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Abstract. The paper is devoted to the research of the interrelation between 
classes of such perfect algebraic constructions as perfect binary arrays and bent-
sequences. The algebraic normal form of bent-sequences of length 16n   that 
generate perfect binary arrays of order 4N  , are presented. The exact number 
of perfect binary arrays in the full set of bent-sequences of length 64n   is 
found. The lower bound of cardinality of the full class of perfect binary arrays 
of order 8N   is improved. 
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1 Introduction and problem statement 

Perfect binary arrays (PBA) are an important class of algebraic constructions that 
have found numerous applications in the tasks of cryptographic information protec-
tion [1], the synthesis of error correction codes [2], construction of orthogonal and 
biorthogonal signal systems, antenna aperture synthesis, as well as in many other 
applications of science and technology [3]. 

Nevertheless, despite the numerous applications and a large number of publica-
tions devoted to the problems of the synthesis of PBA, in the general case, there are 
no methods for constructing their full classes for the derived value of the PBA order 
N . Moreover, today there is not even an accurate estimation of the cardinality of the 
full class of PBA of practically valuable orders 4N  , in particular order 8N  . 
Significant progress in solving the problem of synthesizing the full class of PBA of 
order 8N   was obtained in [4], in particular, it was found that the cardinality of the 
PBA class of order 8N   is not less than 8x8 688128J  , while 688128  PBA were 

constructed using the original constructive method. 
Another major class of perfect algebraic constructions is the class of the bent-

sequences (the truth tables of bent-functions), which was introduced in [5] and also 
found their numerous applications in cryptography and coding theory [6]. Methods 
for the synthesis of a full class of bent-sequences of length 16n   (the truth tables of 
bent-functions of four variables) are described in [7], while constructive methods for 



the synthesis of a full class of bent-sequences of length 64n   are proposed in [8, 9]. 
Recent researches of the PBA class carried out in [7] made it possible to establish that 
the full class of bent-sequences of length 16n   and cardinality 896bentJ   includes 

the full class of PBA of order 4N   and cardinality 384PBAJ  . 

However, the characteristics of the interrelation between the classes of bent-
sequences of length 16n   and PBA of order 4N   remains unspecified. Re-
searches on the interrelation between the class of bent-sequences of length 64n   
and PBA of order 8N   are absent in the literature. 

The purpose of this paper is to determine the interrelation between the class of 
bent-sequences of practically significant lengths 16; 64n   and PBA of orders 

4; 8N  . 

2 Basic definitions 

We introduce the basic definitions: 

Definition 1 [10]. A perfect binary array is a two-dimensional sequence (matrix) 

 , ,( ) , , 0,1,..., 1, { 1,1}i j i jH N h i j N h     ,  (1) 

having an ideal two-dimensional periodic autocorrelation function (2DPACF), whose 
elements 
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where , 0,1,..., 1m N   , and all indices of elements ,i m jh    are reduced modulo 

.N  
Let us give as an example a perfect binary array of order 4N   as well as its two-

dimensional periodic autocorrelation function 

 
16 0 0 0
0 0 0 0, 0 0 0 0
0 0 0 0

H R
      
                   

, (3) 

where the symbol “+” denotes +1, and the symbol “–” denotes –1, respectively. 

Definition 2 [11]. The Walsh-Hadamard transform (WHT) of a vector ( )F n  in ma-

trix form is defined as 

 ( ) ( ) ( )fW w A n F n , (4) 



where ( )F n  is the binary sequence of length n , ( )A n  is the Hadamard matrix of 

order n , which is constructed in accordance with the following recurrence relation 

 ( / 2) ( / 2)( ) , (1) [ ].( / 2) ( / 2)
A n A nA n AA n A n
     

 (5) 

Definition 3 [7]. A binary sequence 0 1 1[ , , , , , ]i nB b b b b     of length n , where 

 1ib    are the coefficients, 0,1,..., 1i n  , 2 , 2,4,6,8,...kn k  , is called a 

bent-sequence, if it has a uniform Walsh-Hadamard spectrum ( ).BW   

3 Interrelation Between the Class of Bent-Sequences of Length 
n = 16 and the Class of Perfect Binary Arrays of Order N = 4 

