
ar
X

iv
:2

11
1.

08
90

4v
1 

 [
m

at
h.

D
S]

  1
7 

N
ov

 2
02

1

SEARCH FOR INVARIANT SETS OF THE

GENERALIZED TENT MAP

KIMBERLY AYERS, DMITRIY DMITRISHIN, AMI RADUNSKAYA,

ALEXANDER STOKOLOS, AND CONSTANTINE STOKOLOS

Abstract. This paper describes a predictive control method to

search for unstable periodic orbits of the generalized tent map.

The invariant set containing periodic orbits is a repelling set with

a complicated Cantor-like structure. Therefore, a simple local sta-

bilization of the orbit may not be enough to find a periodic orbit,

due to the small measure of the basin of attraction. It is shown

that for certain values of the control parameter, both the local be-

havior and the global behavior of solutions change in the controlled

system; in particular, the invariant set enlarges to become an in-

terval or the entire real axis. The computational particularities of

using the control system are considered, and necessary conditions

for the orbit to be periodic are given. The question of local asymp-

totic stability of subcycles of the controlled system’s stable cycles

is fully investigated, and some statistical properties of the subset

of the classical Cantor middle thirds set that is determined by the

periodic points of the generalized tent map are described.

Keywords. Generalized tent map, predictive control, periodic or-

bits, local stabilization, invariant sets.

Introduction

In his seminal paper R. Lozi noted that numerical computations us-

ing computers play a central role in analyzing solutions of nonlinear

dynamical systems, that computer-aided proofs are complex and nec-

essarily require additional special validation of the results [1]. Never-

theless, numerous studies in fields related to chaotic dynamical systems

are confident in the numerical solutions that they found using popular

software, sometimes without carefully checking the reliability of these

results. Computationally, computers store numbers in registers and

memory cells with a limited number of digits. Thus, the set of real

numbers represented in the machine is discrete and finite - irrational

numbers, and rational numbers with infinite decimal expansions are
1
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rounded to decimal expansions that terminate. This can lead to prob-

lems when attempting to numerically find unstable periodic orbits of

discrete chaotic dynamical systems.

Consider the family of chaotic dynamical systems given by the gen-

eralized tent map:

(1) xn+1 = f(xn), n = 1, 2, . . . ,

where

(2) f(x) = H

(
1

2
−

∣∣∣∣x−
1

2

∣∣∣∣
)

=

{
Hx, x ≤ 1

2
,

H(1− x), x > 1
2
,

x ∈ (−∞, +∞), H ≥ 2. Note that, despite the relative simplicity of

function (2), Equation (1) is of great theoretical importance and has

appeared in several applications [2,3]. Consider the classical tent map,

given by H = 2. Note that x0 = 2
3
is a fixed point: f(2

3
) = 2

3
. Since

|f ′(2
3
)| = 2 > 1, 2

3
is an unstable fixed point. Thus, any amount of

rounding error will cause an orbit to eventually diverge from this fixed

point, and we can see this computationally.

In this article, we show how we can correct the computational pro-

cedure in the problem of finding unstable periodic orbits of a nonlinear

discrete system using the tent map as an illustrative example.

The dynamics of even the simplest nonlinear discrete systems can be

quite complex [4–6]. Such systems are often characterized by extremely

unstable motions in phase space, which are defined as chaotic [4]. In

dissipative systems, these motions define invariant sets, which can be

strange attractors or repellers. Trajectories on such invariant sets have

positive Lyapunov exponents; therefore, these trajectories are exponen-

tially sensitive to the initial conditions. Unstable periodic orbits are

canonical examples of repelling invariant sets, and we can get insight

into the general study of repellers by considering unstable periodic or-

bits. Periodic orbits have a hierarchical structure determined by their

length, which makes it possible to calculate various characteristics of

invariant sets and their subsets, for example, topological dimension and

entropy [7]. However, when applying numerical methods to search for

points along a periodic orbits we encounter a number of fundamental

problems. Due to sensitivity to initial conditions and rounding errors,

after several calculation steps the results can vary greatly depending on

the chosen calculation accuracy: the so-called “butterfly effect” occurs.
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Even with a real possibility to choose a very high accuracy of calcu-

lations, we will never be able to say with certainty what we actually

found: a long cycle, a pseudo-cycle or a strange attractor [1].

There are several methods of searching for periodic orbits of a non-

linear discrete system, which can be divided into two groups: methods

that do not use the correction of the original discrete dynamical sys-

tem, for example, the method of interval arithmetic analysis [8–10],

or the method connected with the construction of special Hamiltonian

systems [7]; and methods based on local stabilization of an unknown

periodic orbit of a given length [11–16]. The second group of meth-

ods is more preferable in the sense that their accuracy increases with

the number of iterations, due to the correction of the original dynam-

ical system. If we can locally stabilize the orbit with the help of the

control action, then the trajectories of the system will remain in the

neighborhood of the orbit and will be attracted to it, i.e. the periodic

orbit will be “found”. By choosing different initial points, different pe-

riodic orbits can be found. To solve the problems of stabilization in the

search of periodic orbits, various control schemes were proposed that

use information about the states of the controlled system at previous

points in time [17–20] (delayed control) or about the states of the initial

system at future points in time [21–24] (predictive control).

The purpose of this paper is to illustrate the effectiveness of the pre-

dictive control method using the example of the generalized tent map.

The invariant sets of the generalized tent map are repellers that have

the structure of a Cantor set. We show that in a controlled system,

along with a change in the local behavior of solutions, the global be-

havior also changes. We describe the invariant sets of the controlled

system, which are either a single interval or a union of intervals. Lo-

cally asymptotically stable periodic orbits are subsets of the invariant

set. The basins of attraction of these orbits are also discussed.

The paper is organized as follows. In Section 1 we present the main

result from previous work [24], which substantiates the generalized pre-

dictive control scheme. Section 2 poses the problem of finding a cycle

of length T , and provides necessary and sufficient conditions for the

local asymptotic stability of this cycle.

Section 2 presents the main theoretical results in the paper: it pro-

vides conditions under which all solutions of the controlled system are

bounded (Theorem 1), or solutions with initial values from a given
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interval are bounded (Theorem 2). We also show that the cycles do

not lose the property of local asymptotic stability. In Section 3, some

computational particularities of using the control system for finding

cycles are considered, and necessary conditions for the found sequence

to be a cycle are given. In Section 4, using the example of stabiliza-

tion of cycles of small lengths, we consider the relationship between

the graphical properties of the original map and the map determined

by the controlled system. In Section 5, the question about local as-

ymptotic stability of subcycles of the controlled system’s stable cycles

is fully investigated (Theorem 3). Section 6 studies subsets of the clas-

sical Cantor middle thirds set. Since any point in the Cantor set is a

limit of periodic points, we can use the controlled system to visualize

the Cantor set itself. We compare the distribution of periodic points

of very long cycles to the distribution of points of the first type, i.e.

endpoints of the intervals that make up the complement of the Cantor

set. The images in this paper were created using Maple, and the files

that generated them can be found at [25].

