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The research results of the wavelet filtering efficiency using the interpolation method for
nonlinear dynamical systems identification based on the Volterra model in the frequency
domain are presented. The accuracy and noise immunity of the amplitude- and phase-
frequency characteristics of the first , second and third order determining for nonlinear
system using experimental data "input-output" using test polyharmonic signals are
investigated. The noise immunity of the identification method have been increased using
wavelet filtering of measurement noises of received responses and characteristics of the
identifiable system.
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Introduction

All natural objects in the real world are nonlinear with different level on nonlinearity.
The presented method allows building linear and nonlinear models for different nonlinear
dynamical systems (NDS). Most dynamical objects are nonlinear stochastic inertial systems.
The model in the form of integral Volterra series used to identify them [3, 4]. The nonlinear
and dynamic properties of such systems are completely characterized by a sequence of
multidimensional weighting functions — Volterra kernels [11].

Building a model of nonlinear dynamic system in the form of a Volterra series lies in
the choice of the characteristics for the test impacts. Also the developed algorithm is used and
allows determining the Volterra kernels and their Fourier-images for the measured responses
(multidimensional amplitude—frequency characteristics (AFC) and phase—frequency
characteristics (PFC)) to simulate the NDS in the time or frequency domain, respectively [9].

The formulation of the initial boundary value problem

There are no ideal conditions in real world. Thus the measurements during identification
of the systems need to be modelled considering the errors of the measurements that are
usually modelled by additive Gaussian noise [10].

The research of noise immunity of the interpolation method of nonlinear dynamical
systems identification based on the Volterra model in the frequency domain is proposed. The
developed identification toolkit is used to build information model of the test nonlinear
dynamic system in the form of the first, second and third order model with respect of
measurement noise.
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The aim of this work is to identify the continuous NDS using Volterra model in the
frequency domain, i.e. to determine its multi-frequency characteristics on the basis of the data
of the “input-output” experiment [12], using test polyharmonic signals and interpolation
method with obtained model coefficients and to research the noise immunity and potential
filtering ability of final characteristics.

The scheme of the problem solution

Generally, “input—output” type ratio for nonlinear dynamical system can be presented
by Volterra series [8].

y[x(t)] =W, (t)+ Tw] (t)x(t—7)dt +]E]Ew2 (r,,7,)x(t —7)x(t —7,)dr, dr, +

) (1)
+jjjw3(r,,r2,r3)x(t—r,)x(t—rz)x(t—r3)drl dr,dry+...= wo(t)+ Zyn[x(t)],

where the n—th partial component of response of the system is
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x(¢t) and y(¢) are input and output signals of system respectively; w,(z,,7,,...,7,) — weight
function or n -order Volterra kernel; y, [x(t)] — n—th partial component of system’s response;
w,(t) — denotes free component of the series (for zero initial conditions w,(¢) =0; ¢ — current

time.

Commonly, the Volterra series are replaced by a polynomial, with only taking several
first terms of series (1) into consideration. Nonlinear dynamical system identification in a
form of Volterra series consists in #n-dimensional weighting functions determination

w,(t,,...,7,) for time domain or it’s Fourier transforms W (j®,,..., j®,) — n—dimensional

transfer functions for frequency domain.
Multidimensional Fourier transform for n -order Volterra kernel (1) is written in a form:

Wn(ja),,...,ja)n): Fn<wn(r],...,rn)> = I...Iwn(r],...,rn)exp(—jﬁ}wirijndri,
0 0 = i=l

where F,’,( > — n—dimensional Fourier transform; = j =+/—1. Then the model of nonlinear

system based on Volterra model in frequency domain can be represented as:

Ax0)]= ZF< (jerssjoo, )] [ X i, >t oy
==t =

i=l

—1 . . . . . .
where F, < > — inverse n-dimensional Fourier transform; X(j,) — Fourier transform of

input signal.
Identification of nonlinear system in frequency domain consists in determination of
absolute value and phase of multidimensional transfer function at given frequencies —

15



V.0. Speranskyy, V.D. Pavlenko

and PFC argW,(jo,, jo,.,..., jo,) which are

n(ja)],ja)z,...,ja)n)
defined by formulas:

=VRe(#,(jo,.... jo, DF +[m¥,(jo,..... jo, )] . 2

I i v J
aran(Jo‘)]""an):arctg m[Wn(Jw]) )J(Dn)]’ (3)
Re[W,(jo,,..., Jjo,)]

where Re and Im — accordingly real and imaginary parts of a complex function of »n variables
respectively.