Let us consider the currently known methods of classification of PBA and bent-
sequences in order to establish the interrelation between these classes of perfect alge-
braic constructions. The modern approach to the classification of PBA involves the 
use of the following proposition: 

Proposition 1 [3]. Each PBA of order N  generates a ( )E N -class of equivalent PBA 

matrices by using the cyclic rows and columns shift and inversion, with the cardinal-
ity of the equivalent matrices class 

 2
( ) 2E NJ N . (6) 

Thus, in accordance with Proposition 1, for the order of the PBA 4N  , the car-

dinality of each equivalent class is 2
(8) 2 4 32EJ    , and accordingly, the full set of 

PBA of cardinality 384PBAJ    can be divided into 384 / 32 12  nonequivalent 

classes. Representatives of these non-equivalent classes are given in [3]. 
In [7] it was shown that the full class of bent-sequences of length 16n   includes 

the full class of PBA of order 4N   in the case of their representation as vectors by 
successive concatenation of the rows (columns) of the corresponding PBA. 

For example, we concatenate the rows of PBA (3), as a result of which we obtain 
the following sequence and its Walsh-Hadamard transform coefficients in accordance 
with (4) 

 
1

1

1

[ ] ,
( ) (16)
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W w A B

               
 

      
 (7) 

  It is easy to see that the sequence (7) really satisfies the condition of Definition 3 
and is a bent-sequence of length 16n  . 



A modern approach to the classification of bent-sequences is based on the consid-
eration of affine-equivalent classes. This classification is easiest to make on the basis 
of the representation of bent-sequences in algebraic normal form. 

Definition 4 [11]. The algebraic normal form (ANF) 1 2φ( , ,..., )kx x x  of a sequence T  

is a polynomial of 2logk n  variables with coefficients {0,1}ia  , where the AND 

operation is used as the multiplication, and the XOR operation is used as the addition 
operation 

  
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φ , ,...,
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i
x x x a X




 , (8) 

where s
iX  are the terms of the ANF polynomial of degree  s wt X ; 

     wt  is the Hamming's weight. 

The coefficients  0 1 1, ,...,i Na a a a   can be found by performing the Reed-Muller 

transform [11], i.e. by multiplying the original sequence by the Reed-Muller matrix 

νRM  

 ν ν{ } , { }i ia T RM T a RM    , (9) 

where the original sequence T  is represented above the alphabet {0,1}  using a bijec-

tive mapping 1 0, 1 1    , and the Reed-Muller matrix νRM  is determined using 

the following recurrent rule 

   ν 1
0 ν ν 1

ν 1 ν 1

01 01 , 1 1
RMRM RM RM RM RM




 

           
, (10) 

where   is the Kronecker product. 

Definition 5 [11]. Terms of ANF of the degree   1s wt X   are called as affine. 

For example, for sequence length 16n   there are the following possible affine 
terms: 0 1 2 31, , , ,x x x x  on the basis of which corresponding affine codewords can be 

formed. 
For example, we can represent as the ANF obtained from the PBA bent-sequence 

(7) 

 1 3 4 1 2B x x x x  . (11) 

It is known [8] that the sum of a bent-sequence with an affine function (which is 
equivalent to adding one or several affine terms to the ANF coefficients sequence) 
leads to the formation of other bent-sequences. Thus, the full set of bent-sequences of 
cardinality 896J   can be classified into 896 / 32 28  affine non-equivalent classes, 



in each of which it is possible to distinguish a bent-sequence that does not have affine 
terms. 

In this paper, through numerous experiments, the following statement was estab-
lished: 

Proposition 2. Let 0H  to be PBA of order 4N  , and 0T  to be the sequence ob-

tained by concatenating its rows (columns). Then the sequences 10 1 2 1
, ,..., kT T T  

 ob-

tained by adding to the ANF sequences one or several affine terms construct, by line-
by-line (column) filling, a set of matrices 10 1 2 1

, ,..., kH H H  
 that are also PBA. 