1. Background

We consider the discrete system

(3) xn+1 = f(xn), xn ∈ R
m, n = 1, 2, . . . ,

where f(x) is, in general, a nonlinear differentiable function from R
m

to R
m. It is assumed that this system has one or more unstable T -

cycles (η1, . . . , ηT ) , where all the vectors η1, . . . , ηT are distinct, i.e.

ηj+1 = f(ηj), j = 1, . . . , T − 1, η1 = f(ηT ). Vectors in the cycles

are called cyclic points, and each cycle of length T constitutes a T -

periodic orbit. The multipliers of the unstable cycles are defined as

the eigenvalues of the products of Jacobi matrices
T∏

j=1

f ′(ηT−j+1) of

dimension m×m at the points of the cycle. The matrix
T∏

j=1

f ′(ηT−j+1)

is called the Jacobi matrix of the cycle (η1, . . . , ηT ) . The collection of

all multipliers {µ1, . . . , µm} is called the spectrum of the Jacobi matrix.

As a rule, the cycles (η1, . . . , ηT ) of system (3) are not known a priori.

Consequently, the spectrum is not known either.
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Consider the control system

(4) xn+1 = f

(
ϑ1xn +

N∑

j=2

ϑjf
((j−1)T )(xn)

)
.

The numbers ϑ1, . . . , ϑN are real. We can verify that when
N∑
j=1

ϑj = 1,

system (4) also has a cycle {η1, . . . , ηT} . The problem is to choose a

parameter N and coefficients ϑ1, . . . , ϑN so that the cycle {η1, . . . , ηT}

of system (4) is locally asymptotically stable.

The following result gives a criterion for stability of the cycles in

terms of the multipliers. We will see how to use this result to determine

a suitable range for the control parameter, ϑ.

Proposition 1 ( [24] ). Suppose f ∈ C1 and that system (3) has an

unstable T -cycle with multipliers {µ1, . . . , µm} . Then this cycle will be

a locally asymptotically stable cycle of system (4) if

µj [r(µj)]
T ∈ D, j = 1, . . . , m,

where D = {z ∈ C : |z| < 1} is an open central unit disc on the com-

plex plane, r(µ) =
N∑
j=1

ϑjµ
j−1.

A set U is called invariant for equation (3) if for any x0 ∈ U it

follows that f (k)(x0) ∈ U, k = 1, 2, . . . . It is shown in [26] that for

H = 3 the invariant set of equation (1) is the classical Cantor set.

Analogously, it can be shown that when H > 2, the invariant set for

Equation (1) is a set of the Cantor type, that is an uncountable, closed

set with zero Lebesgue measure. Note that each point of the invariant

set can be represented in the form
∞∑
j=1

αj

Hj , where αj ∈ {0, H − 1}. This

set includes a countable subset of all periodic points of map (2). If x0

does not belong to the invariant set, then the corresponding sequence{
f (k)(x0)

}∞
k=1

tends to −∞. Such invariant sets are called repellers of

map (2). The problem we address in this paper is the following: for

given T , can we numerically find T -periodic points of the tent map (2)

as limit points of some iterative scheme.
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2. Main results: the control system and global behavior

of the control system trajectories

To solve the problem of finding unstable periodic orbits of the tent

map, we will use the predictive control method, which we now describe

explicitly. Along with equation (1), consider the equation

(5) xn+1 = F (xn), n = 1, 2, . . . ,

where F (x) = f
(
ϑx+ (1− ϑ)f (T )(x)

)
, ϑ is some real number, called

the control parameter, whose value will be determined later. We will

call Equation (5) the control system for equation (1). The idea is to

find the values of ϑ that stabilize our target periodic cycles.

Let {η1, . . . , ηT} be a cycle of the equation (1) of length T . Since

ϑηk + (1− ϑ)f (T )(ηk) = ηk, then F (ηk) = f(ηk), which means that the

cycle of the equation (1) will also be a cycle of equation (5). Note that

the converse statement is generally not true.

The multiplier of the equation (1) cycle is defined by the formula

µ = f ′(ηT ) · . . . · f
′(η1).

Since |f ′(ηj)| = H, then |µ| = HT > 1, that is, any cycle of equation (1)

is unstable. Let us find the value of the multiplier λ of the same cycle

{η1, . . . , ηT } , but for equation (5). From Proposition 1 we get that

λ = µ (ϑ+ (1− ϑ)µ)T .

In what follows, we will consider two cases separately: µ > 0 and

µ < 0. Let µ = HT . Then the condition for local asymptotic stability

of the T -cycle of equation (5) is: |λ| =
∣∣∣HT

(
ϑ+ (1− ϑ)HT

)T ∣∣∣ < 1,

from which it follows that

(6) 1 <
HT − 1

H

HT − 1
< ϑ <

HT + 1
H

HT − 1
<

5

2
.

If µ = −HT , then the condition for local asymptotic stability of the

equation (5) cycle is: |λ| =
∣∣∣HT

(
ϑ− (1− ϑ)HT

)T ∣∣∣ < 1, from which

(7)
1

2
<

HT − 1
H

HT + 1
< ϑ <

HT + 1
H

HT + 1
< 1.

Thus, Proposition 1 yields the following conditions for asymptotic

stability of cycles:
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Claim 1. Given a T -cycle of equation (1) with the multiplier µ. This

cycle will be a locally asymptotically stable cycle of equation (5) if in-

equalities (6), in the case µ > 0, or inequalities (7), when µ < 0, are

satisfied.

If there are locally asymptotically stable cycles in equation (5), then

the invariant set of this equation also includes the basins of attraction

of these cycles. Since the basin of attraction of a cycle is an open set,

its measure is positive. However, there remains the question about how

large this measure is. This question is important when doing numerical

experiments, because we must judiciously choose the initial point to be

in the basin of attraction the desired cycle. Thus, as we pass from

equation (1) to equation (5), we are ensured that the nature of the

periodic orbit (the set of points of the cycle) changes from a repeller

into an attractor. For numericaly tractability, it is also important to

know that we have a basin of attraction of sufficiently large measure.

Next, we will establish the properties of invariant sets of equation (5)

and the global behavior of its solutions. In particular, we will show that

under the conditions on the control parameter, θ, given in Claim 1, we

have globally attracting invariant sets made up of intervals.

We state these properties as two theorems, one for the case when

the multiplier µ is positive, and one when µ is negative. The proofs of

the two theorems are broken down into several lemmas, each dealing

with a specific range of ϑ values. The two main theorems follow from

these lemmas, allowing us to find all cycles of arbitrary lengths with

any given accuracy.

