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For a class of the non-statics abnormal diffusive processes which mathematical models are
formalized in the form of variation inequalities in private derivatives, the method of
mathematical modeling based on optimizing procedure is offered. Thus the problem of
realization of mathematical models of non-statics abnormal diffusive processes is reduced
to search of a maximum of function of Hamilton defined in space of conditions of studied
processes. The method of parametrical identification of mathematical models of non-statics
abnormal diffusive processes in case of an induction problem definition of research is also
offered. The method is reduced to use of optimizing procedure of a method of a projection
of a gradient. Possibility of the solution of a problem of parametrical identification, as for
linear, and nonlinear mathematical models of non-statics abnormal diffusive processes is
proved.
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Introduction

In a number of important applied tasks technological (or naturally natural) processes are
characterized by deviations from well-known physical laws. In this regard these processes
received in special literature the name anomalous (in particular, abnormal diffusive) [1 —
4]. First of all, the rheological processes connected with mining can be an example of such
processes. For the description of abnormal diffusive processes, as the adequate mathematical
models (MM) it was offered to use the device of variation inequalities in private derivatives
[5—8].

As it was shown in work [9], in practical appendices it is most convenient to use the
following formalization of abnormal diffusive processes.

Let the function w(¢,7), defined on a bounded open set QQ of the space R", n=12,
with smooth boundary r and the time interval O,1,) for
t, <o, Q=Qx(0,2,), 2=I"x(0,2,) is the solution of the varitional inequality

o . .
wek :(m(t);l//,v—l//)+ (BOw,v—y)+ i) - jw = (fv—y) YveH' @, ()
w(0,2) =y, (2), (2)
where the operator B(;/) specifies a linear transformation B(y):H'(Q)— H'(Q) and is

defined by the bilinear form:
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Loy O(v—y)
By,v—y)=[| X222 gz,
(BOw.v—y) f(z ,» ’ jz 3)

1

f — the driving function of the process, for which the operation ( fv— l//) coincides with the
scalar product in L*(Q), i.e. (f,v—l//)z “f(Z),v—y/]dQ or (f,v —1//) = J[f(Z),v —l//]aT

Q r
(hereinafter, for simplicity, restrict ourselves to the tasks at the border T"); J() — convex

functionals defining the kind of physical process in rheology and which are specified as
follows

jO=[oW.2)-2w)dl,  jO) = [ey.2)-Ay)d. @)

In the relation (4) accept that ¢(-) — is a continuous function, A(-) — is continuous
differentiable or not having the properties of differentiable functions.
Space of admissible functions ¢(-) and A(-) are defined as AeL*(Q), AcL”(Q)

where it is assumed that ¢(-), A(-) e L (é), 0 =Qx(0, t,) and the spaces A and A are
Banach with respect to the norm ||(/’(‘// 'z )”A - ||(p(l//, 2)

Q)"

Method of mathematical modelling of abnormal diffusive processes

The proposed method for solving varitional inequalities of the form (1), (2) is based on
the proof of the following statements.
To find the optimal solution (¢, 7) of the varitional inequality (1), (2) there must exist a

nonzero continuous function p(z,7), so that at any time 7in the interval 0<¢<T (1T — time

of physical processes) the Hamiltonian function H in the spatial domain Q (or on its
boundary I") would take the maximum value, where

H =((B&)p,7 =)+ () — p(7) - (067.9),5 =)~ (f.(F @) B).

Carry out a preliminary series of reforms to simplify the original formulation of the
problem. Introduce the notation

o(t,2)- Ay)=@@w), olt.2)-Av)= W),

and

$w) = [O@)dT, $v) = [ D) dr .

In addition, introduce an additional unknown function 49(1//,\)), the structure
corresponding to the functionals j(-), such that

6w, v),v—y)>0 VYvek.

Taking into account the executed transformations introduce the relations (1), (2) in the form
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V/eK:(m(t)%w,v—V/J+(B(t),v—t//)+¢(V)—¢(v/)— )
~Olyv)v-y)=(fv-y) Wvek
l/I(O,Z) :WO(Z). (6)

To solve the problem of finding a state function (¢, 7), use an optimization procedure

of the Pontryagin maximum principle [10], for which choose the following performance
criterion