Note that the Proposition 2 is valid only for PBA of order 4N  , and fully corre-
sponds to Proposition 1, in terms of structure. However, Proposition 2 makes it easy 
to establish the interconnection between the generating PBA represented as their ANF 
(which contain affine terms) and the corresponding generating bent-sequences. We 
present all 28 generating bent-sequences, among which 12 (in bold font) generates 
affine non-equivalent classes of PBA of cardinality 32 PBA in each one, correspond-
ing to Proposition 2 

 

5 2 4 1 3

6 2 4 1 3 1 2

7 2 4 1 4 1 3

8 2 4 1 4 1 3 1 2

9 2 4 2 3 1 3

10 2 4 2 3 1 3 1 2

11 2 4 2 3

;
;
;

;
;

;
;

;
;

;

b x x x x
b x x x x x x
b x x x x x x
b x x x x x x x x
b x x x x x x
b x x x x x x x x
b x x x x

 
  
  
   
  
   
  

1 2 3 1 4

2 2 3 1 4 1 2

3 2 3 1 4 1 3

4 2 3 1 4 1 3 1 2

b = x x + x x
b = x x + x x + x x
b = x x + x x + x x
b = x x + x x + x x + x x

21 3 4

1 4

12 2 4 2 3 1 4 1 2

;
;

;
;

;
;

;
;

;
;

b x x

x x
b x x x x x x x x

 

   

15 3 4 1 4 1 2

16 3 4 1 4 1 3 1 2

17 3 4 2 3 1 2

18 3 4 2 3 1 3 1 2

19 3 4 2 3 1 4

20 3 4 2 3 1 4 1 3

13 3 4 1 2

14 3 4 1 3 1 2

b = x x + x x + x x
b = x x + x x + x x + x x
b = x x + x x + x x
b = x x + x x + x x + x x
b = x x + x x + x x
b = x x + x x + x x + x x

b = x x + x x
b = x x + x x + x x

2 4 1 2

22 3 4 2 4 1 3

23 3 4 2 4 1 4 1 2

24 3 4 2 4 1 4 1 3

25 3 4 2 4 2 3 1 2

26 3 4 2 4 2 3 1 3

27 3 4 2 4 2 3 1 4

28 3 4 2 4 2 3 1 4 1 3 1 2

;
;

;
;
;
;
;

.

x x x x
b x x x x x x
b x x x x x x x x
b x x x x x x x x
b x x x x x x x x
b x x x x x x x x
b x x x x x x x x
b x x x x x x x x x x x x


  
   
   
   
   
   
     

 (12) 

 

4 Interrelation Between the Class of Bent-Sequences of Length 
n = 64 and the Class of Perfect Binary Arrays of Order N = 8 

In the general case, the problem of synthesizing a complete class of PBA of order 
8N   is computationally complex and has not been solved yet. Significant progress 

in the construction of PBA classes was made in [4], where a method for synthesizing 
the PBA class based on the classes of thinned matrices was proposed and the con-
structions for their reproduction and superposition were found. 

The results of [4] are based on the following proposition: 



Proposition 3 [3]. The PBA 0 ( )H N  of the arbitrary order N  can always be repre-

sented as an interleaving ( ) of its thinned matrices 

 0 , , , , ,

0 0 0 0

( )

( / 2) ( / 2) ( / 2) ( / 2),

i j i j i j i j i jH N h a b c d

A N B N C N D N

     

   
 (13) 

where , 2 ,2i j i ja h , , 2 ,2 1i j i jb h  , , 2 1,2i j i jc h  , , 2 1,2 1i j i jd h    are the corre-

sponding thinned matrices, , 0,1,..., / 2 1i j N  , and the indices ,i jh  vary within the 

limits , 0,1,..., 1i j N  . 

Each PBA can be represented as (13). In the general case, the set of various struc-
tures of thinned matrices obtained by thinning the full class of PBA, we denote as 

 
{ ( / 2)}; { ( / 2)}; { ( / 2)}; { ( / 2)};

1, 2,..., ; 1, 2, ..., ; 1, 2, ..., ; 1, 2,...,
i j

A B C D

A N B N C N D N

i j
  

          
, (14) 

where the parameters A , B , C , D  are the number of different structures (de-

grees of freedom) of the corresponding thinned matrices , , ,A B C D  of order / 2N . 
Different matrix structures from (14) can be obtained by using the cyclic shift op-

erations in rows and columns, inversion, transposition, and mirroring of the set of 
generating matrices. 

In [4], such a set of thinned matrices was obtained, the structures of which are pre-
sented in Table 1. 

