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10.C. Kpymiii. BumyeHi rapmMoHiuHi kosiuBaHHs 6ajaku Eiiiepa-BepHyJiii 3 ypaxyBaHHsIM ciJ1 onIopy. BasJIMBUM NUTAaHHSM B
Teopii KOJIMBaHb € BUBYEHHS BILUIMBY OINOPIB HA KOJMBAJIBHI mpouecu. Ha BinmMiHy BiJ po3paxyHKiB BUIBHUX KOJIMBAaHb, TOCHIIKEHHS KOJIHU-
BaHb N00JIN3Y PE30HAHCY BUMArae BpaxyBaHHs CHI onopy. OcoOirBa yBara NPHIUISETHCS BUMYLIICHHM HOIIEPEYHUM KOJIMBAHHIM 0aJIoK, SIK
BaKIIMBIIl TeXHIUHIN npobiemMi i ramy3ei MamnHOOy yBaHHs Ta OyaiBHULTBA. Mema: MeToio poOoTH € o0y10Ba aHATITHIHOTO PillleH-
HS 33j1a4i PO BUMYLICHI MONEPEYHi KOJMBAHHIX MPSMOrO CTPYIKHS MOCTIHHOIO MONEPEYHOro Iepepisy, M0 3HAXOAUTHCS IiJ BIULTHBOM
TrapMOHIHHOTO HaBaHTAXXEHHS, 3 ypaxyBaHHSAM 30BHIIIHBOIO 1 BHYTPIIIHEOTO ONOpiB. Mamepianu i memodu: BHyTpilHIl omip BpaxoBy-
€TbCSI 32 CKOPEKTOBaHOIO rinmoTe3or0 KenpBina-doiirta, ska BigoOpakae MiATBEpKEHHH LULIXOM EKCHEPUMEHTY (aKT Mpo YacTOTHO-
He3aJIe)KHE BHYTpILHE TepTs B Marepiaii. [Ipupoja 30BHIMIHBOTO TEPTS TAKOXK BBAXKAETHCS YACTOTHO-HE3AJIEXKHOMW. Pesynbmamu: 11o0yno-
BAHO aHAITHYHHIT PO3B 530K AM(EPEHIIIAIBHOTO PIBHSHHS BUMYIICHHX [TOIIEPEYHUX KOJIUBAHb MPSIMOTO CTEPsKHS MOCTIHHOTO Mepepisy, 1o
nepeOyBae miJ Ai€0 piBHOMIPHO PO3MOAIIEHOr0 FapMOHIYHOTO HABAHTAXKEHHSI, 3 YPaxXyBaHHAM 30BHIIIHBOIO Ta BHYTPIIIHBOTO OMOPiB. Sk
HACII/IOK, B aHAJIITUYHOMY BUIIA OTPUMaHO (GOPMYJIH, SKi JO3BOJIAIOTH BU3HAYATH BUMYILECHI JUHAMIYHI KOJIMBAHHS Ta JMHAMI4YHI BHYT-
pimmHi 3ycmuIs BiJj TapMOHIYHOTO HaBAaHTAXKEHHS CTEPIXKHS, 3BOMSYM 3amady IpH OyIb SKHX MOXIIMBHX 3aKPIIUICHHSX KiHIIB JO HOIIYKY
HEBIJIOMHX CTaJIMX {HTErpyBaHH, SIKi IPEACTABICHO ¥ HOpMi HOYaTKOBHX HapaMeTpiB.

Knrouosi cnosa: 6anka Eiinepa-bepHyiuti, BUMyIleHi KOlMMBaHHs, (pepeHIiaIbHe PIBHSIHHS, IOYaTKOBI apaMeTpH, TOUHUH PO3B’A30K.

Yu.S. Krutiy. Forced harmonic oscillations of the Euler-Bernoulli beam with resistance forces. The important issue in the oscilla-
tion theory is the study of resistance impact on oscillatory processes. Unlike the calculations of free oscillations, that reside in determination
of natural frequencies and waveshapes and unlike the calculations of forced oscillations far away from resonance, that are performing with-
out reference to friction, the oscillations researches in vicinity of resonance need accounting of friction forces. Special attention is paid to
forced transverse fluctuations in beams as an important technical problem for engineering and building. Aim: The aim of the work is con-
structing of analytical solution of the problem of forced transverse vibrations of a straight rod with constant cross-section, which is under the
influence of the harmonic load taking into account external and internal resistances. Materials and Methods: The internal resistance is taken
into account using the corrected hypothesis of Kelvin-Voigt which reflects the empirically proven fact about the frequency-independent
internal friction in the material. The external friction is also considered as frequency-independent. Results: An analytical solution is built for
the differential equation of forced transverse oscillations of a straight rod with constant cross-section which is under the influence of the
harmonic load taking into account external and internal resistances. As a result, analytically derived formulae are presented which describe
the forced dynamic oscillations and the dynamic internal forces due to the harmonic load applied to the rod thus reducing the problem with
any possible fixed ends to the search of unknown integration constants represented in a form of initial parameters.