J = min mv — y|drdT M

The physical meaning of this criterion follows from the next. The trial function v(¢,7)
1s some approximation of the unknown function w(z,z), reflecting only the essence of

physics in the specific process. Therefore, the adequacy of physical processes caused by the
action of functions v(#,z) and w(¢,z), is provided up to the accuracy within the difference

between these functions. In this case, the integral difference between the trial v(¢,7)and the
unknowny (¢, 7) functions can be regarded as a quantitative measure or a penalty for the

deviation of the actual flow of the process from its true value.
Obtain the necessary optimality conditions of the problems (5) (6), (7).
According to [6], introduce a new coordinate

oate)

- )]
otoz

-yl

zel

Thus, the original problem will be considered in (n+1)-dimensi0nal space with the equation
of dynamics

W € K[m(t)%,ﬁ—&J-F(B(I),V—&)+¢(\7)—¢(l/’7)—

(075 -7)=(f.7-7) Vek, ©)

where = (0,\|11,...,\|1n), V= (0', ViseensV, ), with the initial conditions 7(0,7) = [O, ¥, (Z)l
Assume that we have found y/(, Z) . This condition corresponds to the relation

min _f]'|§—1/7|2dtdl"—>]m =J".
ro

At t =7 (0<7 <T) perform a needle-shaped variation with the duration &. As a result
of the variation performed the value of the functional J (7) changes

f=ﬁ|\7—t/7|dtdl“>]m.
ro

Write down the detailed result of the variation
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& =7 - =e[(BOF.T —7)+9F) - g — (0. 7). 5 =)~ (f.(0 —@))]- (B)i7.w)+
+ ¢ — (0. 7) - (f 7)), (10)

Express v through the variation and optimal function of the state
T=y+6v. (11)

Substituting (11) into (9), obtain

~

Jek: (m(t)%‘”,(fiW)—&j = (BOW.(7+&)-9)+ §7 + &) - g7 -

07+ NG+ ) -)- (1.7 +)-7) ¥ ek, (12
For further transformations use the coordinate-wise analog (12)
e (m@%’?,(@ av)wj = (B (7, + )~ 7))+ 47, + &) 7)) -
(07, (7, + FNG,+5)-7)- (1.7, +F)-7) VFeK i=01n. (3
(077, + F N7+ ) -7)- (1.7, +F)-7) ek i=0Ln.

Expand (13) in Taylor series and restrict the consideration with the quantities of 1-th order of
infinitesimally

m(r)(%+@) =(BOW.7,)+ ¢ —(f.7,)+

By, 7) +9w) - (£.7.) o

n
i—0 ov. '

4

ot Ot

i=0,1,...n. (14)

From (14) it follows that

iy 2= ¥ B0 7,5+ 900~ (.7)] 55

- -, i=0,1,...,n. (15)
ot 3 o,

Now turn to ¢#=7 . Define a variation of the functional at r =T

dltzT:j—JmH >0 or -, ,=-00, .<0.

B=I
Introduce the variable p(z,7) so that when =T this condition is satisfied

&, =—60(T)=(&,p) (16)

=T "
Coordinate wise analog (16) is as follows: —&/,_; = —=5o(T) = (&V;, ﬁi>z:T’ i=0,1..,n.

Since 6 o(T') >0, in order to satisfy this relation there should take place:
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pO(T,Zi)z—l; pj(T,Z)zO, where i=0,1,...,n; j=1,...,n.

Thus, if the optimal solution is not found, then —&/ <0, and for the optimal
solution —&/ =0 is valid, since the variation of functional must be zero for the optimal
solution.

Associate a variable p(z,7) to the dynamic equation of the process observed through

trial function v(¢, 7). Find a variable p(z,z) which satisfies

(W (8.2), p(t,2)) = (V(T.2), p(T.2)) , __ = const.
Then we have
O e [OFWD) o\ [OPD) o _

Coordinate wise analog (17) is

o é’&(t,Z) ~ = < — é’ﬁg(taz) .
———=,p;(t,2)+ ) ov,(t,z)——""==0, i=0,1,..,n. 18
%at p(z)%(z) > (18)
Substitute in (18) the value of the derivative % from (15)
m)> p, x i5[(3(”‘/’5"’”);?(‘/’!‘)_(f"/’f)](s‘z + 25@%20, i=01L..n.  (19)
i=0 i=0 V; —0

Change the order of summation in (19)

m()y 67, + {iﬁi oB0T.7.)+ ) ~(/.5.)], é’f’f}:o, i= 0,1,

o, ot
Finally get
o 3 oNB®OT, )+ 6@ =(f )5 o),
a5 ov, S

Note that this equation is the dual of (5), and the variable p(z,z) is expressed through
the function of phase.