Table 1.  The known set of thinned matrices of order 2 8 2N   

Thinned matrix 2DPACF Thinned matrix 2DPACF 

A
    
             

 
16 0 16 0
0 0 0 0

16 0 16 0
0 0 0 0

AR
 
 
 
 

 B
    
             

 
16 0 16 0
0 0 0 0

16 0 16 0
0 0 0 0

BR
 

 
 




 

C
    
             

 
16 0 16 0
0 0 0 0
16 0 16 0
0 0 0 0

CR
 
    
 

 D
    
             

 
16 0 16 0
0 0 0 0
16 0 16 0
0 0 0 0

DR
 

   
 

 

0A
    
             

 0

16 16 16 16
0 0 0 0
0 0 0 0
0 0 0 0

AR
 
 
 
 

 0E
    
             

0

16 16 16 16
0 0 0 0
0 0 0 0
0 0 0 0

ER
  

 
 
 

 

1A
    
             

 
1

16 0 0 0
16 0 0 0
16 0 0 0
16 0 0 0

AR
 
 
 
 

 1E
    
             

 
1

16 0 0 0
16 0 0 0

16 0 0 0
16 0 0 0

ER
 
 
  

 

2A
    
             

 
2

16 0 0 0
0 16 0 0
0 0 16 0
0 0 0 16

AR
 
 
 
 

 2E
    
             

2

16 0 0 0
0 16 0 0
0 0 16 0
0 0 0 16

ER
 

 
  

 



3A
    
             

 
3

16 0 0 0
0 0 0 16
0 0 16 0
0 16 0 0

AR
 
 
 
 

 3E
    
             

3

16 0 0 0
0 0 0 16
0 0 16 0
0 16 0 0

ER
 

 
  

 

4A
    
             

 
4

16 0 16 0
0 0 0 0
0 16 0 16
0 0 0 0

AR
 
 
 
 

 4E
    
             

4

16 0 16 0
0 0 0 0
0 16 0 16
0 0 0 0

ER
 
    
 

 

5A
    
             

 
5

16 0 0 0
0 0 16 0

16 0 0 0
0 0 16 0

AR
 
 
 
 

 5E
    
             

5

16 0 0 0
0 0 16 0

16 0 0 0
0 0 16 0

ER
 

 
  

 

 
 

As a result, the PBA class of cardinality 8 8 688128PBAJ    was built, which in-

creased the lower bound estimation of the cardinality of PBA class of order 8N    in 
factor of 7 compared to the previous result obtained in [12]. 

It is known, that all the representatives of PBA class of the order 4N  , when 
concatenating the PBA rows (columns) generates bent-sequences.  The research car-
ried out in this paper allowed us to establish that there are just 8 8, 98 304PBA bentJ    

representatives in the PBA class of order 8N   (synthesized in [4]) that forms the 

bent-sequences of length 64n   when concatenating their rows (columns). 
At the same time, the other 688128 98 304 589 824   PBA (when concatenating 

rows or columns) have non-uniform Walsh-Hadamard transform coefficients (abso-
lute values). In order to classify these spectral coefficients, it is most convenient to 
use the definition of the elementary structure of the Walsh-Hadamard transform coef-
ficients [13]. 

Definition 6 [13]. The elementary structure of the vector ( )W   of Walsh-Hadamard 

transform coefficients is the set of absolute values of its spectral components. 
It was established experimentally that all remaining 589 824  PBA, on the basis of 

which it is impossible to form bent-sequences by applying the operation of concatena-
tion of their rows (columns), according to Definition 6, have an elementary structure 
{0(12), 8(48),16(4)} . 

This notation of the elementary structure should be understood as follows: the 
number in front of the parentheses characterizes the absolute value of the Walsh-
Hadamard transform coefficient, whereas the number in parentheses indicates how 
many times it occurs in the vector of the Walsh-Hadamard transform coefficients. 

Let us consider, for example, one of these PBA, as well as its 2DPACF 



 8 8

64 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0, 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

H R

          
                                      
          
          
            





. (15) 

Applying the concatenation of the rows (columns) of PBA (15), we obtain a bi-
nary sequence and, according to Definition 2, corresponding to it vector of Walsh-
Hadamard transform coefficients, which has an elementary structure 
{0(12), 8(48),16(4)}  

 

{
};

{T

T

W

                                
                               
 
 

}.


