshchuk, A. Kushnerov, V. Nikul, Effectiveness of matrix and

pipeline FPGA-based arithmetic components of safety-related systems, in: 2015 IEEE
8th International Conference on Intelligent Data Acquisition and Advanced Computing
Systems: Technology and Applications (IDAACS), IEEE, 2015. URL: https://doi.org/10.1109/
idaacs.2015.7341410. doi:10.1109/idaacs.2015.7341410.

[34] B. Neeraja, R. S. P. Goud, Design of an area efficient braun multiplier using high speed
parallel prefix adder in cadence, in: 2019 IEEE International Conference on Electrical,
Computer and Communication Technologies (ICECCT), IEEE, 2019. URL: https://doi.org/
10.1109/icecct.2019.8869307. doi:10.1109/icecct.2019.8869307.

[35] W. Shum, J. H. Anderson, Fpga glitch power analysis and reduction, in: IEEE/ACM
International Symposium on Low Power Electronics and Design, IEEE, 2011, pp. 27–32.

[36] V. KumarB.V.P, N. S. M. Sharma, K. L. Kishore, A technique to reduce glitch power
during physical design stage for low power and less IR drop, International Journal of

https://doi.org/10.1109/ewdts.2015.7493122
http://dx.doi.org/10.1109/ewdts.2015.7493122
https://doi.org/10.1109/dessert.2019.8770035
https://doi.org/10.1109/dessert.2019.8770035
http://dx.doi.org/10.1109/dessert.2019.8770035
https://doi.org/10.1089/cmb.2008.0221
http://dx.doi.org/10.1089/cmb.2008.0221
https://doi.org/10.1109/idaacs.2017.8095239
http://dx.doi.org/10.1109/idaacs.2017.8095239
https://doi.org/10.15587/1729-4061.2018.133405
https://doi.org/10.15587/1729-4061.2018.133405
http://dx.doi.org/10.15587/1729-4061.2018.133405
https://doi.org/10.1007/978-3-319-19419-6_12
http://dx.doi.org/10.1007/978-3-319-19419-6_12
https://doi.org/10.1109/idaacs.2015.7341410
https://doi.org/10.1109/idaacs.2015.7341410
http://dx.doi.org/10.1109/idaacs.2015.7341410
https://doi.org/10.1109/icecct.2019.8869307
https://doi.org/10.1109/icecct.2019.8869307
http://dx.doi.org/10.1109/icecct.2019.8869307


Computer Applications 39 (2012) 62–67. URL: https://doi.org/10.5120/5086-7450. doi:10.
5120/5086-7450.

[37] K. Vitaliy, K. Vyacheslav, P. Artem, Parameterized IP infrastructures for fault-tolerant
FPGA-based systems: Development, assessment, case-study, in: 2010 East-West Design &
Test Symposium (EWDTS), IEEE, 2010. URL: https://doi.org/10.1109/ewdts.2010.5742075.
doi:10.1109/ewdts.2010.5742075.

[38] W. Vanderbauwhede, K. Benkrid (Eds.), High-Performance Computing Using FPGAs,
Springer New York, 2013. URL: https://doi.org/10.1007/978-1-4614-1791-0. doi:10.1007/
978-1-4614-1791-0.

[39] C. Unsalan, B. Tar, Digital system design with FPGA: implementation using Verilog and
VHDL, McGraw-Hill Education, 2017.

[40] H. Amano (Ed.), Principles and Structures of FPGAs, Springer Singapore, 2018. URL:
https://doi.org/10.1007/978-981-13-0824-6. doi:10.1007/978-981-13-0824-6.

[41] Y. Park, Y. H. Cho, K. Lee, H. Jung, H. Kim, S. Kwon, H. Park, Development of an fpga-
based online condition monitoring system for railway catenary application, in: 8th World
Congress on Railway Research, COEX, Seoul, Korea, 2008, pp. 18–22.

[42] J. Jung, I. Ahmed, Development of field programmable gate array-based reactor trip
functions using systems engineering approach, Nuclear Engineering and Technology
48 (2016) 1047–1057. URL: https://doi.org/10.1016/j.net.2016.02.011. doi:10.1016/j.net.
2016.02.011.

[43] Intel fpga architecture, 2019. URL: https://www.intel.com/content/dam/www/
programmable/us/en/pdfs/literature/wp/wp-01003.pdf.

[44] O. Drozd, M. Kuznietsov, O. Martynyuk, M. Drozd, A method of the hidden faults elimi-
nation in FPGA projets for the critical applications, in: 2018 IEEE 9th International Con-
ference on Dependable Systems, Services and Technologies (DESSERT), IEEE, 2018. URL:
https://doi.org/10.1109/dessert.2018.8409131. doi:10.1109/dessert.2018.8409131.

[45] O. Drozd, I. Perebeinos, O. Martynyuk, K. Zashcholkin, O. Ivanova, M. Drozd, Hidden
fault analysis of FPGA projects for critical applications, in: 2020 IEEE 15th International
Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer
Engineering (TCSET), IEEE, 2020. URL: https://doi.org/10.1109/tcset49122.2020.235591.
doi:10.1109/tcset49122.2020.235591.

[46] Intel quartus prime standard edition user guide, 2020. URL: https://www.intel.com/content/
dam/altera-www/global/en_US/pdfs/literature/ug/ug-qps-getting-started.pdf.

[47] Intel cyclone 10 lp core fabric and general purpose i/os handbook, 2020. URL:
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/
cyclone-10/c10lp-51003.pdf.

https://doi.org/10.5120/5086-7450
http://dx.doi.org/10.5120/5086-7450
http://dx.doi.org/10.5120/5086-7450
https://doi.org/10.1109/ewdts.2010.5742075
http://dx.doi.org/10.1109/ewdts.2010.5742075
https://doi.org/10.1007/978-1-4614-1791-0
http://dx.doi.org/10.1007/978-1-4614-1791-0
http://dx.doi.org/10.1007/978-1-4614-1791-0
https://doi.org/10.1007/978-981-13-0824-6
http://dx.doi.org/10.1007/978-981-13-0824-6
https://doi.org/10.1016/j.net.2016.02.011
http://dx.doi.org/10.1016/j.net.2016.02.011
http://dx.doi.org/10.1016/j.net.2016.02.011
https://www.intel.com/content/dam/www/programmable /us/en/pdfs/literature/wp/wp-01003.pdf
https://www.intel.com/content/dam/www/programmable /us/en/pdfs/literature/wp/wp-01003.pdf
https://doi.org/10.1109/dessert.2018.8409131
http://dx.doi.org/10.1109/dessert.2018.8409131
https://doi.org/10.1109/tcset49122.2020.235591
http://dx.doi.org/10.1109/tcset49122.2020.235591
https://www.intel.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/ug-qps-getting-started.pdf
https://www.intel.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/ug-qps-getting-started.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/cyclone-10/c10lp-51003.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/cyclone-10/c10lp-51003.pdf

	1 Introduction
	2 State of Art in Checkability Development
	3 Main Provisions of the Method
	4 Case Study of the Method
	5 Conclusions

