
ICT&ES-2020: Information-Communication Technologies & Embedded Systems, November 12, 2020, Mykolaiv, Ukraine

EMAIL: anmartynyuk@ukr.net (O. Martynyuk); drozd@ukr.net (O. Drozd); hanna.suhak@gmail.com (H. Stepova);

viktor.v.antoniuk@gmail.com (V. Antonyuk); domarty@ukr.net (D. Martynuk)

ORCID: 0000-0003-1461-2000 (O. Martynyuk); 0000-0003-2191-6758 (O. Drozd); 0000-0002-7223-8822 (H. Stepova);

0000-0003-0427-9005 (V. Antonyuk); 0000-0001-9267-1474 (D. Martynuk)

©️ 2020 Copyright for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR Workshop Proceedings (CEUR-WS.org)

Behavioral Agent Testing of Distributed Information Systems

Oleksandr Martynyuka, Oleksandr Drozda, Hanna Stepovaa, Viktor Antonyuka,

Dmitry Martynyukb

a Odessa National Polytechnic University, Ave. Shevchenko 1, 65044 Odessa, Ukraine
b Join Venture “Nippon Auto”, Academician Williams str. 71a, Odessa, Ukraine

Abstract
The use of multi-agent technologies in modern distributed information systems, that

due to the increasingly demanded properties of autonomy, mobility, intelligence,

cooperation, determines their appearance in the tools of online and offline testing. This

work presents an agent-based check model of behavioral testing of a component of a

distributed information system in its resource environment. This agent check model has

the features of the composition of the reactive online and deliberative offline

components of testing, suggesting deterministic and evolutionary methods of

decomposition behavioral testing. To ensure autonomy and mobility, the agent-based

check model defines the resource model of the component deployment environment,

models of its goals and test strategies, signatures of multi-agent operations, as part of

observation, strategy execution and adaptation, as well as initial models, goals and test

strategies of the component. For the intelligence of the agent-based check model, its

main components are also defined as individuals in the population of evolutionary test

generation, which is proposed as an implementation of the deliberative component

testing strategy. For the cooperation of agent-based check models in the network and

multi-level interaction of their reactive and deliberative components, there are

cooperative definitions for resource models of placement, goals and strategies,

operations and initializations, realizability and transportability into the network DIS

model, inheritance into the hierarchical DIS model. The check model defines the formal

conditions/requirements for the performance of the behavioral online and offline

testing, that performed by the multi-agent system of testing, and can be taken as the

basic one, when constructing methods and special distributed behavioral test systems.

Keywords:
Distributed information system, online and offline testing, behavioral testing, agent, multi-agent

system, evolutionary check model

1. Introduction

Modern effective distributed information systems (DIS) [1, 2] are based on the joint use of many

promising computer, communication, computing, information subject technologies, and some of

which are rapidly developing service-oriented architectures, as Web services [3, 4], cluster, cloud,

multi-agent [5, 6]and GRID systems [7, 8], super-large data and knowledge systems [9, 10] intelligent

systems [11-13], the avalanche-growing world of the Internet of things [14, 15]. One of the most

important reasons for this growth is the significant successes of fundamental mathematical computer

sciences, in particular, in the field of complex, decomposition, functional, fuzzy, intellectual,

concurrent methods of analysis and synthesis of DIS.

At the same time, the quality of their functioning, which is determined not only by the general

completeness, accuracy and efficiency of the results, but also their reliability, and the performance of

the DIS as a whole [2]. One of the most important ways to ensure the operability of computer systems

is the technology of technical verification of projects, testing and diagnosing of DIS implementations,

which allows developing and applying various tools, as part of automated technical diagnostic systems

(ASTD) [16]. Among these tools, as a rule, there is an online and offline testing. Currently, there are

developed tools of structural, functional-behavioral, deterministic, pseudo-random, evolutionary-

genetic, logical, symbolic, fuzzy, intelligent, abstract, decomposition analysis and synthesis to provide

the necessary level of DIS reliability of projects and the operability of functioning of its

implementations, in particular, the tools of online and offline testing of DIS.

Most often, to achieve greater efficiency, these tools are used in a comprehensive manner, tuning

their aggregates to the features of specific tested systems and the tasks they solve. The properties of

the DIS, that adopted from the applied technologies, are reflected also in the properties of ASTD tools.

Moreover, the complexity of constructing technical tools ASTD often exceeds the complexity of the

DIS [15-19] itself. It is often and naturally, for example, for systems of critical applications [20-22].

At the same time, there is transfer of the basic methods of DIS analysis and synthesis to a systemic,

abstract-symbolic, structural-behavioral level, which has mappings to many possible technologies of

physical implementation.

Additionally, the degree of dimensionality, uncertainty and intelligence of DIS behavior, of

scalability, autonomy, mobility and situational dynamic the goal formation and the cooperation of DIS

components for solving objective problems in a multi-level, multi-platform global network is

increasing. This increasing degree requires appropriate improvement of verification and test tools, in

particular, in the abstract, behavioral, decomposition, intelligent directions.

Thus, we can conclude, that the development of effective tools for ASTD new DIS is non-trivial

and relevant.

2. Review of the known approaches

Formal behavioral analysis and synthesis of computer systems (CS), usually characterized by NP-

complexity [15-19], is becoming increasingly important in systemic, structural and functional

verification of projects of CS and check of its implementation.

The ongoing development of the mathematical theory of experiments with automata class models

[23, 24], which define a formal methodology of behavioral checking and recognition, gradually raises

the upper limits of applicability of check automata models.