Again turn to the variation of functional (7) at t=7T: -d&J,_, = <5\7(t, 2), p(t, Z)>I:T =0

Replace the variation 6V with the value of (10), reduce by ¢ and, since 7 can be
arbitrary, obtain

(BO)7.7 ~37)+ (7))~ (0(7.7).7 )~ (£.0 @) P),._. -
(20)
~((Bo@.7)+ @)~ (. 7)) B),_, = 0.

From (20) it follows that the second summand in it corresponds to the optimal solution

of the varitional inequality (5). In the case when the optimal solution w(¢,z) is found,
variation of functional J will be zero, i.e. &/ =0. Given this, the first summand in (20),
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defined by the Hamiltonian function
i ={((BO7.7 - 9)+ o) - )~ (07.5)7 7 ) (f.(G - 7)) B). 1)

should take the maximum value. Thus, the above statement is proven. Let’s show the
possibility of determining the maximum value of Hamiltonian function.
Coordinate wise analog (21) is defined by

B

H = ((BO7..7. —7,)+ ¢ - p7,) — (07,.7.).5, - 7,) - (£.(5, 7). B,)
i=0,1,...,n. (22)

To maximize the value of the function H , it’s necessary to set all the partial derivatives
of this function to zero by a testing variable v(t, z), that taking into account (22) gives the
system of equations

JH .
5_\/,»_0’ i=01,..n. (23)

Coordinate wise analog (22) contains (n+1) of v, functions, (n+1) of 6, functions
and (n+1) of p, functions. Since the equations (23) are only (n+1), and the unknown are
(B3n+3), then the system (23) cannot be solved. To solve (23) define also the partial
derivatives

o H

=5, i=0,l...n. 24

oo 4
JH L7772
—=|mt)—,v,—-y, |, i=0,L..,n. 25
E [ ()= l//} (25)

In this case, the solution of (23) can be obtained.

As a result of the reasoning done, the scheme of the algorithm for solving varitional
inequality (5) using the maximum principle can be represented as follows:

1. The dynamic equation (9), subject to the additional coordinate O is written down.

2. An auxiliary function (Hamilton) H in accordance with the expression (22) is
compiled.

3. A test function V(t,Z) that delivers maximum H functions in accordance with
the expression (23) is determined. For the redefinition of the independent variables & and P
the system (23) is supplemented with equations (24) and (25).

4. The unknown variable ¥ (7,2) is determined by the test variable v(¢,Z), which

gives the maximum value of function H .

Method of parametrical identification of abnormal diffusive processes

At statement of an inductive task - (1) — (4), the method focused on numerical machine
realization can be offered parametrical identification of MM of a look. The essence of a
method consists in the following.

It agrees [11], to MM (1) — (4) (in increments) it is possible to present in a look
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ma(AW) ({Z{ ()_((34W)|Av|}dzz ilgj(z)fj, Vyvek, 20
Ay(0,2) = Ay,(2). 7

where =1//(t,z) — sought function; v =v(t, z) — trial function; K — a lot, of that is
defined functions 1//=!//(t, z) and v=v(t,z); f — exciting function; k — number of
exciting functions; ¢ (z) - Dirac's function; m = m() and B = B() — identified parameters.

As criterion of quality of the solution of a problem of identification we will accept
functionality of a look

Trha0)= £ b s 170 o5

where W’(t, z,m, B) — exact values sought functions; F j‘” (t) — measured values of the sought

function; T — time of measurements.
Let's show that the accepted criterion of quality will be differentiable in any point of
spatial area z € Q (including and its border I"), i.e. an increment (28) equal

AT = J|(m+ 1) (B+1?)] = 1(m.B)
represent able in a look

)+ OQ\hB p )] : (29)

AJ = E[{[J’(m,B)h’" btz +17(m, B)” Jaz j+ [OQVZ'" P

where J ’(m B) some function from LZ(Q) Oq h" ) and O(Hh H ) — residual members

suchthathm[O Xa JOhmlO Xa JO

a™—0

Let's write down formally a functionality increment

8= [l vl ) O - om0~ 17 ] e -

=1 a

= {E[{{[ t,z,m, B F"’ ] +Al//(l‘ Z; )}2 — [l//(t,zj,v,B)— FJW(Z)] }dz}: (30)
) ?Hiz[@”(ﬁ 2.m, B)~ F} () y(e.2)dz + gsz(t,z>} .

