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Еліптичним кривим притаманний певний не- 
долік, пов’язаний з тим, що в точках перетину 
з осями координат еліпси мають дотичні пер-
пендикулярні до цих осей. Проте в деяких прак-
тичних застосуваннях еліпсів подібна ситуація  
є небажаною. Запобігти цьому можна моделю-
ванням вказаних кривих у косокутних координа-
тах, які, в свою чергу, віднесені до деякої вихідної 
ортогональної координатної системи. Під супе-
реліпсами Ламе розуміються криві, в рівняннях 
яких застосовуються показники степенів, від-
мінні від двох, що є притаманним для звичайних 
еліпсів. Варіюванням цими показниками степе-
нів можна отримати широке коло різноманітних 
кривих. У цій роботі запропоновано метод геоме-
тричного моделювання супереліпсів у косокутних 
координатних системах. Вихідними даними для 
моделювання є координати двох точок з відомими 
в них кутами нахилу дотичних. За вісі косокутної 
системи координат приймаються прямі, прове-
дені наступним чином. Через першу точку буду-
ється пряма паралельно дотичній в другій точці, 
а в другій точці – пряма паралельно дотичній  
в першій точці. Показано, що завдяки цим захо-
дам можна забезпечити потрібні значення кутів 
нахилу дотичних в точках перетину супереліпса 
з осьовими лініями. Доведено, що дугу суперелі-
пса можна проводити через третю задану точку 
з потрібним в ній кутом нахилу дотичної, але це 
потребує визначення числовим методом показни-
ків степенів у рівнянні супереліпса. Подібна ситуа-
ція має місце, наприклад, при розробці проектів 
профілів лопаток осьових турбін. На підставі 
запропонованого методу моделювання дуг супере-
ліпсів розроблено комп’ютерний код, який можна 
застосовувати при описі контурів виробів техно-
логічно складних галузей промисловості

Ключові слова: супереліпс Ламе, геометрич-
не моделювання, косокутна система координат, 
кут нахилу дотичної, розподіл кривини
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1. Introduction 

Elliptic curves are the generally known curves of the 
second order, which are characterized by the axial symme-
try relative to the Ox and Oy axes, as well as the central 
symmetry relative to the coordinate origin [1, 2]. The tech-
niques for constructing these curves using graphical methods 
are considered in descriptive geometry [3], engineering [4], 
and computer graphics [5]. The examples of the practical 
application of the elliptic curves in shipbuilding are given 
in re ference book [6], in the theory of mechanisms and ma-
chines – in [7], in the construction of profiles of the axial 
turbine blades – in [8]. Given their reflecting capability, the 
ellipses are widely used in architecture and building, parti-
cularly when erecting domes of palaces and cathedrals, as 
well as amphitheaters (for example, the «Hall of Secrets» 
of the Alhambra in Granada and St. Peter’s Cathedral in 

London). It is known from astronomy that the planets in the 
solar system revolve around the Sun in orbits in the form of 
ellipses. In our time, thousands of artificial satellites move 
around the Earth through elliptic orbits.

The elliptical curves are understood to be the closed flat 
lines, which can be obtained as the cross-section of a cylin-
der or a rotating cone by the plane inclined to their axis at 
a certain angle. It can also be the mapping of a circle onto  
a plane not parallel to the plane of the circle location. A circle 
is a separate case of an ellipse. With the affine transformation 
of a circle, you can get an elliptical curve or just an ellipse.

The elliptical curves possess some specific benefits due, 
for example, to the monotony of a curvature change, an angle 
of inclination of the tangent, derivatives, etc. However, there 
is a certain shortcoming in the ellipses that is related to the 
angles of inclination of the tangents at the intersection points 
of the curve with the coordinate axes. These angles accept  
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either zero values or are equal to 90°. However, for ellipses 
that are built in Cartesian coordinates, there is no way to 
ensure arbitrary values of the angles of inclination of the 
tangent at intersections with the coordinate axes.

One possible way to ensure the arbitrary values of the 
angles of inclination of the tangents at the intersection points 
of the curve with the coordinate axes is to model them in 
oblique coordinate systems, as well as to construct new ellip-
tic curves by transforming the already known curve. 

These issues are of theoretical and practical significance. 
They are relevant for those industries where the articles of 
complex geometric shapes are made (for example, in ship-
building, when describing waterlines, frames, battoks lines; in 
the gas turbine engineering, when modeling air intakes, pro-
files of turbine blades). Thus, in the gas turbine industry, it 
is important to ensure the estimated angles of a flow inlet to 
and out of the blade apparatus. At the same time, it is neces-
sary to meet the conditions for a smooth transition between 
the angles of inclination of the tangents from the starting 
point to the endpoint of the modeled curve. 