Theorem 1. (Case µ > 0)

If inequalities
HT− 1

H

HT−1
< ϑ ≤

HT+ 1

H

HT−1
are satisfied, then any solution of

equation (5) is bounded, and its limit set is contained in
[
0, H

2

]
. More-

over, any T -cycle {η1, . . . , ηT} of this equation, for which the quantity

µ = f ′(ηT ) · . . . · f
′(η1) is positive, is locally asymptotically stable.

Theorem 2. (Case µ < 0) If the inequalities
HT− 1

H

HT+1
< ϑ ≤ HT

HT+1
are

satisfied, the set
[
0, H

2

]
is an invariant set of equation (5). Moreover,

any T -cycle {η1, . . . , ηT } of this equation, for which the quantity µ =

f ′(ηT ) · . . . · f
′(η1) is negative, is locally asymptotically stable.

Theorems 1 and 2 will be proved through a sequence of five lemmas,

each one dealing with a different sub-case. Lemmas 1-3 divide the
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positive multiplier case into three sub-cases: one where ϑ is exactly in

the middle of the allowed interval (Lemma 1), one where ϑ is in the

lower half of the allowed interval (Lemma 2) and one where ϑ is in

the upper half of the allowed interval (Lemma 3). The remaining two

lemmas (Lemmas 4 and 5) deal with the case of a negative multiplier,

µ < 0.

2.1. Proof of Theorem 1. Throughout the proof, to break down the

calculations, we let the function

ζ(x) = ϑx+ (1− ϑ)f (T )(x)

be the intermediary linear combination that appears in the definition

of the control function, F (x) given in Equation (5). Thus, F (x) =

f(ζ(x)), and ζ0 = ζ(x0).

Suppose µ > 0, and let inequalities (6) be satisfied. Divide the

conditions (6) into three cases: (i) ϑ = HT

HT−1
, (ii)

HT− 1

H

HT−1
< ϑ < HT

HT−1
,

and (iii) 1 < HT

HT−1
< ϑ <

HT+ 1

H

HT−1
.. Each case is treated in a separate

lemma.

Lemma 1. Let ϑ = HT

HT−1
. Then, if x0 ≤ 0, it follows that F (x0) = 0,

hence, F (k)(x0) = 0 when k = 1, 2, . . . ; if x0 ≥ 1, then F (x0) < 0,

hence, F (k)(x0) = 0 when k = 2, 3, . . . ; if x0 ∈ (0, 1), then
{
F (k)(x0)

}∞
k=2

∈

[0, 1].

Proof. Let x0 ≤ 0, then f(x0) = Hx0 ≤ 0, f (2)(x0) = H2x0 ≤ 0, . . . ,

f (T )(x0) = HTx0. Find

ζ0 = ζ(x0) = ϑx0 + (1− ϑ)f (T )(x0) =
1

HT − 1

(
HTx0 −HTx0

)
= 0.

Hence, F (x0) = f(ζ0) = 0.

Let x0 ≥ 1, then

f(x0) = H(1−x0) ≤ 0, f (2)(x0) = H2(1−x0) ≤ 0, . . . , f (T )(x0) = HT (1−x0),

and

ζ0 = ϑx0 + (1− ϑ)f (T )(x0) =
1

HT − 1

(
HTx0 −HT (1− x0)

)

=
HT

HT − 1
(2x0 − 1) > 1,

so that F (x0) = f(ζ0) = H(1− ζ0) < 0. Hence, F (2)(x0) = 0.

The last case remains: if x0 ∈ (0, 1), then there is a k0 such that

F (k)(x0) = 0, for all k > k0; or
{
F (k)(x0)

}∞
k=2

∈ (0, 1) for all k. �
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The case
HT− 1

H

HT−1
< ϑ < HT

HT−1
is considered in a similar way.

Lemma 2. Let
HT− 1

H

HT−1
< ϑ < HT

HT−1
. Then,

if x0 ≤ 0 or x0 ≥ 1, F (k)(x0) −−−→
k→∞

0;

when x0 ∈ (0, 1), either F (k)(x0) −−−→
k→∞

0 or
{
F (k)(x0)

}∞
k=1

∈ (0, 1).

Proof. Let x0 ≤ 0, then f(x0) = Hx0 ≤ 0, . . . , f (T )(x0) = HTx0. Find

ζ0 = ϑx0 + (1− ϑ)f (T )(x0) =
(
HT − ϑ(HT − 1)

)
x0.

It follows from the inequality
HT− 1

H

HT−1
< ϑ < HT

HT−1
that, first, ζ0 ≤ 0,

and

F (x0) = f(ζ0) = Hζ = H
(
HT − ϑ(HT − 1)

)
x0 ≤ 0,

and, second:

0 < α = H
(
HT − ϑ(HT − 1)

)
< 1,

from which F (x0) = −α|x0| > −|x0|. Then
∣∣F (k)(x0)

∣∣ = αk|x0| −−−→
k→∞

0.

Let x0 ≥ 1, then f(x0) = H(1−x0) ≤ 0, . . . , f (T )(x0) = HT (1−x0),

ζ0 = ϑx0 + (1− ϑ)f (T )(x0)

= x0 + (ϑ− 1)
(
x0 +HT (x0 − 1)

)

> x0 > 1.

Then F (x0) = f(ζ0) = H(1− ζ0) < 0. Hence,

F (2)(x0) = −α |F (x0)| > − |F (x0)| ,
∣∣F (k)(x0)

∣∣ = αk−1 |F (x0)| −−−→
k→∞

0.

Let x0 ∈ (0, 1). If for some k0, F
(k0)(x0) ≤ 0 or F (k0)(x0) ≥ 1, then

F (k)(x0) −−−→
k→∞

0. Otherwise,
{
F (k)(x0)

}∞
k=1

∈ (0, 1). The lemma is

proved. �

The case HT

HT−1
< ϑ <

HT+ 1

H

HT−1
remains.

Lemma 3. Let HT

HT−1
< ϑ <

HT+ 1

H

HT−1
. In this case, if −H2+H

2
≤ x0 ≤

H
2
,

then

(8) −H2 +
H

2
≤ F (k)(x0) ≤

H

2
, k = 1, 2, . . . .

If x0 > H
2
or x0 < −H2 + H

2
, there exists a number k0 ≥ 0 such that

inequalities (8) are satisfied for all k greater than k0.
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Proof. Let x0 ≤ 0, then f(x0) = Hx0 ≤ 0, . . . , f (T )(x0) = HTx0,

ζ0 =
(
HT − ϑ(HT − 1)

)
x0.