Let's transform this expression to a look (29). For this purpose we will enter into
consideration of function p;/ (t,z) = p;; (t, z,m,B) as the solution of the following regional task

map:,

ot Qi=l1

~.
I
—_

<v—w)—yi[3<r> pﬂAV@dzziqz)fj, Ypvek. 3D
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=2yl amB)-Fr W) py|, vzeQ. (32)

Py 1=t

The first integral in the first composed in the right part of equality (30) taking into
account (26), (27), (31), (32) it will be transformed so

1 =2ly(t,z,m,B)— F! (t) Ay (2, 2)dz = gf)pi(fk’zj)m//(fk,zj)=

“O . “ Op, . 0(Ay)
= (| [=(p., Ayt |dz = [[| =2£A S5 ardz =
g{{fﬁt(m v) f} z ig{ﬁw v+ p, = |didz

0

_ s{HmL(){ZI{B() ;:}; |v|}}Al//+ p;{ﬁ{B(-)a;;}; :l}}dtdz.

Integrating the last expression in spatial area, we will receive the following result

el

faflgmvinre

Here, and further, designation () determines as the linear (from space), and non-linear
(from required function) parameter. The second integrals in composed in the right part (30)

the members of the look [OQ‘hHVL/ ) , presented in (29) and written down for spatial problem

definition define. Let's have in this case: AJ = I%KiE(-)pﬂvU}h”dz + OQV’”Z ) and, the
my )\ i=1 ?

Q

step h” determines cooperative value by steps 2" and h”. As a result we will receive that the
increment of functionality (28) is represented in the form of expression

[l (S 60 s o ).

Q m
Thus, required representation (29) for functionality (28) is received, and the gradient of
this functionality looks like

J'm()B()] %HZ )p.,|v|ﬂ, VzeQ relor]. (33)

AJ

=

Further, having a gradient (33) and using procedure of a method of a projection of the
gradient [11], defined by ratios
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qlt), a< ()
. qlt)
(¢

0= {q(t): q(t) S LZ[O,tk], a< q(t) <b, Vte [O,Ik]} Prq [q(t)] = a
b, qlt)

<a
>b

For identified functions m() and B() also we will receive final ratios on an offered method
of parametrical identification

" —Z—d@mpz vﬂ; M <, ;—()szp Mﬂ <y
0= =[5 005 [ <
s =2 [[iB(-)p; MH >

m i=1

- al(Sa0mib || <5 22( 000 |< 5.0
0= (B 8.~ 28 (38005 | < 5,

B.., B - ZG{(;B(-)]); |v|ﬂ >B_,

where «,, and oy — method parameters, defined by practical consideration, r — step of the

3

numerical decision.

Conclusion

The conducted numerical researches showed that the offered methods of mathematical
model operation and parametrical identification of the abnormal diffusion processes, based on
iterative procedures of optimization possess good convergence (the decision is reached no
more, than for 8 - 10 iterations) at accuracy of the decision 0.2% are not lower.
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METOJIA MATEMATHYHOI'O MOJIEJTIOBAHHS TA MAIIMHHOI ITEHTU®IKALIT

HECTAIIIOHAPHUX AHOMAJIbHUX JIA®Y3IMHAX MPOIECIB
C.A. llonoxaenko, Omap Myasin Aomymmax

Opecbkuii HaiOHAJFHIH MOJTITEXHIYHUNA YHIBEPCHUTET,
npocu. [lesuenxo, 1, Oxeca, 65044, Ykpaina; e-mail: omarukrain @yahoo.com

Jis xi1acy HecTallioHapHUX aHOMAIBHUX AU(Y3IHHAX MpoLeciB, MaTeMaTHYHI MOJICN SIKHX
(opMaIizyroThCsl 'y BHDIAAI BapiallifHAX HEPIBHOCTEH Y YACTKOBHX IIOXITHHX,,
3aMpONOHOBAHO METOJ] MAaTEMAaTHYHOIO MOJICIIOBAHHS, 3aCHOBAaHUI Ha ONTHMI3allifHIHI
nporienypi. Ilpu mpoMy 3amaua peanizailii MaTeMaTHYHHX MOJENCH HECTAI[lOHAPHUX
aHOMaJNbHUX JU(]y31HHUX MPOIECiB 3BOAUTHCSA IO BIANIYKaHHS MakcUMymy GYHKIT
laminbeToHa, SIKy BHM3HAYEHO Yy NPOCTOPI CTaHy MAOCIHiIKYBaHMX mpoueciB. Takox
3alpONOHOBaHO  METOJ  IapaMeTpUyHOi  ifeHTHdikamii MaTeMaTHuyHUX  MOJelei
HECTaliOHAPHUX aHOMAJFHUX MUQY3IHHIX MPOIECiB Ha BUMAJOK IHIYKIIHHOI TIOCTAaHOBKA
3amadi JOCTIPKCHHA. MeTon 3BOIUTBCS 1O 3aCTOCYBaHHS ONTHMi3awliiiHOI mpouenypu
MeTomy Tpoekmii rpamierTa. OOIpyHTOBaHO MOJMJIMBICTH  PO3B’S3aHHSA  3ajadi
imeHTUQIKamil, AK A JHIAHAX, Tak 1 I HENiHIHHUX MaTeMaTHYHHX MoJerneit
HECTaliOHAPHUX aHOMAJbHUX MUQY3IHHIX IPOLIECIB.