An interpolation method of identification of the nonlinear dynamical system based on
Volterra series is used [7-8].

Affirmation 1. Let at input of system test signal of ax(¢z) kind is given, where x(¢) — is

arbitrary function and a — is scale coefficient (amplitude of signal), where 0 < |a| <1, then for
the selection of a partial component of the n-th order y,(¢#) from measurement of the response

nonlinear system y[ax(¢)] in the form of Volterra series, it is necessary to determine #-th
partial derivative of the total response amplitude a where a =0

V()= J Jw (7, ... T)Hx(t t)d 1, = lw @)

tzmes a=0

We use the method of extracting the partial components with the help of »-fold
differentiation of the response y[ax(¢)] with respect to parameter — amplitude a and the use of
the derivative value at ¢ =0.

Injecting an input signal ax(¢) where a is the scaling factor (signal amplitude), one has
the following response of the nonlinear system:

y[a -x(t)] = ajw(r) -x(t—t)dr + azjjwz(r] T, )x(t —7)x(t —7,)dtdr, +

t

jnnmejw (Tl’ T )HX(Z‘—T )dT + ..

0

To distinguish the partial component of the n-th order, differentiate the system
response n times with respect to the amplitude:

0"yla- x(t)]

oa" jntzmes J'W (Tp5e0sT )Hx(f 7.)dt, +

n+l

(1)t j j i@ty [ [ =707,
r=1

Taking the value of the derivative at a =0, we finally obtain the expression for the
partial component (4).

Formulas for numerical differentiation. Partial derivative should be substituted by form
of finite difference for calculation. Differentiation of function, which was set in discrete
points, could be accomplished by means of numerical computing after preliminary smoothing
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of measured results. Various formulas for the numerical differentiation are known, which
differ from each other by means of error.

Let's use universal reception which allows to substitute a derivative of any »n order for
differential ratio so that the error from such replacement for function y(a) was any
beforehand set order of p approximation concerning a step of 4 = Aa of computational mesh
on amplitude. Method of undetermined coefficient for equality

da) _ 1 s (arrh)y 0, 5)
da h r=-n
where the coefficients c, are taken not depending on h,
r=—r,—r+L..,—L0,1,..., =1, %, so that equality (5) was fair. The limits of summation

=20 u r, 20 could be arbitrary, but so that the differential relation h‘"Zcry(a+ rh) of
r, +r, order have to satisfy to inequality r +r, 2n+ p—1.

To define the c, it is necessary to solve the following set of equations

1 1 e 1 e, 1 1o
_r] _r] +1 cee ’/'2 c_rl+]
(=r)"" (- +D)" c, | |o )
(=r)" (- +1)" B S nt | ©
(—I”] )n+] (—I”] + 1)n+l . F2n+] C] 0
| (_r])n+p—l (_r] +1)n+p—| r2n+p—]_ _crz | _0 ]

If »+7r, =n+ p—1 then inscribed in n + p equality forms linear system concerning the
same number of ¢, unknown. The determiner of this system i1s Vandermonde's determiner and
differs from zero. Thus, there is only one set of n coefficients, satisfying the system.

If r, +r, 2 n+ p, then there are many such sets of coefficients c, .

On the basis of (6) in [7-8] the formulas of derivative calculation of the first, second
and third orders are received at a =0 with use of the central differences for equidistant nodes
of the computational grid.

The amplitudes of the test signals a'” and the corresponding coefficients ¢ for

responses are presented in [9].
The test polyharmonic effects for identification in the frequency domain representing by
signals of such type:

x(t) = zAk cos(a)kt T O ), (7)
k=1
where n — the order of transfer function being estimated; 4,, @, and ¢, — accordingly

amplitude, frequency and a phase of k-th harmonics. In research, it is supposed every
amplitude of 4, to be equal, and phases ¢, equal to zero.