Keywords: Euler-Bernoulli beam, forced oscillations, differential equation, initial parameters, exact solution.

Introduction. The important issue in the oscillation theory is the study of resistance impact on
oscillatory processes. Unlike the calculations of free oscillations, that reside in determination of natu-
ral frequencies and waveshapes and unlike the calculations of forced oscillations far away from reso-
nance, that are performing without reference to friction, the oscillations researches in vicinity of reso-
nance need accounting of friction forces.
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The reasons of energy dispersion during material body oscillations can be both external and
internal. The external reasons — environmental resistance, where material bodies are oscillated (air or
liquid), slip surfaces friction in joints of different elements and supporting structures. Energy disper-
sion in material owing to its imperfect elasticity refers to internal reasons. An internal inelastic re-
sistance has paramount importance among resistances that come out from elastic systems oscillations.

There are a lot of studies about the rod vibrations problems. Among them are the works by
D. Bernoulli, L. Euler, J.W. Rayleigh A.N. Krylov, S.P. Tymoshenko, K. Gogenemzera, W. Prager,
P. Pfeiffer, P.F.Papkovich, A.F.Smirnova, I.M. Rabinovich, M.I. Bezukhov, A.P. Filippova,
E.S. Sorokin and others.

The relevance of this problem in our days is confirmed by the large number of modern publica-
tions among which we can highlight such works [1...16]. Special attention is paid to forced transverse
fluctuations in beams as an important technical problem for engineering and building. The most com-
mon method for the determination of these oscillations is to present the superimposed loads and the
dynamic characteristics of a non-damping functions [2, 3]. Ladislav Fryba [12] applies integral Fourier
transform and integral Laplace-Carson transformation to solve the same problem. M. Abu-Hilal using
a method of Green functions gives the precise method of determining of a dynamic deviation of a
simple-span beam of Euler-Bernoulli [15].

The aim of the work is constructing of analytical solution of the problem of forced transverse
vibrations of a straight rod with constant cross-section, which is under the influence of the harmonic
load taking into account external and internal resistances.

Materials and Methods. Let superpose x-axis with the centroidal line of cross-sections of the
rod and assume that its ends are at the points x = 0 and x = /. The deflections down are considered as
positive ones. The general scheme of oscillations shown in Fig. 1. The scheme of the forces acting
during vibrations upon an element of a rod is presented in Fig. 2.

‘ ’ PLLLLLL LY g
q(x,1)
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Fig. 1. The scheme of forced transverse vibrations Fig. 2. The scheme of the forces acting upon
of a straight rod an element of a rod

Here the following designations are accepted:
q(x,t) — the intensity of dynamic transverse load acting upon the rod;

m — the intensity of the distributed mass (bulk weight) of the rod;
y(x,t) — the cross motion of the axis point of the rod with coordinate x at time ¢ (dynamic deflection);

¢(x,t) — the dynamic angular deflection;

M (x,t) — the dynamic moment of flection;

O(x,t) — the dynamic transverse force;

r(x,t) — the intensity of internal resistant forces;

p(x,t) — the intensity of external motion resistance forces;

2
f(x,t)=—m Z_t); — the intensity of inertial forces that appear during oscillation (D’ Alembert force).
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It is known [1, 2] that the equation of forced oscillations considering resistances is written as:
o4y 0%y
El——+m——+ p(x,t)+r(x,t)=q(x,t), 1
R Y ORI CHEED (1)

where EI — the lateral rigidity of a rod;
E — the absolute value of the rod material elasticity;
I — the second moment of rod cross-section area.
This equation is valid for a model where decided to ignore the longitudinal movement of cross
sections and their twists and shifts.
Consider the important practical case when dynamic load acting on the rod outer is the harmonic one:
q(x,t)=¢qsin0¢, 2)
where ¢ — the constant amplitude of transverse load, 60— the frequency of exciting force.