Kawuosi ciaoBa: anomanpHHE audy3iiiHHN mpoliec, MaTeMaTHYHa MOJENb, Bapiarid,
BapialliiHa HEpiBHICTb, ONTHMI3allis, NPUHLMUII MaKCUMyMy, (QYHKI[IOHAJ, TpaJi€HT,
eKCTpeMyM, NapamMeTpuyHa ineHTH}iKaris.

METO/JbI MATEMATHYECKOI'O MOJAEJUPOBAHMSI U MAILIMHHOM UJIEHTU®UKALIAU

HECTAIIMOHAPHBIX AHOMAJIBHBIX TU®®Y3HUOHHBIX ITPOIIECCOB
C.A. llonoxaenko, Omap Myasn Aomymmax

Opnecckuil HAMOHAJIBHBIHN MOMUTEXHUYECKUH YHUBEPCUTET,
mpoct. lesuenxko 1, Oxecca 65044, Ykpanna; e-mail: e-mail omarukrain @yahoo.com

s xilacca HecTalMOHAPHBIX aHOMAJBHBIX MU((y3HOHHBIX MTPOIIECCOB, MaTEMAaTHUECKHE
MOZENN KOTOPBIX (OPMATU3YIOTCS B BHJEC BAapPHAILMOHHBIX HEPAaBEHCTB B YaCTHBIX
IIPOU3BOAHBIX, INPEIJIOKEH METOJI MaTeMaTU4YECKOIO MOJEJIIMPOBAHUS, OCHOBAHHBIM Ha
ONTUMM3ALMOHHON npouenype. IIpu aToM 3axada peanu3zaluu MaTeMaTUYECKUX MOJENEH
HECTal[MOHAPHBIX AaHOMAIBHBIX JU(D(Y3MOHHBIX IPOIECCOB CBOJAUTCS K OTBICKAHUIO
MakcuMyma (QYHKIMH [aMUIBTOHA, ONpENeNIeHHOW B  IPOCTPAHCTBE  COCTOSHUMN
HCCIIelyeMBIX TIponeccoB. Takxke NMPEUIOKEH METOA NMapaMeTPUIecKOd HACHTH(UKAINH
MaTeMaTH4eCcKuX MOAENeH HeCTalMOHapHBIX aHOMAJBHBIX JTU((Y3HOHHBIX MPOLECCOB B
Cllydyae WHIYKIMOHHOM IIOCTAaHOBKM 33Jaud HCCIEIOBaHUS. MeTox CBOAMUTCA K
UCIOJIb30BAaHUIO  ONTHMU3ALMOHHOM  INpoLEAypbl MeTOAa MHPOEKIUH TIpaJueHTa.
O0ocHOBaHa BO3MOXKHOCTD PEIICHHS 33Ja4 IapaMeTpHIecKol MICHTU(DHKALMN, KaK Ui
JUHENHBIX, TaK U HEIMHEHHBIX MaTeMaTU4eCKUX MOAeleld HeCTallMOHAPHBIX aHOMAJIbHBIX
11 Hy3MOHHBIX TIPOLIECCOB.

KiroueBble ciaoBa: aHOMadbHBIA TU(PQY3HOHHBIH MpoOIECC, MaTeMaTHdecKas MOJEIb,
BapHaIys, BapuarlioHHOE HEPAaBEHCTBO, ONTUMU3AIINS, IPHUHITUIT MaKCUMyMa (yHKIIHOHAT,
TPaJMeHT, apaMeTpruiecKas HACHTH(GHUKAIINS.
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