Generally, these limits are determined by exponential (NP-complex) dependences of the

complexity of such an analysis from the dimension of input models [15-19].

To reduce the complexity, in particular, the time of preparation and execution of the behavioral

testing in the class of errors of functional automata mappings with preserved values of the

completeness of the testing itself, a common (mathematical) and special (taking into account

architectural solutions) network and hierarchical decomposition are used [25-29] for checked systems

most often.

They allow to reduce (usually polynomially) the exponential dependence of the dimension of

complexity (computational resources) and time of constructing and performing of testing at a formal

model level. Special probabilistic-statistical [30-32], fuzzy [33-36], intelligent [37, 38], in particular,

evolutionary-genetic [25, 28, 29, 38] models and methods give experimental values for the complexity

of behavioral testing for most real systems, that polynomially smaller, than the upper theoretical

boundaries of deterministic methods, with a slight decrease in the completeness of this testing.

As a result, depending on the involved computing tools, behavioral check of acceptable

completeness of checking for DIS of medium complexity becomes achievable, nevertheless, as noted,

such a decrease does not remove this problem from the class of NP-complex ones.

The above circumstances determine the expediency of further development of verification and

testing of CS, in particular, complex, formal, decomposition, intelligent, parallel check models and

methods with the total effect of reducing the complexity of the computational costs of its preparation

and implementation.

The growing tendency to classify a significant part of modern DIS to real-time and critical

application systems, significantly strengthens the requirements for completeness, accuracy and

relevance of operational checking of their performance, for resources, that necessary for its

implementation.

This trend also encourages the use of complex ASTD, which include tools of online and offline

testing, acting from the upper systemic, structural and functional level. In this case, the work of ASTD

is inevitably based on formal models and methods of behavioral testing [24, 28, 29, 39-41], whether

their analytical or intuitive expert implementations.

Behavioral testing of the CS makes it possible both for the online testing [29], that is

backgrounding to the main functioning and performing the accumulation of check presentability of

passive recognition experiments, as well as the special offline testing, that is interrupting the main

functioning of the CS and performing active check experiments [28]. Typically, both modes involve a

previous (preprocessor) check analysis of the reference behavior of the CS with external or internal

(own) procurement of elements of behavioral check.

The foregoing does not remove the advisability of continuing research on decomposition,

compatible, dynamically integrated online and offline behavioral testing, especially for distributed,

critical, intellectual CS, in particular, DIS, with dynamically reconfigurable of model representation,

structure, composition and migration of components, general and component behavior.

These features, in particular, become characteristic of DIS and cause the expanding use of multi-

agent technologies. For such systems, a distributed, fuzzy, dynamic definition of the class of checked

properties, completeness, accuracy and relevance of the checking are also characteristic. The

consequence of this condition, in particular, can be considered the emergence of the class of ASTD

DIS, essentially relying on models and methods of multi-agent technologies [42].

Taking into account the aforementioned, the tasks of system-functional, network and multi-level,

integrated online and offline behavioral testing of DIS can be considered relevant and carried out. This

testing executes on the basis of the dynamic cooperation of intelligent agents in the conditions of

variable resources, that provided by the environment of the DIS itself. Also, this behavioral testing has

variable check controllability, observability and heritability of own results, bases on agent,

decomposition, deterministic and evolutionary models and methods.

3. Main researched tasks

A multilevel network model – a extended hierarchical Petri net, adopted as the basic input model of

checking agent for DIS, – is characterized by a two-dimensional structure, alphabets and mappings of

components, data and knowledge structures, that can change in the life cycle of a checked DIS, that

hosts checking agents from MAS.

Online and offline testing of DIS is carried out by cooperations of agents from a set of Ag, that

located into DIS environment. Atomic element, MAS agent agiAg, is the MAS model of the first

level.

The goal of this work is the construction an agent check model agi, as a formalization of the

representation of agent online and offline behavioral testing, performed on the basis of the Petri net

S(f)i – an automata class model for some DIS component.

These representations are selected in accordance with the contexts for MAC testing, namely:

autonomous; mobile; purposeful or intellectual; cooperative.

To achieve this goal, the tasks of behavioral testing for PN S(f)i are formalized. These tasks are

solved by the agent agiAg of a certain components of DIS and include: behavioral testing for an

component Petri net S(f)i; controllability and observability of testing for the component Petri net S(f)i

into the network model nS(f)i of DIS; inheritance of the elements of behavioral testing of a single-level

Petri net S(f)i into the hierarchical model iS(f)i of DIS.

4. Formal model of behavioral testing

The model of behavioral agent-based testing is built on the basis of an extended Petri net — an

input automata class model [26, 28, 29] for some i-th component of DIS of the form:

S(f)i=(P, T, Ev, Ac, X, Y, Ep, Et, Em, F, S, M, M0), (1)

where P, T – positions and transitions, respectively; Ev, Ac – events for positions and actions for

transitions; X@Co, Y@Fu – external controlled events and observed actions, supplemented by

@ – an unknown event or action; Ep – the set of variables for the energy costs, represented as triples

epnep=(epinep,epnep,eptnep) with components – the upper values of the energy expenditures, calculated

on the electricity epinep, temperature difference epnep, time interval eptnep; Et – variables for the energy

costs, represented as the triples etnet=(etinet,etnet,ettnet) with components - upper of values of the energy

costs calculated on the electricity epinep, temperature difference epnep, time interval eptnep; Em –

weighted mandates for forming events and performing actions, having the form of a triple

emnem=(eminem,emnem,emtnem) with components – cumulative values of energy costs, that are calculated

on the electricity epinep, temperature difference epnep, time interval eptnep;

F:((B(P),S(B(P)))T×Ac×Et)B(P))) – the incidence relation for subsets of positions from the

Boolean {p1,…,pip}B(P) and transitions from T, that is depended from current events, actions and

energy costs; S:(PEv×EpTAc×Et) – the correspondence of own, internal variables of events,

as well as actions, expanded by the metric of energy costs in positions and transitions, included in F;

M0:PEm– the initial marking of positions, taking into account the initial energy costs of

initialization, M:P×EmEm – function of the current marking of positions and transitions, taking

into account the current energy costs, accumulated during the movement of chips.