There are many hypotheses for accounting the resistance forces. For external friction, usually
take the hypothesis that resistance is proportional to the mass of the rod and speed [2]. Internal friction
is often considered on Kelvin-Voigt hypothesis [2]. According to this hypothesis, the strength of the
internal resistance is proportional to the first order of strain rate. In this case, for the intensities of the
resistance forces we will have:

o’y
otox*’

p(x,t)= am%; r(x,t)=BEI 3)

where o, — coefficients of external and internal friction accordingly.

However, as known, the Kelvin-Voigt hypothesis in pure form has a number of shortcomings.
The main of it is that this hypothesis leads to conclusion that is contrary to experienced data. This con-
clusion is about frequency-dependent internal friction in the material. This disadvantage can be elimi-
nated if to put the coefficient  proportional to the frequency with which construction oscillates. In

our case, we will haveBz%, where y — the coefficient of inelastic resistance (dimensionless con-
stant for current material). The specified way of the accounting of internal friction is called the cor-
rected Kelvin—Voigt hypothesis [1]. Applying for external forces version about frequency-independent
friction, we obtain the representation o =v0, where v — the coefficient of inelastic resistance (dimen-
sionless constant for current material).

The equation (1) taking into account (2), (3) takes form of

4 2 5
E[f?y 0%y Oy o’y

+m—=+oam—+BE[———=¢sin6t. 4)
ox* or? ot otox*
We construct the exact solution of differential equation of oscillations in the partial derivatives
(4) and obtain the formulas in analytical form for dynamic movements and dynamic internal forces in
random cross-section of a rod.

We will search for equation (4) solution with generalized separation of variables of a type
y(x,t) = y,(x)sin 0z + y,(x)cos O, ®)]

where y,(x), y,(x) — unknown real functions, that depends only on variable x. Then, for other
dynamic parameters, we will have:

o(x,t) = 0,(x)sin 08¢ + @, (x) cos O¢; (6)
M (x,t) =M, (x)sin 0t + M, (x)cos0t; (7
O(x,t) = Q,(x)sin0¢ + O, (x) cos 6¢, (®)
where
®;(x) =y (x); M;(x)=—El9(x); Q;(x)=M;(x) (j=12). )
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Apparently, dynamic parameters of a beam will be completely defined by functions
(%), 0,;(x),M,;(x),0;(x) (j=1,2). Let name them as components for corresponding dynamical
parameters.
After the substitution of (5) to equation (4) we will obtain

[Ey{" (x) = 6%my, (x) = 62vmy, (x) — YELy;" (x) — q]sin 0¢ +

HEDY (x)—02my, (x) +0>vmy, (x) —YED! (x)]cos 6f = 0.
This equality have to satisfy itself for random ¢, that can be achieved only if to equate zero the multipliers
at functions sin 0¢ and cos 07 . As a result, we come to the system ordinary differential equations

El(l —vj(y{V(X)jzezm(l Vj(ylm}r(q]' (10)
y 1 )\» (%) v 1 )\»nkx)) \0

The obtained system is equal to fourth order differential equation in relation to new unknown
complex-valued function. Actually, the figuring in system matrixes reduced to diagonality by one and
the same similarity transformation:

S-ll -y S l+iy 0 ) g1 1 VS_ 1-iv 0
vy 1) Lo 1-iy) —~v 1) L 0 1+iv/)

11
where S :[ _ ,},
—i i

i — the imaginary unit.

o n(x) z(x)
Consequently, after the substitution =S| —— | the system (10) comes to the group of
Y2(x) z(x)

two differential equations in relation to new unknown functions

Z(x):yl(x)-;lyZ(x)’ Z(x):yl(x)_zly2(x). (11)
The first of these equations has the form
q
zZV(x)—s*z(x)=————, 12
) ) 2(1+iy)EI (12)
where s* = =iy 02 L.
1+iy EI

The second equation is the complex conjugation of the first one. Therefore, it is not necessary to consid-
er it separately. Having the solution z(x) for the first equation (12) the solution for the second will be z(x) .

The functions of A.N. Krylov are usually chosen in the oscillation theory as a fundamental
equation system of the form (12):

1 1 )
Q, (sx) = E(Chsx +cossx); Q,(sx)= E(shsx + sin sx);

Q.(sx)= %(chsx —cossx); Q,(sx)= %(shsx — sin sx).