It should be noted that recent years have seen significant 
qualitative changes in designing complex highly technologi-
cal products in various industries. There is a widespread shift 
from traditional graphic information processing to paperless 
technologies based on the digital descriptions of projected 
and manufactured objects. Computerized technologies make 
it possible to create numerical models of different objects.  
A designer can view the physically non-existent object on 
the computer, get the desired geometric characteristics, make 
certain changes, prepare the production and, finally, produce 
one or another product in modern machining centers.

Geometric information about products must determine 
them in full, meet the requirements arising from the func-
tional, structural, strength, ergonomic, aesthetic, operating, 
technological, and other conditions. The most important 
component of the information used in the manufacture of 
products in the technologically sophisticated, knowledge- 
intensive industries is the geometric model of an object, which 
contains a description of its shape, as well as the description of 
the connecting elements in the model.

2. Literature review and problem statement

In the Cartesian coordinate system, the ellipse is de-
scribed by the following equation [9, 10]:

x
a

y
b







+ 





=
2 2

1,  (1)

where a and b are the ellipse semi-axes whose equality trans-
forms the ellipse into a circle.

The concept of the superellipse was first introduced by 
the French mathematician Gabriel Lamé in 1818, who gene-
ralized the equation of the ellipse and, instead of the exponent 
equal to two in expression (1), applied an arbitrary indica-
tor n, having recorded this equation in the following form:
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= 1,  (2)

where the exponent n can be any rational number, a and b are 
the positive numbers, which are termed the semi-axes or the 
half-diameters of a curve. 

Equation (2) defines a closed curve, limited by a rectan-
gle with sides – a ≤ x ≤ a and – b ≤ y ≤ b. It is the generalized 
equation of the ellipse, which, depending on the exponent 
value and the magnitudes of the semi-axes, makes it possible 
to obtain a circle, an ellipse, a square, and a rectangle. At n = 1, 
the curve degenerates into a straight line; at n = 2, we obtain  
a regular ellipse, at n = 2/3 – the astroid (provided a = b).

Some of the features of the Lamé superellipse can be 
found in [10], in particular, the expressions for calculating 
the arc length and the curve square. In the cited work, the su-
perellipses are examined in the Cartesian coordinates not in 
the form of arcs, located in the region of positive coordinates, 
but in the so-called full form.

Now it is difficult to determine who for the first time 
offered to apply equation (2) with different exponent values, 
that is, to write it in a more general form:
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= 1.  (3)

Applying different exponent values provides even more 
possibilities to constructing a set of various curves. 

Summing up, one can note that all the above equations 
are recorded in almost identical mathematical notation and 
differ only in the values of the exponents. 

The most striking examples of the practical application of 
the Lam  superellipse include the Aztec Stadium, built before 
the Olympic Games in Mexico City, and a square in Stockholm.

Paper [11] gives examples of constructing superellipses 
with equal exponent values. Those examples demonstrate  
a change in the geometry of curves as the exponents gra-
dually decrease. It is indicated that one of the squares in 
Stockholm has the shape of a superellipse. 

The examples of using superellipses in computer graphics 
are shown in work [12]. The specified curves are considered 
with equal exponents in the Cartesian coordinates.

Study [13] demonstrates that nature has many examples 
of plants whose transverse cross-section coincides in the 
shape with the Lamé superellipses, which are termed the 
Lamé superellipses. The cited study considers superellipses 
with equal exponent values. Further results of the previous 
studies are given in [14], which considers the superellipse 
equations in the polar coordinate system and at different ex-
ponent values. That advanced the circle of a variety of curves 
whose examples found in the plant world.

Work [15] built on the search related to the description 
of the features in the plant world. It also uses the Lamé su-
perellipse with equal exponent values; that ellipse is formed 
in the Cartesian coordinates.

Study [16] applies the Lamé superellipses to describe 
the symmetrical forms of bamboo leaves, which is crucial 
to describe the morphogenesis and development of plants. 
Work [17] considers the issue of modeling annular tree cuts, 
which could make it possible to better estimate the produc-
tivity of forests and carbon accumulation in the terrestrial 
forest ecosystems. 