The inequality
HT

HT − 1
< ϑ <

HT + 1
H

HT − 1
is equivalent to

−
1

H
< HT − ϑ(HT − 1) < 0,

from which it follows that 0 ≤ ζ0 ≤ |x0|
H
. If −H ≤ x0 ≤ 0, then

0 ≤ ζ0 ≤ 1 and 0 ≤ F (x0) ≤
H
2
.

If x0 < −H and ζ0 ≥ 1, then 0 ≥ F (x0) = H(1 − ζ0) > H − |x0|.

Moreover, if F (k)(x0) < −H and
(
HT − ϑ(HT − 1)

)
F (k)(x0) ≥ 1, then

0 ≥ F (k+1)(x0) > H−
∣∣F (k)(x0)

∣∣ > (k+1)H−|x0|. It means that there

exists such k0 that −H ≤ F (k0)(x0) ≤ 0. And hence, 0 ≤ F (k0+1)(x0) ≤
H
2
.

Let 0 ≤ x0 ≤ H
2
, then HT

(
1− H

2

)
≤ f (T )(x0) ≤ H

2
. Since ϑ > 1,

then

−
3

4
H < ϑx0 − (ϑ− 1)

H

2
≤ ζ0

≤ ϑx0 + (ϑ− 1)HT

(
H

2
− 1

)

< ϑ
H

2
+ (ϑ− 1)HT

(
H

2
− 1

)

<
1

HT − 1

((
HT +

1

H

)
H

2
+

(
1 +

1

H

)
HT

(
H

2
− 1

))

=
1

HT − 1

(
HT+1 −

HT

2
−HT−1 +

1

2

)
.

Note that 1 < H−1 < 1
HT−1

(
HT+1 − HT

2
−HT−1 + 1

2

)
< H+ 1

2
. Then

F (x0) > H

(
1−

1

HT − 1

(
HT+1 −

HT

2
−HT−1 +

1

2

))
> −H

(
H −

1

2

)
.

Therefore, if 0 ≤ x0 ≤ H
2
, then −H2 + H

2
≤ F (x0) ≤ H

2
. Moreover,

if F (x0) < 0 then for some k0 the inequality 0 ≤ F (k0)(x0) ≤ H
2

is

satisfied.

Let x0 >
H

2
, then

f (T )(x0) = HT (1−x0), ζ0 = ϑx0+(ϑ−1)HT (x0−1) > 1, and F (x0) < 0.
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This means that for some k0 the inequality 0 ≤ F (k0)(x0) ≤ H
2

is

satisfied.

Summing up the four cases above, we get that when −H2 + H
2

≤

x0 ≤ H
2
, inequalities (8) hold. If x0 > H

2
or x0 < −H2 + H

2
, then

inequalities (8) will be satisfied starting from some iterate, xk. The

lemma is proved. �

The assertion of Theorem 1 follows from Claim 1, and Lemmas 1, 2

and 3, .

2.2. Proof of Theorem 2. Let us now pass to the study of the global

behavior of the T -cycles {η1, . . . , ηT} of equation (5) for which the

quantity µ = f ′(ηT )·. . .·f
′(η1) is negative, assuming that conditions (7)

are satisfied.

Lemma 4. Let conditions (7) be satisfied and x0 < 0. Then

F (k)(x0) −−−→
k→∞

−∞.

Proof. Since x0 < 0, then f(x0) = Hx0 ≤ 0, . . . , f (T )(x0) = HTx0, and

ζ0 = ϑx0 + (1− ϑ)f (T )(x0) =
(
ϑ+ (1− ϑ)HT

)
x0.

Since 1
2
< ϑ < 1, then ζ0 < x0, F (x0) = Hζ0 < Hx0, F

(k)(x0) < Hkx0

when k = 1, 2, . . . , from which the conclusion of the lemma follows. �

Lemma 5. Let the inequalities
HT− 1

H

HT+1
< ϑ ≤ HT

HT+1
be satisfied, and

0 ≤ x0 ≤
H
2
. Then 0 ≤ F (x0) ≤

H
2
.

Proof. Let 1 ≤ x0 ≤ H
2
, then f(x0) = H(1 − x0) ≤ 0, . . . , f (T )(x0) =

HT (1− x0),

ζ0 = ϑx0+(1−ϑ)f (T )(x0) =
1

HT + 1

(
(HT + α)x0 + (1− α)HT (1− x0)

)
,

where ϑ = HT+α
HT+1

, − 1
H

< α ≤ 0. Since 0 ≤ x0 ≤
H
2
,

ζ0 =
1

HT + 1

(
HT + α(x0 + x0H

T −HT )
)

>
1

HT + 1

(
HT −

1

H

(
H

2
+

H

2
HT −HT

))

=
1

HT + 1

(
1

2
HT −

1

2
+HT−1

)

>
1

2
.

On the other side, ζ0 ≤
HT

HT+1
< 1. Hence, 0 < F (x0) ≤

H
2
.
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Let 0 ≤ x0 < 1, p ∈ {1, . . . , T} is the smallest number at which

f (p−1)(x0) < 1, but f (p)(x0) > 1 (here we mean that f (0)(x) := x). It is

clear that f (p)(x0) ≤
H
2
.

Note that

1

H
f (p)(x0) ≤ f (p−1)(x0) ≤ 1−

1

H
f (p),

1

H2
f (p)(x0) ≤

1

H
f (p−1)(x0) ≤ f (p−2)(x0)

≤ 1−
1

H
f (p−1)(x0) ≤ 1−

1

H2
f (p)(x0),(9)

... ,

1

Hp
f (p)(x0) ≤ x0 ≤ 1−

1

Hp
f (p)(x0).

If p = T, then ζ0 > 0 and, since x0 − f (T )(x0) < 0,

ζ0 = ϑx0+(1−ϑ)f (T )(x0) <
1

HT + 1

((
HT −

1

H

)
x0 +

(
1 +

1

H

)
f (T )(x0)

)
,

and because of (9),

(
HT −

1

H

)
x0 +

(
1 +

1

H

)
f (T )(x0)

≤

(
HT −

1

H

)(
1−H−Tf (T )(x0)

)
+

(
1 +

1

H

)
f (T )(x0)

= HT −H−1 − f (T )(x0) +H−T−1f (T )(x0) + f (T )(x0) +H−1f (T )(x0)

< HT +
1

2
H−T +

1

2

< HT + 1.

This implies ζ0 < 1.