The model agi of the behavioral agent-based testing, which contains two components for simulated

Petri nets (1), the deterministic reactive agRi and the evolutionary deliberative agDi [42] has the form:

agi=(agRi, agDi, Evi, Aci, i), (2)

where agRi, agDi – its reactive and deliberative components, that interact with each other in space and

in time, they are functioning in the Petri net S(f)i – the behavioral model of some i-th component of

DIS in its space-network nS(f)i [28] and temporal hierarchical iS(f)i [29] models; Evi, Aci – the events

and actions of the components; i:iIAcRiEvDi)(AcDiEvRi))) – the relation of the interaction for

reactive agRi and deliberative agDi components, both parallel (in space) and serial (in time).

The type, complexity and state of the Petri net S(f)i of the DIS and the multi-agent system (MAS)

of testing, these states, as well as own targeting and tasks of agent agi affect to the form, complexity,

priority, activation of agRi and agDi components.

The difference between reactive agRi and deliberative agDi of the check agent agi consists in the

features of check tasks, models and methods, which are used into definition, constructing, and

recognizing of the check objects.

In general, the agent model agi has information about the objects of check for reference checked

properties Pri, identifiers Cii, check Cpi and link Lpi primitives, realized S(f)i(R
Ac) and transported

S(f)i(TrEv) Petri nets, realizing T-1(S(f)i) and transporting T(S(f)i) nodal subnets, realized S(f)i(R
X

T
-1

(S(f)i))

and transported S(f)i(TrY
T(S(f)i)) nodal Petri nets necessary, inherited properties iPri , identifiers iCii,

check iCpi and iLpi primitives, check fragments Cfi, realized Cfi
R and transported Cfi

Tr check

fragments, inherited check fragments iCfi.

The intelligence of the check agent agi for its deliberative component agDi can be based on

evolutionary approaches to check a type of check evolution [28]:

Cei=(Cfi, Cpi, Lpi, Sgti, Cffi), (3)

where: Cfi, Cpi, Lpi – the sets of check fragments, check and linking primitives, Сf0i – initial set of

check fragments, Сf0i=СpiСfi, Сffi – final set of check fragments; SgtagDi={tagDi, tagDi, tagDi, tagDi,

tagDi} – the signature of operations and functions of check evolution, that contain special operations of

mutation, crossover, immunity, fitness function, selection function, respectively.

In the case of the presentation of DIS not only as checked, but also as a resource environment for

hosting the checking MAS, the second extended model of the check agent agi (also agRi and agDi) [42]

is also presented as a system:

agi=(cSi, cMi, Qi, Sti, {i, i, i}, {cs0i, cm0i, q0i, st0i}), (4)

where: – cSi – agent check models for the i-th component of the placement in the DIS, which

determine the check conditions; – cMi – agent check methods for the i-th component of the placement

in the DIS, which determine the implementation of check procedures; – Qi – agent goals, for some

qiQi, defined as:

qi:((cSicMicSicMiQi, qi((csi,cmi),(csi’,cmi’))=

=(ki((i(csi’)-i(csi)),(i(cmi’)-i(cmi))),

ki((i(csi’)-i(csi)), (i(cmi’)-i(cmi))),

ki((i(csi’)-i(csi)),(i(cmi’)-i(cmi))),

ki((i(csi’)-i(csi)),(i(cmi’)-i(cmi))),

ki((i(csi’)-i(csi)),(i(cmi’)-i(cmi))),

ki((i(csi’)-i(csi)), (i(cmi’)-i(cmi)))), (5)

where ki, ki, ki, ki, ki, ki, i, i, i, i=(i
, i

, i
), i=(i

, i
, i

),

i=(i
, i

, i
) – the weighted priority coefficients and determination functions,

respectively, of completeness of verification, length (complexity), multiplicity , network

realizability and transportability , inter-level inheritance of check (moreover, the functions

of realizability, transportability, inheritance combine each of three own functions of preservation of

completeness, lengths, multiples of check), csi and csi’, cmi and cmi’ - the initial and assumed next

agent models and check methods for the placement component, respectively;

 Sti – strategies for the agent’s functioning – the agent’s application of deterministic, pseudo-

random, expert, evolutionary check methods in its life cycle, for some sti defined as:

sti:(jJ(csicmijjJcsicmi)j),

(csi’,cmi’)=sti(csi,cmi); (6)

 {i, i, i} – accent-agent operations directly displayed in the composition of check models from

cMi, their signatures of operations and relations (5), in composition of check methods from cMi,

their signatures of operations and relations (6), accordance with the models: a) abstract

SgS(f)i={,,} - the signature of the check operations of identification, congruence, determination