The asymptomatic behavior of the maximum curvature 
of the Lamé superellipses was investigated in the paper [18]. 
This is the only known source, which argues on the curvature 
of the Lamé superellipses, although it also applies curves with 
equal exponent values. In this case, an optimum value of ex-
ponent was derived, which provides for the «most exquisite» 
shape. The main result of the cited paper is the expression for 
finding the asymptote of a point with maximum curvature.
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It is proposed in work [19] to use the Lam  superellipses 
with equal exponent values to reproduce and categorize the 
mine-like forms in the sonarbic images. The superellipses 
were used to level the irregularities occurring in actual mine-
like forms.

Study [20] suggests employing the Lamé superellipses to 
describe antennas aimed to receive electromagnetic vibra-
tions. More or less the same topic is addressed in work [21], 
which reported the development of an omnidirectional  
ultra-wideband antenna in the superellipse shape.

Many contact rolling or sliding mechanisms, such as rol-
ler bearings, gearbox bearings, gears, execute a contact bet-
ween two semi-infinite bodies, with the concentrated stress 
occurring at the edges of the contact. Paper [22] described  
a new type of profile based on the superellipse equation (the 
ellipse is generalized to an order of n). Applying this profile 
makes it quite simple to set the parameters according to 
the alleged scope of application. The superellipse is easily 
adjusted to all types of contact by changing the order of  
a superellipse profile. The advantages of the superellipse pro-
file are the uniform distribution of pressure and the absence 
of an edge effect while it remains easy to make.

It follows from our analysis that the most commonly 
considered issues are those related to the construction of the 
Lamé superellipses as closed curves, in the Cartesian coordi-
nate systems. The curves are built on the condition that the 
exponents in the superellipse equations are the magnitudes 
that are set with the source data. This makes it possible to 
obtain a variety of lines, from a straight line to a rectangle, 
with clearly defined right angles. The tasks of building the 
superellipses with the assigned angles of inclination of the 
tangents at points of intersection with the axes of coordinates 
have not been considered. When designing articles of a com-
plex geometric shape (cam mechanisms, turbine blades, and 
the like), the designers face the need to draw curves through 
the two or three set points at the known angles of inclination 
of the tangents. Given the appealing properties of elliptical 
curves, it is necessary to devise tools that would satisfy the 
practitioners in the development of the geometric models of 
projected articles.

3. The aim and objectives of the study

The aim of this study is to construct a method to model 
the Lamé superellipses, which would ensure that they pass 
through two or three points at the assigned angles of incli-
nation of the tangents, applicable for the articles of complex 
geometric shape.

To accomplish the aim, the methods to build the follow-
ing must be constructed:

– the arc of an ellipse in the oblique systems of coordinates; 
– the arc of a Lamé superellipse in the oblique systems of 

coordinates;  
– the arc of a Lamé superellipse through three set points 

with the known angles of inclination of the tangents at them.

4. A method for constructing the arc of an ellipse  
in the oblique coordinate system

Consider an ellipse arc, described by equation (1), located 
in the region of the coordinates’ positive values. We shall con-
struct this arc in an oblique coordinate system with the angles 

of inclination of the axial lines of this system α and β to the 
axis of the abscissa in a certain rectangular coordinate system.

Take two arbitrary points Т1 and Т2 in the Cartesian coor-
dinate system, draw the straight lines through these points, 
inclined to the abscissa axis at angles α and β. Assume that 
these straight lines are the coordinate axes in the oblique 
coordinate system.

Denote the axes in the oblique coordinate system and its 
center via x , y  and O.  In Fig. 1, in the хОу coordinate sys-
tem, two points Т1 and Т2 are assigned, for which the angles of 
inclination of the tangents α and β are known. It is required 
to draw the arc of the curve so that it passes through the 
specified points and accepts, at the endpoints, the assigned 
angles of inclination of the tangents. 

Based on the known initial data, we build a parallelogram. 
The side OT1  of this parallelogram is taken as the x , axis; 
the side OT2  – the y. axis. Thus, an oblique coordinate sys-
tem xOy.  is formed. In this coordinate system, we model the 
arc of the ellipse so that it passes through points Т1 and Т2 and is 
the tangent to the sides ТТ1 and ТТ2 of the built parallelogram.
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α 
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x 

 

 

 

 

T 

Fig.	1.	The	arc	of	an	ellipse	in	the	oblique	coordinates

Since the arc of the ellipse is to be built in an oblique 
coordinate system, the equation (1) is re-recorded in the 
form, which reflects the fact of its application in this coor-
dinate system:

x
a

y
b







+ 





=
2 2

1.  (4)

The equations of the axial lines are constructed based on 
the known coordinates of the endpoints of the modeled curve 
and the angles of inclination of the tangents at them:

y y x x kT T− = −( )
1 1 2;  y y x x kT T− = −( )

2 2 1,  (5)

where

k1 = tgα ;  k2 = −tgβ .