The test polyharmonic signals are used for identification in frequency domain.
Statement. If test polyharmonic signal is used in form
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x(t)= Ai cosw,t = éi(e.fwkt " e—.fwkt)’
k=1 245

then the n—th partial component of the response of test system can be written in form:

A" E(n/2) n n
m . . . .
y,(t)= — cr o Wn(— Jo, ..— jo, ,jo, ,..jo, )x
2 1 m m+1 n
m=0 k=1 k,=1
m n
X COS —Za),q + Za)kl t+aran(— JOp 5= JO O ,...ja)k”) ,
=0 I=m+1

where E — function used to obtain the of integer part of the value.
The component with frequency @, +...+ o, 1s extracted from the response to test signal

(7):
A"\ W (jo,,..., jo,) | cos[(@, +...+ o)t +argh (jo,,...,jo,)]. (8)

Certain limitations should be imposed while choosing of frequency polyharmonic test
signals in a process determining multidimensional AFC and PFC. This is the reason why the
values of AFC and PFC in this unallowable points of multidimensional frequency space can
be calculated using interpolation only. In practical realization of nonlinear dynamical systems
identification it is needed to minimize number of such undefined points at the range of
multidimensional frequency characteristics determination. This was performed to provide a
minimum of restrictions on choice of frequency of the test signal. It is shown that existed
limitation can be weakened. New limitations on choice of frequency are reducing number of
undefined points.

After analyzing the (8) it is defined: to obtain Volterra kernels for nonlinear dynamical
system in frequency domain the limitations on choice of frequencies of test polyharmonic
signals have to be restricted. These restrictions provide inequality of combination frequencies
in the test signal harmonics. The theorem about choice of test signals frequencies is proven.

The theorem about choice of test signals frequencies. For the definite filtering of a

response of the harmonics with combination frequencies @, + @, +...+®, within the n-th
partial component it is necessary and sufficient to keep the frequency from being equal to
another combination frequencies of type kw +...+k,w,, where the coefficients
{kl.|i =12,.. .,n} must satisfy the conditions:

* number K of negative value coefficients (k; <0) isin 0< K < E(n/2) (where E —
function used to obtain the of integer part of the value);

= D k[=m
i=l
= Dk|=n(mod 2),n-) |k|=211eN.
i=1 i=l
It was shown that during determination of multidimensional transfer functions of
nonlinear systems it is necessary to consider the imposed constraints on choice of the test
polyharmonic signal frequencies. This provides inequality of combination frequencies in
output signal harmonics: o, #0, @, #0 and o, # @, for the second order identification

procedure, and @ #0, w,#0, w,#0, 0 *0,, ©*0,, 0,#0,, 20 *0,+0,,
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20, # 0, + 0;, 20, # 0, +0,, 20, # 0, — 0, 20, # 0, —0,, 20, # 0, —0,, 20, # -0, + @,
20, # -, + 0, and 2, # —o, + o, for the third order identification procedure.

Described method was tested using nonlinear test system (fig. 1) represented by Riccati
equation:

DO 4 ay(e)+ B0 = (o)

1

ey

Qut1

Transfer Fen

Math
Function

u21

Fig. 1. Simulink—model of the test system

Analytical expressions of AFC and PFC for the first, second and third order model were
received in [8].

The main purpose was to identify the multi—frequency performances characterizing
nonlinear and dynamical properties of nonlinear test system using the methodic [10]. Volterra
model in the form of the 1, 2 and 3 order polynomial is used. Thus, test system properties are
characterized by transfer functions of W,(jw), W,(jo,,jo,), W,(jo,, jo,,jo,) — by

Fourier-images of weight functions w,(¢), w,(#,,t,) and w,(t,,t,,,).