[24]; b) network realizing and transporting compositions SgnS(f)i={@,,@’,#} - the signature of the

check compositions – sequential, parallel, with feedback, DeMorgan half-convolution [28, 29];

c) hierarchical inheriting compositions SgiS(f)i={p,t} - signature of check substitutions of macro-

positions and macro-transitions [29]. Own agent operations include:

1. observation

i:(jJ(csicmijVi(jJ(csicmij,

(csi,cmi)=i((jJ(csicmij,Vi) (7)

– with the definition of the current agent check model and method, if necessary, the construction

of identifiers Cii and check primitives Cpi in their composition, here Vi=(eni, agRi, Conni) is the

complete environment of agent agi, for which: 1) eni=(S(f)i, nS(f)i, iS(f)i, Pli) – abstract, two-

dimensional, network-hierarchical space of the agent world for the agent agi, provided by the i-

th component of DIS; 2) Conni – the placement relation (on functional level – usually the

inclusion relation) between the check agent agi and the space eni for the checked i-th

component; 3) Pli={plsubi, plini, plouti, plioi, plnodei, plsubni, plupi, plmidi, pllowi} – a set of basic,

including initial, placements of the agent agi of the basic types (input, output, input-output,

nodal in the structure, sub-structure, senior, middle, junior in the hierarchy) in+ the space eni;

2. the implementation of the strategy

i:StiViVi,

V’=i(sti, Vi) (8)

– with obtaining the modified environment Vi’=(eni’, agi’, Conni’) (in its composition -

modified spaces of the agent world eni’, agent agi’, relations of placement Conni’) for the

existing agent model csi and method cmi of check, with definition (if necessary) of linking

primitives Lpi and inherited properties іPri, with constructing of check fragments Cfi and

determining for the set of achieved check fragments the values of completeness i, length i,

multiplicity i, realizability i, transportability i, inheritance i;

3. adaptation

i=(smi,sti),

smi:((jJ(csicmij((jJ(csicmijjJ(csicmij(jJ(csicmij,

(csi’,cmi’)=smi((jJ(csicmij,(csi,cmi),(csi’,cmi’)),

sti:(Sti(jJ(csicmijjJ(csicmijSti,

Sti’=sti(Sti,(csi,cmi),(csi’,cmi’)) (9)

– with fixing updated sets (bases) of agent check models cSi, methods cMi and strategies Sti,

consisting of: 1) identifiers Cii and check primitives Cpi; 2) check fragments Cfi; 3) output

realizable S(f)(RAc) and input transportable S(f)(TrEv) component (autonomous) partial Petri nets;

4) input realizing T-1(S(f)i) and output transporting T(S(f)i) nodal topological subnets; 5) input

realizable S(f)(REv
T

-1
(S(f)i)) and output transportable S(f)(TrAc

T(S(f)i)) nodal (for input and output

topological subnets) partial Petri nets [26, 28]; 6) inherited, adjacent up or down for hierarchy,

iS(f)i hierarchies of properties and transactions іPri, identifiers іCii, check iCpi and linking iLpi

primitives, check fragments iCfi, respectively [29];

 {cs0i, cm0i, q0i, st0i} – initial agent check model, method, goal, strategy.

Then the combined agent check model csicSi from the above set models cSi for components of

abstract S(f)i, network nS(f)i and hierarchical iS(f)i models is defined as:

csi=((Wi
^,Cii,Cpi,Lpi,Cfi, SgS(f)i),

(S(f)i(R
Ac

i),S(f)i(TrEv
i),T

-1(S(f)i),T(S(f)i),S(f)i(R
 Ev

T
-1

(S(f)i)),S(f)i(TrAc
T(S(f)i)),SgnS(f)i),

(iPri,iCii,iCpi,iLpi,iCfi,SgiS(f)i)). (10)

The representation of the abstract component agent meta-method of behavioral check cmicMi as a

special, asynchronous-event parallel behavioral procedure with many realizations, that is satisfying the

conditions of the corresponding component agent check model csicSi, can be formally determined by

using the special Petri net - a special kind of the Rabin-Scott automata, the components of which

individually and the relationships for them were mostly determined earlier:

cmi=({W^,Evi,Aci},jJ(Wij
 ^,Cfij,Prij,{ij,ij,ij}),{Pri,Cii,Cpi,Cfi},Mmi,

{i,i,i},{i,i,i},{i,i,i},{i,i0},(Wi0
^=Cfi0,Pri0=,

{i0=0,i0=0,i0=0}),(WiF
^,CfiF,PriF,{iF,iF,iF})), (11)

where: a) {Evi,Aci,W
^} – events Evi, actions Aci, input-output words W^EviAci with unmarked

(unrecognized) non-terminals from Evi\Xi and Aci\Yi; b) jJ(Wij
^,Cfij,Prij,{ij,ij,ij}) – states of