By solving the derived system of equations, we find the 
coordinates of point O,  which is the origin of the oblique 
coordinate system:

x
y y k x k x

k kO

T T T T=
− + −

−
2 1 1 22 1

2 1

;  (6)

y y k x x
O T O T= + −( )

1 12 .  (7)
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In the oblique coordinate system xOy,  the segments OT1 
and OT2  define the values for the major a and the minor b 
semi-axes of the ellipse:

a x x y yT O T O
= −( ) + −( )

1 1

2 2
; b x x y yT O T O

= −( ) + −( )
2 2

2 2
.

It is possible to show that the relation between the Car-
tesian coordinates х, у of a certain point in the ellipse with 
coordinates x ,  y  and the oblique coordinate system takes 
the following form:

x x x y
O

= + −cos cos ;α β  (8)

C C x y
O

= + −sin sin .α β  (9)

Since, from equation (4),

y b
x
a

= − 





1
2

,

then, by substituting y  in expressions (8) and (9), we obtain:

x x x b
x
aO

= + − − 





cos cos ;α β1
2

 (10)

y y x b
x
aO

= + − − 





sin sin .α β1
2

 (11)

Expressions (10) and (11) make it possible to determine 
the х and у coordinates at any point in the curve and thereby 
describe the section of an ellipse in the rectangular хОу co-
ordinate system.

5. A method for building the arc of a Lam  superellipse  
in the oblique coordinate system

The superellipses are built in the rectangular coordinate 
systems based on equations (2) and (3). In this case, the tan-
gents, drawn at the point of intersection of the curves with 
the coordinate axes, form the right angles with these axes. 
However, for some practical applications, it is required that the 
specified angles should differ from the right angles. This result 
can be achieved only when constructing the Lamé superellips-
es in the oblique coordinate systems whose axes are oriented to 
each other at an angle required for building the desired curve.

Based on the source data given above, a parallelogram 
can be built. The side OT1  of this parallelogram is taken to 
be the x ,  axis, the side OT2  – the y  axis. Thus, the oblique 
coordinate system xOy  will be formed. The coordinates of 
point O  – the origin of the oblique coordinate system – are 
determined from expressions (6), (7). In this coordinate sys-
tem, we model the arc of a Lamé superellipse so that it passes 
through points Т1 and Т2 and is the tangent to the sides ТТ1 
and ТТ2 of the parallelogram.

The superellipse equation is taken in the following form:

x
a

y
b

m n






+ 





= 1.  (12)

Since the coordinates of the modeled curve are computed 
in the oblique coordinates, the relation between the oblique 

and Cartesian coordinates of the points in the curve are de-
termined from expressions (10)–(11).

The construction of the arc of a Lamé superellipse implies 
a sequential change in the x  coordinate from zero to a mag-
nitude equal to the length of the semi-axis a. For the current 
value of the coordinate x ,  one calculates the oblique coordi-
nate y,  which is determined from the following expression:

y b
x
a

m

n= − 





1 .  (13)

By substituting y  in expressions (10) and (11), we ulti-
mately obtain:

x x x b
x
aO

m

n= + − − 





cos cos ;α β1  (14)

y y x b
x
aO

m

n= + − − 





sin sin .α β1  (15)

Expressions (14) and (15) define the х and у coordinates 
at any point in the curve and thus describe the arc of a Lamé 
superellipse in the rectangular coordinate system. 

Fig. 2 shows an example of the three arcs of the Lamé 
superellipses, constructed at the exponent values m = 2  and 
n = 2 (curve 1), m = π  and n e=  (curve 2, where e is the base 
of the natural logarithms), m = 5  and n = 4  (curve 3). Curve 1  
is the arc of a conventional ellipse, built in the oblique coordi-
nates; in fact, it is the repeated curve shown in Fig. 1.

It follows from Fig. 2 that all three curves at their end-
points are the tangents to the corresponding sides of the 
parallelogram OT TT1 2. One can also note that the exponent 
values m an n significantly affect the shape of the curves. 
With an increase in these exponents, the curves are increas-
ingly approaching the sides ТТ1 and ТТ2 of the parallelo-
gram OT TT1 2. Consequently, changing the exponent values m 
and n can produce a wide range of different curves.