 



 (16) 

The research performed in this paper shows that establishing the interrelation be-
tween the class of PBA of order 8N   and the class of bent-sequences of length 

64n   can significantly increase the lower bound of the number of PBA due to their 
new structures, that exist in the class of bent-sequences. 

Note that, in the general case, the problem of synthesizing bent-sequences of length 
64n   is a complex computational problem, coupled with the enumeration of a set of 

642 18446744073709551616J    elements. Nevertheless, the theory of bent-

squares that was proposed in [14], with the help of which it was possible to synthesize 
the full set of bent-sequences of length 64n   which have the cardinality 

64 5 425 430 528bentJ  . 

We established that within this set there is a set of PBA of cardinality 

64 2 326 528sdr bentJ    in which, of course, we found as a subset of  

8 8, 98 304PBA bentJ    PBA, that was constructed in [4]. 

As an example, we present one of the PBA and it’s 2DPACF, that was found in the 
bent-sequences of the length 64n   class and is not member of set of PBA synthe-
sized in [4] 

 8H

        
                               
        
        
       



 

, 

64 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

R

 
 
 

  
 
 
  

. (17) 

We concatenate the PBA (17) rows, as a result of which we obtain the following 
sequence and its Walsh-Hadamard transform coefficients in accordance with (4) 



 

[
];

[B

B

W

                               
                              

 







],




 (18) 

which proves that (18) is indeed a bent-sequence. 
Note that PBA (17) consists of thinned matrices presented in Table. 2. These 

structures of thinned matrices differ from the matrices presented in Table 1. This fact 
shows that there are exist other structures of thinned matrices that differ from those 
found in [4]. 

Table 2. Thinned matrices of PBA (17) 

Thinned matrix 2DPACF Thinned matrix 2DPACF 

A
    
            

   
16 0 16 0
8 0 8 0
0 0 0 0
8 0 8 0

AR 

 
 
 
 

 B
    
              

 
16 0 16 0

8 0 8 0
0 0 0 0
8 0 8 0

BR 

 
  
   

 

C
    
              

 
16 0 16 0
0 8 0 8
0 0 0 0
0 8 0 8

CR 

 
 

  
D

    
              

 
16 0 16 0
0 8 0 8
0 0 0 0
0 8 0 8

DR 

 
 

  
 

 
Thus, the discovering of the interrelation between the class of PBA of order 

8N   and bent-sequences of length 64n   allows us to improve the estimation of 
the lower bound of the cardinality of PBA class of order 8N  . Summarizing, it was 
established that in [4], the PBA class that produces the bent-sequences has cardinality 

8 8, 98 304PBA bentJ   , as well as PBA class that does not produce bent-sequences by 

concatenating rows (columns) has cardinality 8 8, 589 824PBA nonbentJ   . In this paper, it 

is clarified that the full class of bent-sequences of length 64n   includes the PBA 
class of cardinality 8 8, 2 326 528PBA bentJ   . Thereby, the cardinality of class of all the 

known PBA is 

 8 8 589 824 2 326 528=2 916 352PBAJ    , (19) 

which is larger by a factor of ~ 4.2  compared to the estimation in [4]. 

5 Conclusion 

We note the main results obtained in the paper: 

1. The lower bound estimation for the cardinality of the class of the PBA of order 
8N   is improved. In particular, it has been established that the cardinality of the 



PBA class of order 8N   is not less than 8 8 589 824 2 326 528=2 916 352PBAJ     

that is a factor of ~ 4.2  greater than the known estimation. 
2. The total cardinality of the PBA class of order 8N  , which are producing the 

bent-sequences of length 64n   by concatenating the rows (columns), is estab-
lished and equal to 8 8, 2 326 528PBA bentJ   . It is shown that the existence of new 

structures of thinned matrices, which differ from the previously known ones, are 
possible. 

3. The interrelation between the PBA class of order 4N   and bent-sequences of 
length 16n   is established. In particular, 12 ANF polynomials of bent-sequences 
that produce the full PBA class of order 4N  , are presented. 
It should be noted that the search for new structures of thinned matrices, as well as 

the rules for their interleaving for formal enumeration of the PBA full class that gen-
erates bent-sequences, is an actual direction for further research. The number of PBA, 
which generate sequences with other (different from the bent-sequences) elementary 
structures of the Walsh-Hadamard transform vectors also remains unknown and can 
be the actual direction for further research. 
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