Rabin-Scott automata, as part of the current sets of input-output words Wij
^, verified properties Prij,

reached values of completeness ij, length ij, multiplicity ij of the check; c) {Pri,Cii,Cpi,Cfi} –

properties and transactions Pri, identifiers Cii, check primitives Cpi and fragments Cpi, presented

earlier; d) Mmi={mm1,mm2,…,mmnmm} – chips – weighted mandates for forming events in states (non-

terminals) and performing actions in check fragments, the chip has the form of a triple

mmnmm={nmm,nmm,nmm} with elements - current cumulative values of variables of completeness

nmm, length (complexity, time)nmm, multiplicity nmm of check; e) {i,i,i} – operations: –

i:(Wij
^,Evi,Aci)(Wij

^,Evi,Aci) – registration of input-output words, events and actions, as a part of

input-output words; – i: – associations of events and actions with reference properties, identifiers,

check primitives; – i – compatibility (intersection) of the contexts of the neighborhoods from the

corresponding input-output words; g) {i,i,i} – operations, presented earlier, respectively, of

identifying i, congruence i and determining i; h) {i,i,i} – previously defined functions of

determining, respectively, completeness i, length (complexity)i, multiplicity i;

i) i0:(Wi0
^=Cfi0,Pri0=,{i0=0,i0=0,i0=0}) {i0=0,i0=0,i0=0}– initialization markup for the

initial state, taking into account zero results, here

mmi0={i0=0,i0=0,i0=0},i:(jJ(Wij
^,Cfij,Prij,{ij,ij,ij}))jJ{ij,ij,ij}) – function of the

current markup of states, taking into account the current completeness, length, multiplicity of check,

which are accumulated during movement in state and modified chips, here mmi={i,i,i}, for some

current (Wij
^,Cfij,Prij,{ij,ij,ij})jJ(Wij

^,Cfij,Prij, {ij,ij,ij}), that is

mmi={ij,ij,ij}=i((Wij
^,Cfij,Prij,{ij,ij,ij})); j) (Wi0

^=Cfi0,Pri0=,{i0=0,i0=0, i0=0}) –

initialization markup for the initial state, taking into account the initial state of the Rabin-Scott

automata, consisting of initial sets of input-output words Wi0
^, verified properties Pri0, initial (zero)

values of completeness i0=0, length i0=0, multiplicity i0=0 of the check;

k) (WF
^,CfiF,PriF,{iF,iF,iF}) – the final state of the Rabin-Scott automata, as a part of finite sets of

input-output words WiF
^, verified properties of PriF, achieved values of completeness iF=i(PriF),

length iF=i(CfiF), multiplicity iF=i(CfiF) of check.

5. Notes for method and implementation

The meta-method can be implemented in deterministic, pseudo-random, evolutionary, and also

combined methods based on the search in depth and/or in width.

So, model evolutionary concretization and modification of the component agent method of

behavioral testing cemiceMi has specialized view for evolutionary operations -i,-i and functions

-i,-i,-i,-i,-i,-i:

cemi=({W^,Evi,Aci},jJ(Wij
 ^,Cfij,Prij,{ij,ij,ij}),{Pri,Cii,Cpi,Cfi},Mmi, {i,i,i},{i-i,-i,-

i,i},{-i,-i,-i,-i,-i,-i},{i,i0},

(Wi0
^=Cfi0,Pri0=,{i0=0,i0=0,i0=0}),(WiF

^,CfiF,PriF,{iF,iF,iF})), (12)

here modified objects – operations and functions [24, 28, 29]: a) i-i – associations of evolutionary

events and actions with identifiers, based on check identification i; b) -i – binary operation of a

modifying or expanding mutation based on the check congruence i; c) -i – binary operation of

modifying or expanding crossing-over based on the control congruence i; d) -i – the posteriori

unary fitness function for determining the completeness i of a new check fragment Cfi (a new

individual of evolution), based on the function for determining of the check completeness i; e) -i –

the posteriori unary fitness function for determining the length (complexity) i of the new check

fragment Cfi, based on the function for determining the check length i; g) -i – the posteriori unary

fitness function for determining the multiplicity i of the new check fragment Cfi, based on the

function for determining the check multiplicity ii; h) -i – the priori binary selection function for

determining the total completeness i of the check fragments Cfi1 and Cfi2 – possible parents of the

new check fragment Cfi, based on function for determination of the check completeness i; i) -i, –

the priori binary selection function for determining the total length (complexity) i of the control

fragments Cfi1 and Cfi2 – possible parents of the new check fragment Cfi, based on function for

determination of the check length i; j) -i – the priori binary selection function for determining the

total multiplicity i of the check fragments Cfi1 and Cfi2 – possible parents of the new check fragment

Cfi, based on the function for determination of the check multiplicity i.

The procedure of the component agent evolutionary method cemi of behavioral testing is an event

model and does not determine the serial-parallel organization of check, in particular, the combined

organization of search in width and depth. Such an organization can be determined by using relations

for subjects and objects in their structures and locations, as well as for their operations/functions.

Relationships include special (dependencies, generalizations, implementations, associations,

aggregations, inheritance), basic (precedence, order, equivalence, compatibility, incompatibility,

uncertainty, indifference), properties (reflexivity, symmetry, transitivity connectivity), both forming

and limiting the possible structures of the actions of the method. At the internal level, these relations

are determined by abstract resources shared in a certain way, first of all, by basic computer-processors,

information objects, and communication tools.

Computing processors and communication tools directly depend on the environment of the agent’s

location, therefore, their influence on the relationship between objects and operations/functions of the

agent is indirect to the environment of placement and can be considered instrumental.

Information objects are abstracted from the placement environment, their influence on the

relationship between objects and agent operations/functions is direct and can be considered

methodological. In this regard, it is necessary to consider the current, previous and subsequent

influences - temporary relationships for objects (including information) and operations/functions, as

well as their instances in the agent's lifetime. In such relations, the input and output weight

characteristics of the action object (usually an information object) performed by the subject of the

action (usually an operation/function) are significant. These weight characteristics are essential

precisely for the subjects of action and their instances, when organizing the system of priorities and

parallelism, and also the corresponding system of method relations.