Structure chart of identification procedure — determination of the n-th order AFC and
PFC of NDS is presented in fig. 2.

y{(r)

~ a{") +/NDS ol

(1)
C ')(n)

- Y e
24

i
1

n
x(1)=2 coso, 1| | a{™ -+ NDS$

g
; 2if

3| K

Fig. 2. The structure chart of identification using n-th order Volterra model in frequency
domain using interpolation method

The weighted sum is formed from received signals — responses of each group (fig. 2).
As a result the partial components of NDS responses y,(¢), »,(¢) and y,(¢) are taken. For

each partial component of response the Fourier transform (the FFT is used) is calculated and
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only an informative harmonics (which amplitudes represent values of required characteristics
of the 1, 2 and 3 order AFCs) are taken from received spectrum.

The first order AFC |W]( ja))| and PFC argl (jw) are received by extracting the

harmonics with frequency @ from the spectrum of the CC partial response y,(¢) to the test
signal x(¢) =(A/2)coswt.
The second order AFC |W2( jo, j(a)+Q,))| and PFC argh,(jo,j(w+Q,)) having

o, = o and o, =w+ ), were received by extracting the harmonics with summary frequency
o, + o, from the spectrum of the NDS partial response y,(f) to the test signal
x(t) =(A/2)(coswt +cosw,t) .

The third order  AFC Wi(jo, j(@+€), j(@+Q,)) and PFC
argl,(jo, j(w+Q)), j(w+€,)) having o =0, 0,=0+€, and w,=w+CQ,, were
received by extracting the harmonics with summary frequency o, +®, + @, from the
spectrum  of the NDS  partial response () to the test signal
x(t) = (A/2)(cosm,t + cosm,t + cosw,t) .

The results (first, second and third order AFC and PFC which had been received after
procedure of identification) and the second and third order surfaces for AFC and PFC
received after procedure of the test system identification are presented in [8].

The surfaces are built from sub—diagonal cross-sections which were received separately.
), was used as growing parameter of identification with different value for each cross—
section in second order characteristics. Fixed value of 2, and growing value of Q, were used

as parameters of identification to obtain different value for each cross-section in third order
characteristics.

Numerical values of identification accuracy as a percentage RMSE using interpolation
method for the test system are represented in Table 1, where: n — order of the estimated
Volterra kernel, N — approximation order/number of interpolation knots (number of
experiments). The comparisons to previous works are given in [9].

Table 1.
Numerical values of identification accuracy using interpolation method
n N RMSE for AFC, % RMSE for PFC, %
2 2.8853 2.1005
1 4 0.5180 2.3964
6 0.4075 2.3663
2 29.7526 89.3218
2 4 2.0103 5.1023
6 3.0488 7.8248
3 4 2.9299 11.0100
6 11.0285 5.9724

Experimental researches of the noise immunity of the identification method were
performed. The simulations with the test model were performed. Different noise levels were
defined for different order of the Volterra model.

The main purpose was the studying of the noise impact (noise means the inexactness of
the measurements) to the characteristics of the test system model using interpolation method
of identification in frequency domain.

20



[HOOPMATHUKA TA MATEMATHUYHI METOZI B MOJIEJIFOBAHHI = 2014 = Tom 4, Nel

The first step was the measurement of the level of useful response signal (harmonic
cosine test signal shown in fig. 3a) after test system (Out2 in fig. 4). The amplitude of this
signal was defined as the 100% of the signal power.

After that procedure the Random Noise signal (with the form shown in fig. 3b) where
added to the test system output signal. This steps where performed to simulate inexactness of

the measurements in the model. The sum of these two signals for the linear test model signal
is shown in fig. 3c.
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I ‘ ‘ : s [ | |

10 030 10 3 : 0 %0 30 10 3 0 i 30 30 0 3

a b c

Fig. 3. The sum of two signals for the linear test model signal: a — the NDS subchannel
response, b — random noise with 50% amplitude of max amplitude of the response, ¢ —
“noised” responce of the test system

Random Moise I:I

1

5+2,64
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Fig. 4. The Simulink model of the test system with noise generator and osillosopes

After series of test researches it was decided to use Coiflet and Daubechie wavelets [2,
5, 7] due to its minimal distortion impact on form of filtered signal with RMSE minimization.
The wavelet filtering was used to reduce the noise impact on final characteristics of the test
system. The Coiflet-4 and Daubechie-3 of the 3 level were chosen (fig. 5) and used for the
AFC and PFC filtering respectively.