Let p < T. Then ζ0 < 1.Check the inequality ζ0 > 0. Since f (T )(x0) =

HT−p
(
1− f (p)(x0)

)
≤ 0, then x0 − f (T )(x0) > 0 and

ζ0 = ϑx0+(1−ϑ)f (T )(x0) >
1

HT + 1

((
HT −

1

H

)
x0 +

(
1 +

1

H

)
f (T )(x0)

)
.
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Because of (9),
(
HT −

1

H

)
x0 +

(
1 +

1

H

)
f (T )(x0)

≥

(
HT −

1

H

)
H−pf (p)(x0) +

(
1 +

1

H

)
HT−p

(
1− f (p)(x0)

)

= HT−pf (p)(x0)−HT−p−1f (p)(x0) +

(
1 +

1

H

)
HT−p

−
(
HT−p +HT−p−1

)
f (p)(x0)

=

(
1 +

1

H

)
HT−p − 2HT−p−1f (p)(x0)

≥

(
1 +

1

H

)
HT−p −HT−p

> 0.

Thus, when 0 ≤ x0 < 1, the inequalities 0 < ζ0 < 1 hold and, therefore,

0 < F (x0) ≤
H
2
. The lemma is proved. �

Theorem 2 follows from Lemmas 4 and 5.

Note that when the inequalities
HT

HT + 1
< ϑ <

HT + 1
H

HT + 1
are satis-

fied, the invariant set of equation (5) will no longer be a segment, but

will be the union of a finite or countable number of intervals, and the

measure of this set may be small.

Theorems 1 and 2 are illustrated in Section 4 for the case H = 3 and

T = 2.

3. Computational particularities of using the control

system

In this section we introduce the residuals:

Un = ||f(ϑxn + (1− ϑ)f (T )(xn))− f(xn)||

and

Ûn = ||xn+T − xn||,

whose rate of decay allows us to compare solutions of system (5) to

solutions of system (1), as well as the T -periodicity of the solutions.

Let us consider the computational particularities of the iterative

scheme (5) for finding the cycles of equation (1). For cycles with pos-

itive multipliers, it is theoretically possible to take any number from

the interval
(

HT− 1

H

HT−1
,

HT+ 1

H

HT−1

)
as the control parameter; however, if this
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parameter belongs to the half-interval
(

HT− 1

H

HT−1
, HT

HT−1

]
, then the fixed

point will have a fairly large basin of attraction. This will be illustrated

geometrically below. Therefore, if we want to find true period-T cycles,

it is reasonable to choose the control parameter closer to
HT + 1

H

HT − 1
. For

cycles with negative multipliers, the control parameter can be taken

from the interval

(
HT − 1

H

HT + 1
,

HT

HT + 1

)
. Since the basin of attraction

of a given cycle can be quite small, the initial value x0 should belong

to the nodes of a sufficiently dense grid of the interval (0, 1) in order

to find the largest possible number of cycles.

Note that for large values of T, the control parameter ϑ is close to

one, and the value 1 − ϑ is close to zero. In this case, the lengths of

the intervals of possible changes in the control parameter are equal to
1

H(HT−1)
or 1

H(HT+1)
, i.e. as T grows, they tend to zero exponentially.

Therefore, although the method suggested above for determining

cycles theoretically allows us to solve the stated problem numerically,

practical questions remain: when can we rely on numerical solutions?

How can we control numerical results? What calculation accuracy

should be chosen?

In practice, intermediate calculations should be introduced to control

the results. Let the sequence {xn}
∞
n=1 be an orbit of the system given

by Equation (5), and let the quantity 1−ϑ have the order of magnitude

10−p, where p is large enough. Then the first checkpoint will be the

estimate of the residual Un =
∥∥f
(
ϑxn + (1− ϑ)f (T )(xn)

)
− f(xn)

∥∥ . If
the sequence {xn} tends to an orbit of system (1), then the sequence

{Un} tends to zero. However, if the sequence {xn} does not tend to an

orbit of system (1), then the residual can have the order of magnitude

1− ϑ ∼ 10−p, i.e. be close to zero. To be sure that the residual tends

to zero, we have to choose the calculation accuracy δ = 10−p1, where p1
should be significantly greater than p. Then the first point of control

will be the condition Un ∼ 10−p1, n ≥ n1.

The second checkpoint is the check of periodicity of the numerical

solution: Ûn = ‖xn+T − xn‖ ∼ 10−p1, n ≥ n1. Of course, it is also

necessary to check that T is a proper cycle of system (1), and not a

subcycle, i.e. a cycle of shorter length.
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The checkpoints give necessary conditions for the sequence {xn} to

be a T -cycle of equation (1). The effectiveness of these necessary con-

ditions is that they are quite simple to check, which we illustrate in the

following example.

Example. Consider the problem of finding 5-cycles of equation (1)

when H = 4. Choose two initial conditions and for each of them find

one 5-cycle with a positive and negative multiplier respectively. Set

x0 ∈ {0.25, 0.85}, ϑ ∈
{

HT− 0.4
H

HT+1
,

HT+ 0.4
H

HT−1

}
. Thus, we got four iterative

schemes. Choose one color for each scheme in order to visualize the

results:

x0/ϑ
HT − 0.4

H

HT + 1
≈ 0.9989

HT + 0.4
H

HT − 1
≈ 1.0010

0.25 red green

0.85 blue black

Since (1 − ϑ) is on the order of 10−3, we choose a calculation accu-

racy of 10−15. The corresponding cyclic points are shown in Figure 1.

Figure 2 shows the graphs of the residuals Un and Ûn as n increases.

The periodicity condition, Û=‖xn+5 − xn‖ < 10−15 holds for all four

schemes, starting from n = 43.

We note that there are 6 distinct cycles of period 5, but we only

show four of these here. To find the remaining two cycles, we would

judiciously select two more values of x0 and ϑ.

All cycles of any length can be found in a similar fashion. The

limitation is the calculation accuracy, which should be chosen to be

approximately H1.05T , since H = |f ′(x)|. Figure 3 (Left Panel) shows

the cyclic points of four cycles of length 100. The accuracy of calcula-

tions was taken 1065. For negative multipliers, the control parameter is

chosen to be ϑ =
HT − 0.4

H

HT + 1
≈ 1 − 1.78 · 10−61; for positive multipliers,

ϑ =
HT + 0.4

H

HT − 1
≈ 1 + 0.68 · 10−62. Note that the lengths of the intervals

of possible changes in the control parameter have the order of magni-

tude H−(T+1) ≈ 1.5 · 10−61. The necessary bounds on the residuals are

attained at the 250th step (Figure 3, Right Panel).

4. Graphical study of the control system map

For some choices of the control parameter ϑ the invariant set is visible

on the graph of y = f (ϑx+ (1− ϑ)f(x)) . Several choice of T and ϑ

are illustrated below.
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Figure 1. Four 5-cycles of the tent map. The upper

left panel shows two cycles with positive multipliers (in

red and blue), and the upper right panel shows two cycles

with negative multipliers (in green and black). The lower

graph shows all four cycles superimposed on each other,

showing how the basins of attraction are intertwined.