The graphical information shown in Fig. 3 demonstrates 
the influence of angles α and β on the arcs of the Lamé su-
perellipses. When modeling curves, the angle α gradually 
decreased by 10°, and the angle β – by 5°. Under these cir-
cumstances, the centers of the oblique coordinates are shifted 
up to the left, and the point T moves down to the right. The 
points Т1 and T2 did not change their positions. The points O 
and T are indicated near the vertices of the original parallel-
ogram. The arcs of the Lamé superellipses were built at the 
exponent values m = π  and n e= .
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Fig.	2.	The	superellipses	arcs	in	the	oblique	coordinates
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Fig.	3.	The	influence	of	angles	α	and	β	on	the	arcs		
of	the	Lamé	superellipses

Fig. 4 shows the graphic information demonstrating the 
influence of the coordinates of the original points Т1 and Т2 
on the arcs of the Lamé superellipses. The point Т1 gradually 
moved to the right and bottom, and the point Т2 – to the left 
and down. The angles α and β remained unchanged, equal to 
their original values. The vertices of the parallelogram are in-
dicated in its representation corresponding to the initial data.

 

y 
T1 

T2 

x 

 

T 

О 
Fig.	4.	The	influence	of	the	points Т1	and	Т2	position		

on	the	arcs	of	the	Lamé	superellipses

The joint influence of the α and β angles and the co-
ordinates of the original points Т1 and Т2 on the arcs of 
the Lamé superellipses is shown in Fig. 5. The initial data 
were the angles α and β, which were applied in the con-
struction of the curves shown in Fig. 3; the coordinates of  
the Т1 and Т2 points, based on which the curves were built, 
are shown in Fig. 4.
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О 

Fig.	5.	The	influence	of	angles	α	and	β	and	the	points Т1		
and	Т2	position	on	the	arcs	of	the	Lamé	superellipses

Thus, the graphical information shown in Fig. 3–5 clearly 
confirms the possibility of modeling the arcs of the Lamé su-
perellipse in a wide range of variation of initial data.

6. A method for building the arc of a Lam  superellipse 
through three set points at the known angles of 

inclination of the tangents at them

In the above-examined examples, the arcs of the Lamé 
superellipses were built under the condition that the expo-
nents m and n in the Lamé superellipse equation were known 
values. At the same time, there was no task to draw a curve 
through a set point at the assigned angle of inclination of the 
tangent at it. Such a task is very common in a variety of prac-
tical applications of the Lamé superellipse arcs. The set task 
could be solved by developing a specific algorithm to find 
such m and m exponents that would ensure that the curve 
passes through the set point and the angle of inclination of 
the tangent.

First of all, we shall determine the dependences, which re-
late the oblique coordinates x ,  y  of an arbitrary point to its 
Cartesian coordinates. These dependences can be derived by 
solving the system of equations (8), (9) relative to x  and y.  
Following the transforms, we obtain:

x
x x y y

O O=
−( ) + −( )

+( )
sin cos

sin
;

β β
α β

C
y y x x

O O=
−( ) + −( )

+( )
cos sin

sin
.

α α
α β

The x  and y  coordinates can be represented in the fol-
lowing way:

x a x a y a= + +1 2 3;  (16)

y a x a y a= + +4 5 6,  (17)

where

a1 =
+( )

sin
;

β
α βsin

 a2 =
+( )

cos
;

β
α βsin

a
x y

O O
3 = −

+
+( )

sin cos
;

β β
α βsin

 a4 =
+( )

sin
;

α
α βsin

a5 =
+( )

cos
;

α
α β

c

sin
 a

x y
O O

6 =
−

+( )
sin cos

.
α α

α βsin

Substituting expressions (16), (17) in the ellipse equa-
tion (14) makes it possible to establish a reciprocal relation-
ship between the Cartesian coordinates x and y:

a x a y a
a

a x a y a
b

m n

1 2 3 4 5 6 1
+ +





+
+ +





=

or 

b a x a y a

a a x a y a a b

n m

m n m n

1 2 3

4 5 6 0

+ +( ) +

+ + +( ) − = .  (18)
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The m and n exponents for equations (12) or (18) will be 
determined under condition that the curve passes through the 
set point A at the angle of inclination of the tangent d at it.

Since the coordinates x and y are implicitly related via  
a dependence in the form

f x y, ,( ) = 0

then its derivative is determined as follows:

dy
dx

f
x

f
y

= − ∂
∂

∂
∂

,  (19)

where

∂
∂

= + +( ) + + +( )− −f
x
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1 2 3

1
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1

5.