Own relations for operations/functions, as subjects of the current moment of time and the current

shared object of action in the evolutionary method of cemi behavioral check, are general relations:

firstly, of direct preceding (see table 1), which defines adjacent sequential subjects of action -

operations/functions with the transfer of a shared action object between them; secondly, compatibility

(see table 2), which defines parallel subjects of the action - operations/functions with conflict-free

separation of the objects of action. It is obvious, that in the evolutionary method of behavioral check

cemi for operations/functions, as subjects of the current moment of time, the relation of indifference

acts for different current individual objects of action not separated by subjects. That is, parallelism for

such operations/functions and individual objects is methodologically not limited.

Table 1
The Relationship of the immediate preceding (quasiorder)

 i i i i-

i

-

i

-

i

i -

i,

-

i,

-

i

-

i,

-

i,

-

i

i * * * *

i * * *

i * * * * * *

i-i * * * * * * *

-i * * * * *

-i * * * * *

i * * * *

-i, * *

-i, * *

-i * *

-i, * * *

-i, * * *

-i * * *

Relationships of indifferent is valid for operations/functions, as subjects of the current moment of

time, for different current (individual) action objects, that are not separated by these

operations/functions in the evolutionary behavioral check method cemi, therefore, the parallelism for

such operations/functions and individual objects is unlimited methodologically.

Table 2
The ratio of compatibility (tolerance):

 i i i i-i -i -i i -i, -i, -i -i, -i, -i

i *

i * * *

i * * *

i-i * * *

-i * *

-i * *

i *

-i, * * *

-i, * * *

-i * * *

-i, * * *

-i, * * *

-i * * *

The specificity of the check functioning of the deterministic reactive component agRi of the agent

agi – the execution of its operations {i, i, i} – can be based on the methods of depth and breadth

search with local search optimization for behavioral testing, which bases on experiments with

automata model, and is characterized by computational NP-complexity.

This circumstance implies the limitation of the analysis space — a subset of the DIS components

— by objects of medium complexity (up to 1000 positions/ /transitions) to obtain the solution of check

tasks of the required characteristics. These characteristics include high completeness i, acceptable

properties of length i and multiplicity i, realizability i, transportation i, inheritance i for

spent of time i and memory i, limited by the upper bounds of the allocated computing resources

RagRi=(MaxagRi, MaxagRi) of the reactive component agRi.

The specificity of the functioning of the deliberative component of the agent for performance of its

operations {i, i, i} can be based on a pseudo-random goal-oriented check evolutionary search. As

result, this functioning retains the upper exponential analytical estimates of deterministic methods for

experiments with automata and Petri nets, but it has experimental complexity, significantly less

computational NP-complexity of the latter.

This leads to the possibility of solution of check tasks of acceptable completeness and length with

time and memory costs lower, than average. This range is limited by the lower and upper boundaries

of the resources RagDi=(MaxagDi, MaxagDi) of the deliberative component in the analysis space of the

objects above an average degree of complexity (more, than 1000 positions/transitions) - a subset of the

DIS components and DIS in as a whole. The results of analytical modeling made it possible to verify

the models and assess the domain of their applicability, in particular, the possibility of moving the NP-

complexity of the behavioral check into the reachable area.

Petri nets S(f) are represented in the memory of the controllers for monitoring systems by using of

the list structures. Let the following dimensions of the sets be adopted for the Petri net: |P|=np, |T|=nt,

n= np+nt, |X|=m, |Y|=l. The structures require for the upper limit of the number of conditional fields:

ciS
max=(nt(4np+3L+4)+np(3m+2))+(iI nt i(4npi +3Li +4)+npi (3mi +2))+

+(jJ ntj(4npj +3Lj +4)+npj(3mj +2)). (13)

The complexity of the check analysis of Petri net S(f) includes the preprocessor and main stages for

each of evolutions and is determined by upper bound:

cciS
max=nt(4np+3L+4)+np(3m+2)+2ntnp(nt-1)+2(2Lmnpnt)

nt-3)+(nt-1)(npnt)!+

+(iI nt(4npi +3Li +4)+npi (3mi +2)+2ntinpi(nti -1)+2(2Liminpinti)
niti-3)+(nti-1)(npinti)!)+

+(jJ ntjntj(4npj+3Lj+4)+npj(3mj+2)++2ntjnpj(ntj-1)+2(2Ljmjnpjntj)
njt

j-3)+(ntj-1)(npjntj)!). (14)

These formulas contain the three parts for Petri net and Petri subnets. The comparison of the online

testing programs, based on automata-deterministic and Petri-evolutionary models and methods for

onboard automated control systems and terminal video surveillance confirmed a decrease for the

computational complexity of online testing and reducing the its time. Upper computational complexity

and length of the online testing for the Determination (solid) and Evolutional (dashed) models and

methods in cases of simple Petri net () and hierarchical Petri net () are presents in Fig.1.

Figure 1: Computational complexity and length of online testing of the Determ-solid & Evol-dashed

(simple PN & Hierarch.PN)

The basic programs of the behavioral online testing were carried out for component and

decomposition of DIS, the results are presented in Tab. 3.

Table 3
Experimental values of computational complexity of check:

Object Degree of decomposition Input complexity Complexity of check

Module BSAC 8 362 64980

Module TVS 2 50 4323

Module IP/IPSec 3 115 71871

Module of Naming 2 146 38150450

Module of Encaps. 3 180 1572123

The comparison of the results of basic programs for automata-deterministic and Petri-evolutionary

models and methods of online testing for onboard automated control systems (BSAC) and terminal video

surveillance (TVS) confirmed: a) decrease in computational complexity of online testing; b) reducing timer

time of the check with preservation of: c) the length of the check and their d) completeness.