Equation (1) has two fixed points η = 0 and η = H
H+1

, both of

which are unstable since their multipliers are H and −H respectively.

Consider Equation (5)

xn+1 = f (ϑxn + (1− ϑ)f(xn))

for different values of ϑ ∈
[
0,

HT+ 1

H

HT−1

]
. For definiteness, set H = 3.

Then
[
0,

HT+ 1

H

HT−1

]
=
[
0, 5

3

]
. According to Theorem 1, to stabilize the

fixed point at η = 0, we need to choose the control parameter from

the interval
(
4
3
, 5

3

)
. By Proposition 1 the multiplier of this fixed point

is λ = 9 − 6ϑ, which decreases from 1 to -1 as the control parameter

ϑ increases from 9
3
to 5

3
, and λ = 0 when ϑ = 3

2
. The graphs of
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Un, ϑ = 0.99893 Un, ϑ = 1.0010

Figure 2. Residuals for the numerically estimated

period-5 points. Left Panel: residuals Un where n in-

creases from 10 to 50, with ϑ ≈ 0.99893; Right Panel: the

residuals Un with ϑ ≈ 1.0010 for n in the range 38, . . . 50.

The control point condition is satisfied for n ≥ 43.

Figure 3. Four sets of cyclic points of the tent map 100-

cycles. Left Panel: the four cycles are colored red, blue,

green and black. Notice that many points in the four

cycles are tightly clustered. Right Panel: the residuals,

Un, for each of the four cycles as a function of n, where n

increases from 250 to 300. The control point conditions

are satisfied for n ≥ 250 in all four cases.

the function F (x) = f (ϑx+ (1− ϑ)f(x)) for different values of ϑ are

shown in Fig. 4.



18 AYERS, DMITRISHIN, RADUNSKAYA, A.STOKOLOS, AND C.STOKOLOS

Figure 4. Graphs of the function y =

f (ϑx+ (1− ϑ)f(x)) at ϑ = 4
3

(red); at ϑ = 3
2

(black); at ϑ = 5
3
(blue); graphs of the functions y = x

and y = f(x) are marked in grey

According to Theorem 2, the fixed point at η = 3
4
will be a locally

asymptotically stable fixed point of equation (5) if ϑ ∈
(
2
3
, 5

6

)
. As the

control parameter increases, the multiplier of this equilibrium decreases

from 1 to −1. When ϑ = 3
4
, the multiplier equals zero. The graphs of

the function F (x) = f (ϑx+ (1− ϑ)f(x)) for different values of ϑ are

depicted in Fig. 5.

Figure 5. Graphs of the function y =

f (ϑx+ (1− ϑ)f(x)) at ϑ = 2
3

(red); at ϑ = 3
4

(black); at ϑ = 5
6
(blue); graphs of the functions y = x

and y = f(x) are marked in grey

If we represent the Lamerey diagram on the graphs of Figure 4,

then we can observe that for any initial value x0 and ϑ ∈
(
4
3
, 5

3

)
, the
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corresponding solution of equation (5) will tend to zero. Similarly,

Figure 5 shows that the segment
[
0, 3

2

]
, is mapped to itself under

F (x) = f (ϑx+ (1− ϑ)f(x)), and for ϑ ∈
(
2
3
, 5

6

)
) it is mapped strictly

into itself. Moreover, for any x0 ∈
(
0, 3

2

)
, the solution tends to the

fixed point η = 3
4
. These facts follow from the proofs of Theorems 1

and 2.

Let T = 2. Equation (1) has only one 2-cycle, and its multiplier is

negative. In this case, Equation (5) takes the form

xn+1 = F (x) = f
(
ϑxn + (1− ϑ)f (2)(xn)

)
.

Consider the graphs of the functions y = F (x), and y = F (2)(x), when

ϑ =
HT

HT − 1
=

9

8
and ϑ =

HT

HT + 1
=

9

10
, shown in Figures 6 and 7,

respectively.

Figure 6. Graphs of the function y = F (x) at ϑ = 9
10

(black dashed line); y = x and y = f(x) (grey). Both

fixed points are unstable, while F ′(x) = 0 at both points

on the period-2 cycle: { 3
10
, 9
10
}, so the period-2 cycle is

super-stable.

From Figure 6, we can see that the set
[
0, 3

2

]
is invariant under

the mapping y = F (x). In Figure 7-a), we see that the 2-cycle of

Equation (5) becomes locally asymptotically stable with the multiplier

equal to zero. In Figure 7-b), we see that the 2-cycle of equation (5) is

unstable, but both fixed points are locally asymptotically stable, with

zero multipliers. We give an explanation for this fact in the next few

paragraphs.
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a) b)

Figure 7. Graphs of the function y = F (2)(x) are drawn

in black. In the Left Panel a): ϑ = 9
10
; in the Right Panel

b): ϑ = 9
8
. Graphs of the functions y = x and y = f (2)(x)

are shown in grey. In a) we see that the derivative of
(2)(x) is 0 at the two fixed points of F (2) that are in the

proper period-2 cycle of f , showing that these points are

super-stable fixed points of F (2). By contrast, in b) the

period-2 points of f are now unstable, while the two fixed

points of f are super-stable.

Consider the global behavior of solutions of equation (5) at ϑ =
HT

HT+1
. The function

ζ(x) =
HT

HT + 1
x+

1

HT + 1
f (T )(x)

does not decrease on (−∞,∞). Indeed,

ζ ′(x) =
HT ±HT

HT + 1
=

{
0, x ∈ Σ,
2HT

HT+1
, x /∈ Σ,

where Σ is the set on which the function f (T )(x) decreases. Note that

the sets on which f (T )(x) and ζ(x) are increasing coincide. In partic-

ular, the function ζ(x) increases when x ∈
(
1
2
, 1− 1

H
+ 1

2HT−1

)
from

−1
2
HT−1(H − 1) to H

2
. The point

(
1
2
, −1

2
HT−1(H − 1)

)
is the mini-

mum of the function f (T )(x) on [0, 1]. Figure 8 shows the graphs of the

functions f (T )(x) and ζ(x) in the case H = 3, T = 3.

Let x ∈
(
1
2
, 1− 1

H
+ 1

2HT−1

)
, T > 1. Denote x = 1 − 1

H
+ α

HT . Then

α ∈
(
−1

2
HT−1(H − 2), H

2

)
. Compute f (T )(x): the first iterate remains



SEARCH FOR INVARIANT SETS OF THE GENERALIZED TENT MAP 21

Figure 8. Graphs of the functions f (T )(x) (sea green)

and ζ(x) (black) when H = 3 and T = 3. Note that ζ(x)

and f (T ) are increasing on the same intervals, and ζ(x)

is constant where f (T )(x) is decreasing.

greater than 1/2, the second iterate is less than 1/2, and all subsequent

iterates increase to α:

f(x) = 1−
α

HT−1
>

1

2
, f (2)(x) =

α

HT−2
<

1

2
, . . . , f (T )(x) = α.