By equating the derivative at point A to the tangent of  
angle d, after the transforms, we obtain the following equation:

b m a x a y a a a

a n a x a y a a

n m

m m

1 2 3
1

1 2

4 5 6
1

4

+ +( ) +( )+

+ + +( ) +

−

−

tg

tg

d

daa5 0( ) = .

The expressions recorded in parentheses are constant 
values. Apply the notation:

A a x a y a= + +1 2 3;  B a a= +1 2tgd ;

C a x a y a= + +4 5 6;  D a a= +4 5tgd .

Hence

b mA B a nC Dn m m n− −+ =1 1 0.  (20)

In this expression, the unknown values are the m and n 
exponents. However, one of these exponents can be expressed 
through another by using equation (13) written for point A:

n

x
a

y
b

m

=

− 























ln

.

1

ln
 (21)

To solve equations (20), (21) in combination, a highly 
efficient algorithm, proposed in work [23], was applied. This 
algorithm combines the reliability of bisection with the as-
ymptotic velocity of the secant method.

The graphic data shown in Fig. 6 indicate that the built 
arcs of the Lamé superellipses clearly pass through the set 
points. They also accept the assigned angles of inclination of 
the tangents. At the same time, it should be noted that since 
a Lamé superellipse possesses a so-called «rigid» character, 
then choosing the point that the curve must pass through 
must be approached reasonably. Firstly, the point should be 
inside the parallelogram formed by the axes and the straight 
lines parallel to them. Secondly, the angle of inclination of 
the tangent at the set point should roughly correspond to the 
character of the curve path. It is clear that there is a certain 
margin when assigning an angle but it is undesirable to set 
an arbitrary angle. A program would be terminated once the 
angle is improperly set.
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Fig.	6.	The	construction	of	arcs	of	the	superellipses	passing	
through	the	original	points	at	the	assigned	angles	of	

inclination	of	the	tangents	at	them

It should be noted that in practical applications the user 
will be able to predict both the position of an intermediate 
point and the probable value for an angle of inclination of 
the tangent. 

One of the most important characteristics of a flat curve 
is the curvature and the related radius of the curvature. 

Let us devise tools to define the curvature of the Lamé 
superellipse arc. Generally, it is known that the curvature k of 
any curve is determined from the following formula:

k
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y
x

=

+ 

















d
d

d
d

2

2

3 3 2

1

.  (22)

The first derivative d dy x  is found from expression (19). 
The second derivative of the implicit function is determined 
as follows:
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2.

Fig. 7 shows an example of the three curves constructed 
in the oblique coordinates, two of which are the arcs of the 
Lamé superellipses (curves 1 and 2), while one is the arc of 
a regular ellipse (curve 3). The Lamé superellipse arcs were 
built at the following exponent values: curve 1 – m = 5 and 
n = 4, curve 2 – m = π and n = e.
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Fig.	7.	The	arcs	of	elliptic	curves	with	different		
exponent	values

For these curves, based on expression (22), we deter-
mined the curvature whose shape is shown in Fig. 8. The 
numbering of curves in Fig. 7 and 8 are identical. The curves 
were built depending on the relative length of the arc of the 
modeled curve.

 
 

3 2 
1 

0 0.2 0.4 0.6 0.8 

1 

k 

Fig.	8.	Charts	of	curvature	distribution

When considering the charts of the curvature distribu-
tion, the following conclusions can be drawn: 

1) all curves are smooth with a single extremum located 
over the original sections of the curves;  

2) after the extremum, the curves take a monotonous, 
decreasing character with the curvature value slightly grea-
ter than zero (curves 2 and 3) and somewhat larger than  
zero (curve 1).

7. Results of modeling the Lam  superellipses in the 
oblique coordinate systems

Based on the proposed tools for the geometrical mo-
deling of the Lamé superellipses, a computer code was 
developed in the programming environment Fortran Power-
Station. Employing this code helps perform the calculations 
related to determining the coordinates of the points in 
the modeled line. It uses the subprograms for deriving the 
first and second derivatives, the curvature of a curve, for 
transforming the oblique coordinates into Cartesian ones; 
a subprogram to solve transcendental equations was bor-
rowed from work [23]. The developed code, in addition to 
numerical results, which are the coordinates of points in 
the modeled lines, makes it possible to visualize the lines on  
a computer monitor screen. The graphic data are the visual 
confirmation of the operability of the proposed method of 
geometric modeling of the Lamé superellipses in the oblique 
coordinates at two and three preset coordinates of the points 
and the angles of inclination of the tangents. When consi-
dering the built arcs of the ellipses in the Cartesian coordi-
nates, one can clearly see that these arcs pass through the 
original points and accept the assigned angles of inclination 

of the tangents at them. An error in the divergence between 
the original points’ coordinates and those computed does 
not exceed 10–6, which is sufficient for practical application.