Fig. 5. The Coiflet (a) and Dubechie (b) and wavelet function
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The first order (linear) model was tested with the level of noise 100% and 10% and
showed excellent level of noise immunity. The standard, noised and de-noised (filtered)
(fig. 6) characteristics (AFC and PFC) with level of noise 100% are presented.

Amplitude

0 05 1 15 2 25 3 35 4 45 5

Phase

Frequency, rad/s

Fig. 6. The standard (1), noised (2) and denoised (3) characteristics (AFC — top, PFC —
bottom) of the 1 order model of the test system with level of noise 100%

The second order (nonlinear) model was tested with the level of noise 10% and 1% and
showed good level of noise immunity. The standard, noised and de-noised (filtered) (fig. 7)
characteristics (AFC and PFC) with level of noise 10% are presented.

0 I I i i t i i 1 A,
0 05 1 15 2 25 3 35 4 45 5
Frequency, rad/s

Phase

“0 05 1 16 2 25 3 35 4 45 5
Frequency, rad/s

Fig. 7. The standard (1), noised (2) and denoised (3) characteristics (AFC — top, PFC —
bottom) of the 2 order model of the test system with level of noise 10%

The third order (nonlinear) model was tested with the level of noise 10% and 1% and
showed good level of noise immunity. The standard, noised and de-noised (filtered) (fig. 8)

characteristics (AFC and PFC) with level of noise 1% are presented.
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0 05 1 15 2 25 3 35 4 45 5
Frequency, rad/s

“0 05 1 15 2 25 3 35 4 45 5
Frequency, rad/s

Fig. 8. The standard (1), noised (2) and denoised (3) characteristics (AFC — top, PFC —
bottom) of the 3 order model of the test system with level of noise 0,1%

The numerical values of RMSE of the identification accuracy before and after wavelet
filtering procedure are presented in Table 2.

Table 2.
Standard deviation for interpolation method with noise impact
Noise level = 10% Noise level = 0,1% Improvement
N RMSE for RMSE for RMSE for RMSE for | for AFC, | for PFC,
AFC PFC AFC PFC times times

(without / with filtering)

0.000097 / | 0.09031/ _ -
2 | 0.000063 0.07541 1.540 1.198

0.000271/ | 0.07804/ _ -
F4 1 0000181 0.06433 1.497 1.213

0.000312/ | 0.12913/ _ -
6 1 0.000223 0.09889 1.399 1.306

0.000920/ | 0.52063/ - -
2| 0.000670 0.51465 1.373 1.012

0.001972/ | 0.28004 / _ -
214 0001663 0.06877 1.186 4.072

0.004165/ | 0392607 - -
© | 0.003908 | 0.19237 1.066 | 2041

— — 0.000288 / 0.89857 /
4 0.000288 0.61251 1.003 1.467

— — 0.000461 / 0.84868 /
6 0.000352 0.59319 1310 1431

The diagrams showing the improvement of RMSE for identification accuracy using the
wavelet filtering of the received characteristics for AFC and PFC are shown in fig. 9a and
fig. 9b respectively.
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Fig. 9. RMSE changing for AFC (a) and PFC (b) using wavelet-filtering

Conclusion

The interpolation method used for nonparametric model building is based on Volterra
model. The polyharmonic test signals are used for identification the nonlinear dynamical
systems. The method based on linear combination of responses to the test signals with
different amplitudes is used to differentiate the responses of system for partial components.

The provided results have confirmed nonlinearity of the test system. Selected values of
test signal amplitudes and corresponding coefficients are raising greatly the accuracy of
identification in compare to amplitudes and coefficients written in [1, 9]. The accuracy of
identification of nonlinear part of the test system as RMSE is less than 3% for AFC and less
than 6 % for PFC in best cases. This characterizes method as excellent one.