6. Conclusions

The proposed agent-based model of behavioral checking by taking into account the resource

conditions of the deployment environment, when checking the DIS components allows to balance and

perform distributed behavioral online and offline testing, based on its combined deterministic and

evolutionary models and methods, as well as models of the agent deployment environment in the DIS

itself.

The proposed combined models, due to the decomposition of the check processes of the distributed

MAS, coordinated with the resources of the DIS, make it possible to reduce the time of the DIS check

by up to 90% in comparison with the non-decomposition approach.

These models and methods increase the completeness, accuracy and efficiency of the checking of

the structure and functioning of real DIS with acceptable computational costs of the MAS level built

into DIS. Its exponential complexity, limiting the use of behavioral check, is polynomially reduced

due to component (DIS) and agent-based (MAS) decomposition. This, in turn, allows to check more

complex DIS.

7. References

[1] N. M. Josuttis, SOA in Practice: The Art of Distributed System Design (Theory in Practice),

O'Reilly Media. 2007.

[2] М. Tamer Ozsu, P. Valduriez, Principles of Distributed Database Systems (3rd Edition),

Springer, 2011.

[3] M. Ouzzani, A. Bouguettaya, Semantic Web Services for Web Databases, Springer

Science+Business Media, 2011.

[4] S. Pakari, E. Kheirkhah, M. Jalali, Web-service Discovery Methods and Techniques: a Review,

International Journal of Computer Science, Engineering & Information Technology 4 (2014) 1–14.

[5] X. Jing, L. Chen-Ching, Multi-agent systems and their applications, Journal of International

Council on electrical engineering 7(1) (2017) 188–197.

[6] Y. Shoham, K. Leyton-Brown, Multiagent systems. Algorithmic, Game-Theoretic, and Logical

Foundations (Revision 1.1), Shoham and Leyton-Brown, 2009, 2010.

[7] F. Berman, G. Fox, T. Hey, Grid Computing: Making the Global Infrastructure a Reality, John

Wiley & Sons Ltd, England, 2005.

[8] Installation Guide for UNICORE Server Components, 2018. URL:

http://linksceem.cyi.ac.cy/ls2/images/stories/UNICORE_Admin_Workshop.pdf

[9] C. J. Date, Date on Database: Writings 2000–2006, Apress, 2006.

[10] M. Stonebraker, S. Madden, P. Dubey, Intel “big data” science and technology center vision and

execution plan, ACM SIGMOD Record 42(1) (2013) 44-49.

[11] S. J. Russell, P. Norvig, Artificial Intelligence: a Modern Approach, Prentice-Hall, A Simon &

Schuster Company Englewood Cliffs, New Jersey, 2010.

[12] P. H. Winston, Artificial Intelligence (3rd Edition), Addison-Wesley Pub Co; 3rd edition, 1992.

[13] P. Norvig, S. J. Russell, Artificial Intelligence: A Modern Approach (2nd Edition), Prentice Hall; 2002.

[14] E. Friedman-Hill, Jess in Action: Rule-Based Systems in Java, Manning Publications Company, 2003.

[15] Y. Kondratenko, O. Kozlov, O. Korobko, A. Topalov, Complex Industrial Systems Automation

Based on the Internet of Things Implementation, in: Bassiliades, N. et al. (Eds.), Information and

Communication Technologies in Education, Research, and Industrial Applications: ICTERI’2017,

CCIS 826, Springer, Cham, 2018, pp.164–187.

[16] O. Drozd, V. Kharchenko, A. Rucinski, T. Kochanski, R. Garbos, D. Maevsky, Development of

Models in Resilient Computing, in: 10th IEEE International Conference on Dependable Systems,

Services and Technologies, Leeds, UK, 2019, pp. 2–7. doi: 10.1109/DESSERT.2019.8770035

[17] V. Hahanov, O. Mishchenko, V. Soklakova, V. Abdullayev, S. Chumachenko, E. Litvinova,

Cyber-Social Computing, in: V. Kharchenko, Y. Kondratenko, J. Kacprzyk (Eds.) Green IT

Engineering: Social, Business and Industrial Applications, volume 171 Studies in Systems,

Decisions and Control, Springer, Berlin 2019, pp. 489-515.

[18] K. Sinha, Structural Complexity and its Implications for Design of Cyber Physical Systems, Ph.D.

thesis, Massachusetts Institute of Technology, Engineering Systems Division, January 3, 2014.

[19] S. Chernov, S. Titov, L. Chernova, V. Goginskii, Lb. Chernova, K. Koles, Algorithm for the simplification of

solution to discrete optimization problems, Eastern-European Journal of Enterprise Technologies 3(4)

(2018) 1–12.

[20] O. Drozd, M. Kuznietsov, O. Martynyuk, M. Drozd, A method of the hidden faults elimination

in FPGA projects for the critical applications, in: 9th IEEE International Conference DESSERT,

Kyiv, Ukraine, 2018, pp. 231–234. doi: 10.1109/DESSERT.2018.8409131

[21] O. Drozd, V. Romankevich, M. Kuznietsov, Using natural version redundancy of FPGA

projects in area of critical applications, in: 11th IEEE International Conference DESSERT, Kyiv,

Ukraine, 2020, pp. 58–63. doi: 10.1109/DESSERT50317.2020.9125050

[22] O. Drozd, I. Perebeinos, O. Martynyuk, K. Zashcholkin, O. Ivanova, M. Drozd, Hidden fault

analysis of FPGA projects for critical applications, in: IEEE International Conference TCSET,

Lviv–Slavsko, Ukraine, 2020, pp. 467-471. doi: 10.1109/TCSET49122.2020.235591

https://doi.org/10.1109/DESSERT.2019.8770035
https://doi.org/10.1109/DESSERT.2018.8409131

[23] V. Kudryavtsev, S. Grunskii, V. Kozlovskii, Analysis and synthesis of abstract automata,

Journal of Mathematical Sciences 169(4) (2010) 481-532.