Fig. 9 shows an example of the profile of an axial turbine’s 
nozzle blade with the flow inlet and outlet angles equal to 90° 
and 15°, respectively. The pressure and suction sides’ profiles 
were modeled using the arcs of the Lamé superellipse. Both 
arcs were built based on three points and the assigned angles 
of inclination of the tangents at them. The two points of each 
arc were in the places that join the leading and trailing edges 
of the profile. At the at the suction side, the third point was 
in the throat of an interblade channel, on the trough – at the 
point that determines the assigned maximum thickness of the 
profile. The slope of the tangent in the throat of the channel 
was determined by the bending angle of the profile. The angle 
of inclination of the tangent at the third point on the trough 
was equal to the angle that was accepted by the tangent on 
the suction in the place where it touches the circle of the 
maximum thickness of the profile.

  х 

у 

Fig.	9.	A	turbine	blade	profile

The proposed method for modeling the arcs of superel-
lipses in the oblique coordinate can be applied for the ana-
lytical representation of ship curves, first of all, it concerns 
waterlines.

8. Discussing the method of modeling the Lam  
superellipses in the oblique coordinate systems

This paper has shown that it is necessary, in order to 
ensure the desired angles of inclination of the tangents at 
the points of intersecting the ellipses, and, especially, the 
superellipses, with the axes of the coordinates, to construct 
these curves in the oblique coordinates. The axes of oblique 
coordinates are chosen in such a way that one of the axes 
passes through the first point and is parallel to the tangent 
at the second point. Accordingly, the second axis must pass 
through the second point and be parallel to the tangent at 
the second point. It is clear that the tangents must not be 
parallel to each other. This follows from the consideration of 
formulae (6) and (7); in this case, an indefinite result would 
be obtained, associated with the division by zero.

The positive results obtained in the geometrical modeling 
of Lamé superellipses in the oblique coordinates are prede-
termined by the correctness of mathematical calculations, 
which are based on the provisions from the analytical and 
differential geometry and numerical methods. Algorithmiz-
ing the methods that match the tasks of this research has 
allowed us to develop operational computer code. All the 
tasks set for this study have been practically implemented, 
which is confirmed by the represented graphic results. Thus, 
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Fig. 1 demonstrates the possibility of constructing a regular 
ellipse in the oblique coordinates and ensuring the assigned, 
different from 90°, angles of inclination of the tangents at the 
endpoints. Fig. 2–5 confirm the possibility of modeling the 
Lamé superellipses in the oblique coordinates when changing 
a position of the original points and the angles of inclination 
of the tangents at them. In our problem, the superellipse 
exponents are the values that are set by the initial data. This 
is the consequence of the fact that there are no additional 
conditions to find the exponents.

A condition for calculating the exponents by solving 
the equations (20) and (21) numerically is the presence 
of the third set point at the known angle of inclination of 
the tangent at it. The solution results are graphically rep-
resented in Fig. 6, which demonstrates the impact of both 
the coordinates of the initial points and the angles of incli-
nation of the tangents at them. The solution to this problem  
is important for the practical application of the Lamé su- 
perellipse arcs.

When constructing the Lamé superellipses at two as-
signed points and different values for the angles of inclination 
of the tangents at them, there are no problems although it 
is necessary to specify the exponent values. Drawing a su-
perellipse arc through three set points at the known angles 
of inclination of the tangents at them requires determining 
the exponent values by a numerical method and necessitates  
a reasonable approach to choosing a position of the «medium»  
point and the angle of inclination of the tangent at it, which 
is predetermined by the «rigid» character of a Lamé superel-
lipse. However, this is not critical for experts in the subject 
area of the elliptic superellipses application.

It is advisable to advance the research into the geometric  
modeling of Lamé superellipses towards extending the circle  
of practical tasks for which it is necessary to build the contours  
of parts of a complex geometric shape. Interesting results 

could be obtained when constructing the Lamé superellipses 
in the polar coordinates.

9. Conclusions

1. The construction of the arc of a regular ellipse, which 
has the same exponent values equal to two, in the oblique co-
ordinates makes it possible to obtain these arcs at the assigned 
angles of inclination of the tangents at the endpoints. The axes 
of the oblique coordinate are determined by the position of 
two points at the known angles of inclination of the tangents 
at them or by directly setting the inclination angles of the axes 
relative to a certain original Cartesian coordinate system.