This implies that the equation HT

HT+1

(
1− 1

H
+ α

HT

)
+ 1

HT+1
α = 1

2
has

only one root on
(
−1

2
HT−1(H − 2), H

2

)
, which we denote by α̂ = 1

4
−

1
4
HT + 1

2
HT−1. Since ζ

(
1
2

)
= HT−1

HT+1
< 1

2
, and ζ

(
1− 1

H
+ 1

2HT−1

)
=

HT−HT−1+H
HT+1

> 1
2
, then in the interval x ∈

(
1
2
, 1− 1

H
+ 1

2HT−1

)
there is

exactly one root of the equation ζ(x) = 1
2
, namely x̂ = 1 − 1

H
+ α̂

HT =
3
4
− 1

2H
+ 1

4HT . This means that the function F (x) = f(ζ(x)) does not

decrease on the interval [0, x̂] , does not increase on [x̂, 1] , F (x̂) = H
2

and F (x) = F
(
1− 1

2HT−1

)
= HT

HT+1
when x ≥ 1− 1

2HT−1 . The graph of

the function F (x) when H = 3 and T = 4 is shown in Figure 9. On

the same figure we plot the corresponding function, ζ(x).

On the interval [0, 1], there are 2T−1 disjoint intervals on which the

function F (x) is constant. This means that there are 2T−1 periodic

points, where F ′(x) = 0. These points are T -periodic points of the

map f(x) with negative multipliers. Generally speaking, the proper

period of these points may be less than T if T is not a prime number.

The question of stability of these so-called subcycles is considered in

the next section. The fact that the derivative is zero means that the

sequence defined by iterating Equation (5) converges very quickly to

these cyclic points, i.e. they are super-stable. In particular, if x0 ≥ x̂,
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b)

Figure 9. Graphs of the functions F (x) (black) and

ζ(x) (blue) when H = 3 and T = 4. Since F (x) =

f(ζ(x)), F and ζ are constant on the same intervals, and

F is increasing when ζ is less than 1
2
, decreasing when ζ

is greater than 1
2
.

then x1 = F (x0) =
HT

HT+1
> 1

2
, x2 = F (x1) = f(x1) =

H
HT+1

< 1
2
, . . . ,

xT = F (xT−1) = f(xT−1) = HT−1

HT+1
< 1

2
, xT+1 = F (xT ) = f(xT ) =

HT

HT+1
= x1, i.e., {x1, . . . , xT} is a T -cycle of both Equations (1) and

(5).

5. Stabilization of Subcycles

The system given by Equation (1) has T -cycles for any T ≥ 1. More-

over, it is not difficult to calculate the number of T -cycles of any given

period. Since T -periodic points are fixed points of fT (x), they will

be points of intersection of the graph of y = fT (x) and the graph

y = x. These two graphs intersect exactly 2T times for x ∈ [0, 1]. Two

points of intersection correspond to the fixed points of f at x = 0, and
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x = 1 − 1
H+1

. If T is a prime number, then there are exactly 2T−2
T

cycles of length T . (By Fermat’s Little Theorem, if T is prime, 2T − 2

is divisible by T, and thus, 2T−2
T

is an integer.) If T =
s∏

j=1

τ
ρj
j , where

τ1, . . . , τs are distinct prime numbers, then there are exactly

1

T


2T −

s∑

j=1

2
T
τj +

s∑

i, j=1
i<j

2
T

τiτj + . . .+ (−1)s2
T

τ1·...·τs




cycles of the length T. The fact that the given fraction is an integer is

a special case of Gauss’s theorem, see for example [27, p.84].

Let τ be a factor of the number T , and let the T -cycle of the system

given by Equation (5) be locally asymptotically stable. The task is: to

find out which τ -cycles of the same system will be locally asymptot-

ically stable? It turns out that the answer depends on the parity of

T/τ .

Theorem 3. Let condition (7) be satisfied, i.e. T -cycles of equa-

tion (1), for which the multipliers are positive, are locally asymptotically

stable cycles of equation (5). Then all the τ -cycles of equation (1), for

which the multipliers are positive, and all the τ -cycles of equation (1),

for which the multipliers are negative and the number T
τ
is even, are

locally asymptotically stable cycles of equation (5).

Let condition (7) be satisfied, i.e. T -cycles of Equation (1), for which

the multipliers are negative, are locally asymptotically stable cycles of

Equation (5). Then all the τ -cycles of Equation (1), for which the mul-

tipliers are negative and the number T
τ
is odd, are locally asymptotically

stable cycles of Equation (5).

Proof. Let {η1, . . . , ηT} be a T -cycle and {η̂1, . . . , η̂τ} a τ -cycle of the

system given by Equation (1). Let µT = f ′(ηT ) · . . . · f
′(η1), µτ =

f ′(η̂τ ) · . . . · f
′(η̂1) be the corresponding multipliers of these cycles.

These cycles will also be cycles of Equation (5). We assume that the

condition for local asymptotic stability of the T -cycle of Equation (5)

(10)
∣∣∣µT (ϑ+ (1− ϑ)µT )

T
∣∣∣ < 1
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is satisfied. Let us find the multiplier of the τ -cycle of equation (5).

Let, as before, F (x) = f
(
ϑx+ (1− ϑ)f (T )(x)

)
, and p = T

τ
. Calculate

F ′(η̂j) = f ′(η̂j)
(
ϑ+ (1− ϑ) (f ′(η̂τ ) · . . . · f

′(η̂1))
p)

=

= f ′(η̂j) (ϑ+ (1− ϑ)(µτ )
p) , j = 1, . . . , τ.

Then the multiplier of the τ -cycle of equation (5) equals F ′(η̂τ ) · . . . ·

F ′(η̂1) = µτ (ϑ+ (1− ϑ)(µτ )
p)τ , and, accordingly, the condition for

local asymptotic stability of the τ -cycle of equation (5) is:

(11) |µτ (ϑ+ (1− ϑ)(µτ )
p)τ | < 1

Since µT = ±HT , µτ = ±Hτ , the following cases are possible:

a) µT < 0, µτ < 0, then

{
µT = (µτ )

p, p is odd,

µT = −(µτ )
p, p is even,

b) µT < 0, µτ > 0, then µT = −(µτ )
p for any p,

c) µT > 0, µτ < 0, then

{
µT = −(µτ )

p, p is odd,

µT = (µτ )
p, p is even,

d) µT > 0, µτ > 0, then µT = (µτ )
p for any p.