[24] R. Praveen, S. Km Baby, Automated Software Testing Using Metaheuristic Technique Based on

An Praveen Ranjan Ant Colony Optimization Electronic System Design (ISED), International

Symposium, 20-22 Dec. 2010, Bhubaneswar, 2010, pp. 235–240.

[25] D. Zaitsev, Toward the Minimal Universal Petri Net, IEEE Transactions on Systems, Man, and

Cybernetics: Systems 44(1) (2013) 47-58.

[26] V. Opanasenko, S. Kryvyi, Synthesis of multilevel structures with multiple outputs, in: CEUR

Workshop Proc. of the 10th International Conference of Programming, UkrPROG 2016, Kyiv,

Ukraine, 24 May 2016, Volume 1631, 2016, pp. 32–37.

[27] O. Martynyuk, O. Drozd, H. Stepova, D. Martynyuk, L. Sugak, Multidimensional Hierarchical

Model of Behavioral Check of Distributed Information Systems, in: Proc. of 2019 IEEE East-

West Design & Test Symposium (EWDTS), Batumi, 2019, pp. 517-522.

[28] O. Martynyuk, A. Sugak, D. Martynyuk, O. Drozd, Evolutionary Network Model of Testing of the Distributed

Information Systems, in: Proc. 9th IEEE International Conference on Intelligent Data Acquisition and

Advanced Computing Systems: Technology and Applications, Bucharest, Romania, 2017, pp. 888–893.

[29] O. Martynyuk, O. Drozd, T. Ahmesh, B. V. Thuong, A. Sachenko, H. Mykhailova, M.

Dombrovskyi, Hierachical Model of Behavior On-line Testing for Distributed Information Systems,

in: 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing

Systems: Technology and Applications, Vol. 2, Metz, France, 2019, pp. 724-729.

[30] C. Pacheco, K. Shuvendu M. Lahiri, D. Ernst, T. Ball, Feedback-directed random test generation, in:

Proc. of the 29th International Conference on Software Engineering, 2007, pp. 75–84.

[31] I. Ciupa, A. Pretschner, M. Oriol, A. Leitner, B. Meyer, On the number and nature of faults

found by random testing, Software Testing, Verification and Reliability 21 (2009) 3–28.

[32] Y. Wang, T. Nicol, Statistical Properties of Pseudo Random Sequences and Experiments with

PHP and Debian OpenSSL, in: European Symposium on Research in Computer Security, 2014,

pp. 454–471.

[33] A. Takanen, J. D. Demott, C. Miller, Fuzzing for Software Security Testing and Quality Assurance

(Second Edition), Artech House, 2018.

[34] J. Offutt, W. Xu, Generating Test Cases for Web Services Using Data Perturbation, ACM SIGSOFT Software

Engineering Notes 29(5) (2004) 1-10.

[35] Y. Kondratenko, N. Kondratenko, Soft Computing Analytic Models for Increasing Efficiency of

Fuzzy Information Processing in Decision Support Systems, in: R. Hudson (Ed.) Decision

Making: Processes, Behavioral Influences and Role in Business Management, Nova Science

Publishers, New York, 2015, pp.41-78.

[36] V.-T. Pham, M. Böhme, A. Roychoudhury, Model-based whitebox fuzzing for program binaries, in:

Proceedings of the 31st IEEE/ACM International Conference on Automated Software Engineering -

ASE 2016, 2016, pp. 543–553.

[37] J. Hernández-Orallo, F. Martínez-Plumed, U. Schmid, M. Siebers, D. L. Dowe, Computer

models solving intelligence test problems programs and implications, Artifficial Intelligence

230 (2016) 74-107.

[38] Y. Skobtsov, V. Skobtsov, Evolutionary test generation methods for digital devices, Design of

Digital Systems and Devices, in: M.Adamski et al. (Eds.), volume 79 of Lecture Notes in Electrical

Engineering, Berlin: SpringerVerlag, 2011, pp. 331–361.

[39] A. Classen, C. Cordy, P. Y. Schobbens, P. Heymans, A. Legay, J.-F. Raskin, Featured Transition Systems:

Foundations for Verifying Variability-Intensive Systems and Their Application to LTL Model Checking,

IEEE Transactions on Software Engineering 39(8) (2012) 1069–1089.

[40] D. Brucker, D. Achim, W. Burkhart, On Theorem Prover-based Testing, Formal Aspects of

Computing 25 (5) (2012) 683–721.

[41] L. Gomes J. M. Fernandes, Behavioral Modeling for Embedded Systems and Technologies:

Applications for Design and Implementation, International Science Reference, 2010.

[42] A. Sugak, O. Martynyuk, O. Drozd, The hybrid agent model of behavioral testing, International

Journal of Computing 14 (4) (2015) 234-246.

http://link.springer.com/journal/10958
http://link.springer.com/journal/10958/169/4/page/1