2. The practical calculations have shown that the pro-
posed method for modeling the superellipse arcs in the 
oblique coordinates makes it possible to build the arcs of these 
curves in a wide variation range of the angles’ initial data. The 
method implies the presence of the coordinates of two points, 
the angles of inclination of the tangents at them, as well as the 
exponents. Based on these data, one determines the position 
of the axes in the oblique coordinate system in which the 
required curve is constructed. Changing the exponents in su-
perellipse equations can yield a diverse circle of curves, which 
has been confirmed by the above graphic results.

3. The devised method for constructing the arc of a su-
perellipse, if there are three set points and the angles of 
inclination of the tangents at them, has been implemented 
in the form of computer code. That enabled finding, by using  
a numerical method, the exponent values for the equation of 
the modeled Lamé superellipse. It has been determined that 
the error of the curve passing through an intermediate point 
does not exceed 10–6. An example of the profile of an axial tur-
bine’s nozzle blade has been given to show that the method for 
modeling the Lamé superellipses can be practically applied.
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У статті представлений новий підхід до переформулювання, що доз-
воляє зменшити складність алгоритму розгалуження і меж для вирі-
шення лінійної цілочисельної задачі про рюкзак. Алгоритм розгалужен-
ня і обмеження в цілому спирається на звичайну стратегію, яка полягає 
в першому ослабленні цілочисельного завдання в моделі лінійного про-
грамування (ЛП). Якщо оптимальне рішення лінійного програмування  
є цілочисельним, то є оптимальне рішення цілочисельного завдання. Якщо 
оптимальне рішення лінійного програмування не є цілочисельним, то оби-
рається змінна з дробовим значенням для створення двох підзадач, так 
що частина допустимої області відкидається без усунення будь-якого  
з можливих цілочисельних рішень. Процес повторюється для всіх змін-
них з дробовими значеннями, поки не буде знайдено цілочисельне рішення. 
У цьому підході змінна сума і додаткові обмеження генеруються і дода-
ються до вихідної задачі перед її рішенням. Для цього швидко визначаєть-
ся об’єктивна межа задачі про рюкзак. Потім межа використовується 
для генерації набору меж змінної суми і чотирьох додаткових обмежень. 
Виходячи за межі змінної суми, вихідні підзадачі будуються і вирішуються.  
Оптимальне рішення потім виходить як краще рішення з усіх підзадач  
з точки зору об’єктивного значення. Пропонована процедура призводить 
до підзадач, які мають меншу складність і легше вирішуються, ніж вихід-
на задача, з точки зору кількості гілок і пов’язаних ітерацій або підзадач.

Задача про рюкзак – це особлива форма загальної лінійної цілочисель-
ної задачі. Є багато видів задач про рюкзак. Вони включають в себе задачі 
«нуль-один», «множинного вибору», «обмежену», «необмежену», «ква-
дратичну», «багатоцільову», «багатовимірну», «колапсу нуль-один» та 
задачу про об’єднання рюкзаків. Задачі про рюкзаки «нуль-один» – ті,  
в яких змінні приймають тільки 0 і 1. Причина в тому, що предмет може 
бути обрано або не обрано. Іншими словами, немає можливості отрима-
ти дробові суми або предмети. Це найпростіший клас завдань про рюкза-
ки, і він єдиний, який може бути вирішений в поліномі за допомогою алго-
ритмів внутрішніх точок і в псевдополіноміальному часі за допомогою 
методів динамічного програмування. Задачі з множинним вибором рюкза-
ків – це узагальнення звичайної задачі про рюкзаки, коли набір предметів 
розбивається на класи. Нульовий варіант вибору предмета замінюється 
вибором рівно одного предмета з кожного класу предметів

Ключові слова: цілочисельна задача про рюкзаки, переформулювання, 
алгоритм гілок і меж, унімодулярний, обчислювальна складність
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1. Introduction

In general the linear integer programming problem has 
very important real life applications. The general linear in-
teger problem comes in the form of capital budgeting, trans-
portation, traveling salesman, facility location, scheduling, 
knapsack etc. This model even though it is very easy to 

model mathematically, has proved to be very difficult to solve. 
See [1–5] for more on linear integer models. 

The paper presents a new reformulation approach to 
reduce the complexity of a branch and bound algorithm for 
solving the knapsack linear integer problem. The branch 
and bound algorithm [6, 7] in general relies on the usual 
strategy of first relaxing the integer problem into a linear  