The noise immunity of the method is very high for the linear part and high enough for
the nonlinear part of the model. The RMSE of noised characteristics doesn’t overgrow 10% in
best cases with 10% measurement inaccuracy. The wavelet filtering of the response and final
characteristics of the nonlinear dynamical system is very effective and gives the possibility to
improve the identification accuracy of the inexact measurements up to 1.54 and 4.07 times for
the AFC and PFC respectively.

References

1. Danilov, L.V. The theory of nonlinear electrical circuits / L.V. Danilov, P.N. Mathanov,
E.S. Philipov // Published Energoatomizdat, Leningrad — 1990 — 396 p.

2. Donoho, D.L. Threshold selection for wavelet shrinkage of noisy data / D.L. Donoho, I.M.
Johnstone // Proc. 16th Annual Conf. of the IEEE Engineering in Medicine and Biology Society,
24a-25a, IEEE Press — 1994 — PP.128-139.

3. Doyle, F.J. Identification and Control Using Volterra Models / F.J. Doyle, R.K. Pearson,
B.A. Ogunnaike // Published Springer Technology & Industrial Arts — 2001 — 420 p.

4. Giannakis, G.B. Bibliography on nonlinear system identification and its applications in signal
processing, communications and biomedical engineering / G.B. Giannakis, E.A. Serpedin // Signal
Processing, EURASIP, Elsevier Science B.V. 81(3) —2001 — PP. 533-580.

5. Goswami, J.G. Fundamentals of Wavelets: Theory, Algorithms, and Applications / J.G. Goswami,
A.K.Chan // Publishing John Wiley&Sons Inc — 1999 — 289 p.

6. Misiti, M. Wavelets Toolbox Users Guide / M. Misiti, Y. Misiti, G. Oppenheim, J-M. Poggi // The
MathWorks Inc. Wavelet Toolbox, for use with MATLAB — 2000 — 137 p.

24



[HOOPMATHUKA TA MATEMATHUYHI METOZI B MOJIEJIFOBAHHI = 2014 = Tom 4, Nel

7.

10.
11.

12.

Pavlenko, V.D. Interpolation Method of Nonlinear Dynamical Systems Identification Based on
Volterra Model in Frequency Domain / V.D. Pavlenko, S.V. Pavlenko, V.O. Speranskyy //
Proceedings of the 7th IEEE International Conference on Intelligent Data Acquisition and
Advanced Computing Systems: Technology and Applications (IDAACS’2013), 15-17 September
2013, Berlin, Germany — 2013. PP.173-178.

Pavlenko, V.D. Analysis of identification accuracy of nonlinear system based on Volterra model in
frequency domain / V.D. Pavlenko, V.O. Speranskyy // American Journal of Modeling and
Optimization — Vol.1, No.2 — 2013. PP.11-18. DOI: 10.12691/ajmo-1-2-2.

Pavlenko, V.D. Communication Channel Identification in Frequency Domain Based on the
Volterra Model / V.D. Pavlenko, V.O. Speranskyy // Recent Advances in Computers,
Communications, Applied Social Science and Mathematics. Proceedings of the International
Conference on Computers, Digital Communications and Computing (ICDCC'11), Barcelona,
Spain, September 15-17, 2011. Published by WSEAS Press — 2011. PP.218-222.

Sergeev, A.G. Metrologija / A.G. Sergeev, V.V. Krohin // M. : Logos, 2000. — 407 p.

Schetzen, M. The Volterra and Wiener Theories of Nonlinear Systems // Wiley&Sons, New York
—1980—245p.

Westwick, D.T. Methods for the Identification of Multiple-Input Nonlinear Systems //
Departments of Electrical Engineering and Biomedical Engineering, McGill University, Montreal,

Quebec, Canada — 1995 — 312 p.