Inequality (10) implies inequality (11) if and only if one of the con-

ditions holds: µT < 0, µτ < 0, p is odd; µT > 0, µτ < 0, p is even;

µT > 0, µτ > 0 for any p. The first condition is possible for the param-

eters ϑ that satisfy inequalities (6), the second and third conditions are

possible for the parameters ϑ that satisfy inequalities (7), whence the

conclusion of the Theorem follows. �

Consider again the example of stabilization of 5-cycles from Section

4. Then, besides locally asymptotically stable 5-cycles, the fixed points

at η = 0 when ϑ =
HT+ 0.4

H

HT−1
and η = 0.8 when ϑ =

HT− 0.4
H

HT+1
will also be

stable. The initial points: x0 = 0.001 and x0 = 0.801 are in the basins

of attraction of the corresponding fixed points, and their orbits will

therefore converge to the fixed points rather than to one of the true

period-5 cycles. Periodic and fixed points are shown in Figure 10.

6. Distribution of cyclic points and visualization of the

Cantor set

As noted above, the invariant set of equation (1) at H = 3 is the

classical Cantor middle thirds set. However, due to its strong instabil-

ity, it is impossible to visualize the points of this set using equation (1).
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Figure 10. Points of 5-cycles and fixed points of the

tent map where H = 4. In the Left Panel, a 5-cycle with

positive multiplier (blue) and the non-zero fixed point

(red) are stabilized using ϑ =
HT+ 0.4

H

HT−1
. In the Right Panel,

a 5-cycle with negative multiplier (green) and the fixed

point at 0 are stabilized using ϑ =
HT− 0.4

H

HT+1
. To put this

example in the context of Theorem 3, we note that in

this case T = 5 and τ = 1, so that p = T/τ = 5 is odd.

Recall that the Cantor set can be defined as those real numbers in [0, 1]

whose ternary expansions consist only of 0’s and 2’s. The Cantor set

is characterized by two types of points: the points that are end-points

of the open intervals that are adjacent to the Cantor set are called

points of the first type (these are points which terminate in all 0’s or

all 2’s when written in ternary expansion - they take the form p

3k
for

some natural numbers p and k), while all the other points of the set are

called points of the second type. Points of the first type are solutions

of the equations f (k)(x) = 1, for k = 1, 2, . . . . The set of points of

the first type is countable. When x < 1/2 and in the Cantor set (so

that is, it’s first digit in ternary expansion is 0), the tent map acts

as a right shift map on the ternary expansion. If x > 1/2, the tent

map acts on the ternary expansion by swapping the 2’s and 0’s, and

then acting as a shift map. Among the points of the second type, we

can select a subset consisting of all periodic points of the system given

by Equation (1). They are obtained as the union of all the roots of

the equations f (k)(x) = x, k = 1, 2, . . . . The set of periodic points of

the map (2) is also countable. Points whose ternary expansion is peri-

odic will themselves be periodic because of the way the tent map acts
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as a shift on the ternary expansions. Thus, there are periodic points

arbitrarily close to points of the first type of the Cantor set.

The following question arises: how are the periodic points of one orbit

of a given period T distributed through the Cantor set? More precisely,

how uniformly do the periodic points of the orbit of a given period T

fill the Cantor set? We do not consider the analytical solution of this

problem in this paper, but we provide some examples simulating the

density functions for the distribution of periodic point, and we compare

them graphically with the analogous function for a random sample of

elements from the set of points of the first type in the Cantor set.

Let us take for example the period T = 1009, with an accuracy

10−525, initial value x0 = 0.555, and values for the control parameter

ϑ =
HT± 0.6

H

HT+1
. We will get 2T = 2018 cyclic points. We then simulate the

density function for the distribution of the cyclic points set (Figure 11-

a). The graph shows that the estimated periodic points are not quite

evenly distributed in the Cantor set. Let us now find two hundred orbits

with the period T = 1009, i.e., we get 20180 cyclic points. Surprisingly,

the graph of the simulated density function for the new set of points

(Figure 11-b) does not differ much from the plot in the previous case.

Finally, let us plot the density function for the distribution of randomly

selected 200000 points of the first type of the Cantor set. For this

purpose, represent a subset of the points of the first type of the Cantor

set in their ternary expansion s =
N∑
j=1

αj
2
3j
, where αj ∈ {0, 1}. If N =

25, the maximum number of possible points is 225. Let us randomly

choose values for αj: either zero or one, and thus construct 200000

points. Next, we graph the distribution of the resulting set (Figure 12).

Comparison of the graphs in Figures 11, 12 shows that the points of the

first type, constructed by the method outlined above, are distributed

more evenly on the Cantor set.

7. Conclusions

A general predictive control framework was developed in [24] for find-

ing a given set of periodic orbits by making them locally stable. This

suggests a solution to the problem of numerically describing invariant

sets 1 of nonlinear dynamical systems, since periodic orbits are often

dense in these invariant sets.

1We consider the largest bounded set Γ, such that f(Γ) ⊆ Γ
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a) b)

Figure 11. The graph of the distribution density func-

tion of the set of cyclic points of two and two hundred

1009-periodic orbits of map (2) at H = 3

Figure 12. Graph of the distribution density function

of the set of 200000 random points of the first type of the

Cantor set. Note that the distribution is more uniform

across the bins of the histogram.

Since the periodic orbits themselves are repelling sets the problem

is separated in two parts: a local stabilization of periodic orbits of a

given period, which could be fairly large, and then selection of an initial

point in the basin of attraction of the stabilized periodic orbit.

If the invariant set is a global attractor, then all trajectories are

bounded, and therefore most initial points are in the basin of attraction

of one of the stabilized periodic orbits.
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If the invariant set is repelling, then the analogous problem turns out

to be much more complicated: simple local stability of the controlled

orbit is not sufficient, due to the fact that its basin of attraction can

have a small measure, and a very complicated structure. For example,

it might not be simply connected, or it may have a fractal boundary.

The orbits of most initial points will go to infinity. Therefore, the

problem of choosing an initial point in the basin of attraction of a

stabilized orbit becomes significant.

However, the method of generalized predictive control, used to sta-

bilize the orbit, has an important characteristic: in addition to the

local asymptotic stability of the orbits of controlled system, the rest

of the orbits remain bounded for a sufficiently large set of initial val-

ues. In this paper we showed that, for the generalized tent map, it is

possible to ensure that all solutions are bounded. The global behavior

of solutions for the generalized logistic map, the generalized Lozi [28],

Hénon [29], Ikeda [30], Elhadj-Sprott [31] maps, etc. is somewhat more

complicated. For such systems, we conjecture that it is necessary to

choose the control parameter as a function of the current state of the

system. Investigation of the global behavior of the controlled systems

solutions for these maps is the task for future research.
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