IPEKTHBHICTb 3ACTOCYBAHHAA BEUBJIET-®UJIbTPAIIIT J1JISI ITEHTU®IKALIT
HEJIIHIMHUX CUCTEM HA OCHOBI MOJIEJIEM BOJIbTEPPA B YUACTOTHIM OBJIACTI

B.O. Cnepancwkuit, B.JI. [TaBnenko

OpecbKuii HalllOHAJILHU MTOJITEXHIYHUH YHIBEPCHUTET,
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HaBeneno pesynbraTi JOCIHiIKeHb €(eKTUBHOCTI BeWBIET-(PUIbTpalii IpH 3acTOCYBaHHI
IHTEpIOJIAMIMHOrO MeToAa ineHTH(IKANii HEMIHIHHMX MUHAMIYHHUX CHCTEM Ha OCHOBI
Momeni BoibTeppa B yacToTHiii oOmacti. J{ocmiKEHO TOYHICTH Ta 3aBaJOCTIHKICTh
BH3HAYCHHSA aMIUTITYIHO— 1 ()a30—4aCTOTHUX XapaKTePUCTUK IIEPIIOro, APYroro u
TPETHOTO TIOPSIKIB HETIHIMHOI CHCTEMH 3a IaHNMH CKCIICPUMCHTY «BXII-BHXiIT» 3a
JIOTTOMOT'OF0 TECTOBHUX ITOJIITAPMOHIYHUX CHUTHATIB. [TiABHUINCHHS 3aBaOCTIMKOCTI METOMY
inenTH(iKanii JOCATHYTO 3a JOIIOMOIOI0 BeHBIET-(hibTpallii myMiB BUMIpIOBaHb BiJTyKiB
Ta OTPUMYBAHUX XapAKTEPUCTUK CUCTEMHU, IO ICHTU(IKYIOTb.
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HeNHIMHI AWHaMiyHi cucremH, Mojeni Bombreppa, Oaratomipai AUYX 1 ®UX,
TMOIrapMOHIYHI CUTHAJIH.

IPPEKTHUBHOCTD IIPUMEHEHUW A BEUBJIET-®WJIbTPALIUU 1151 UIEHTU®UKAIIAU
HEJIMHEVMHBIX CUCTEM HA OCHOBE MOJIEJIEM BOJIbTEPPA B YACTOTHOM OBJIACTH

B.A. Cnepanckuit, B.Jl. IlaBnenko

Opnecckuii HAIMOHAIBHBIN MOJUTEXHUYECKUN YHUBEPCUTET,
mp. llleryenko, 1, Onecca, Ykpauna, 65044, e-mail: speranskiyva@ukr.net

[MpuBogsarcs pe3yabTaThl HUccienoBaHus APQPEKTUBHOCTH BeHBIET-QUIBTPALMKA IPU
MIPUMEHEHUU WHTEPIIOSIIMOHHOTO METOJa WASHTU(HUKAIWNY HEJMHEHHBIX JUHAMHYECKUX
CHCTEM Ha OCHOBe Mojeiu BombTeppa B wyacToTHOH ob6iactu. Mccnemyercss TOYHOCTh U
MIOMEXOYCTOHYNBOCTD OINPEJNENICHNs] aMIUIUTYAHO— M (Da30—4aCTOTHBIX XapaKTEePUCTUK
TIEpBOT'0, BTOPOT'O M TPETHETO IOPSAKOB HETUHEHHOM CHCTEMBI 110 IAHHBIM JKCIIEpHMEHTa
«BXOJ-BBIXOIl» C TIOMOLIbIO TECTOBBIX IOJUTAPMOHUYECKUX CHTHalOB. lloBBIlIEHHE
MIOMEXOYCTOHYMBOCTH MeETOJa WICHTH(OUKAIMK JIOCTHI'A€TCs C TIOMOIIBIO BEWBJIET-
¢uIbTpanMK  OIYMOB  M3MEPEHHH  OTKIMKOB M IOJYYaeMbIX  XapaKTEPUCTHK
UICHTU(HUIUPYEMOH CUCTEMBI.

KnawueBbie  ciaoBa:  BelBier-QuibTpauus, — uaeHTUQUKauus,  3(QHEeKTUBHOCTD,
MIOMEXOYCTOHYNBOCTh, HEIIMHEHHbIE JWHAMUYECKHE CHUCTEMBbI, Mojenu Bombreppa,
MHoromepHsle AUX u @YX, nonurapMoHUIeCKHUe CUTHAJIBL.
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