It is possible to obtain common formula by substituting here corresponding to them series instead of
elementary functions

B (Sx)n—l © (sx)4k+n—1 3
Qn(sx)_(n_l)!+;(4k+n_l)! (n=1,2,3,4). (13)

An obvious partial solution of the equation (12) be

q

z,(x)=——"—.
2s4(1+iy)EI
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However, in this case it is more convenient to use fundamental functions

X —Q sx) (n=1,2,3,4
X0 = 55 )
and particular solution
l4
2.(¥) = 5 X (),
2(1+iy)EI
where

X (X)—( Is)’ [€2, (sx) ~1].

At the same time, with regard to formula (13), for X, (x) (n=1,2,3,4,5) we will have

1 Ve K2k S\
Xn(X)—m(7) +Zm(7j (n—1,2,3,4,5), (14)

k=1

where K? =(s/)* = WV jage
1+iy EI

1
Let us remark here that X(x)= F(X () -1).

Complex parameter K is non-dimensional and it is easy to verify that by immediate examina-
tion. Then it is easy to see of formula (14) that the functions X,(x)(n=1,2,3,4,5) are non-
dimensional. In addition, these functions have the convenient rule of differentiation:

X0 =2 X0, X0 =1 X,00, K30 = 1 X0, K30 = 200, K = 1 a0 (19)

Writing out the common solution of the equation (12), we will have a complex function
y,(x)+iy,(x) . Differentiating it taking into account (9) and (15), we will also obtain the complex
functions @;(x) + iQy(x), Mi(x) + iMy(x), Oi(x) +iQO,(x). The final formulas, in which the integration
constants are expressed through the initial complex parameters y,(0)+iy,(0), ©1(0)+ ip,(0),
M;(0) + iM(0), O1(0) + i05(0), will have the form

yi(x) + iy, (X) [31(0) +iy,(0)]1X, (X)+[<Pl(0)+i<|>z(0)]lX 2 (x) -

(M, (0)+iM, (0)] X(x) [Q1(0)+1Q2(0)] X @+ £ X (16)
(1+iy) EI
cm(x)+i<p2(x)=[y.(0)+iy2(0>]—K2X (x)+[<p.(0)+icp2(0)]xl(x)—
: (17)
—[M1(0)+iM2(0)] X0 [Q1(0)+1Q2(0)] X() —) 21X4<x);
M, (x) +iM, (x) = [y1(0)+zy2(0)] L KX, () - [@1(0)+up2(0)] LX)+
(18)
LM (0) + M (0)1X, (x) + [0, (0) + 05 (O)LX (x) - —I— 12X, (x);
(1+zy)
0,(x) + 10, (x) = ~L7,(0) + i, (@]%KZXZ ) ~[p,(0)+ z'cpz<0)]%m3 )+
(19)

+HM,(0) +iM, (0)]%K2X4 (x) +[0(0) +i0, (0)].X, (x) — (I—:I—i'y)le (x).

Thus, complex functions which real part are the components y,(x), ¢, (x), M,(x), O,(x) are found. In
the role of the imaginary are the components y, (x), ¢, (x), M,(x), O, (x). Conformably, in future it makes
sense to distinguish real and imaginary components of dynamic parameters of (5)...(8).

MACHINE BUILDING. PROCESS METALLURGY. MATERIALS SCIENCE



14 . . . . ISSN 2076-2429 (print)
[Ipani Omecpkoro mosniTexHigHOTO YHIBepcHuTeTy, 2015. Bum. 3(47) ISSN 2223-3814 (online)

Let
X,(x)=X,,(x)-iX,,(x)(n=1,2,3,4,5),
K2X,(x)=X;(x)—iX;,(x) (n=1,2,3,4),
where X, (x), X, (x) (k=1,2) —real-valued functions, that have to be found.

For this case, let represent the number K? in trigonometric form. Based on the same (trigono-
metric) notation

1+iv=+/14+v2(cosd, +isind,), 9, =arctgv(0£61 <%),

1+iy =4/1+7y2(cosd, +isind,), S, =arctgy[0£82 <gj,

we will have

where I2 = Y psge ™ 55 45,
1+y2  EI

After this the formula (14) taking the equality K% = [?*(coskd—isinkd) (k=1,2,3,...) into account
will be written in such way:
1 (f)"l N 2 [P coskd (1)4“"1 . [sinkd
(n—-DIN\/ o (dk+n-1I\/

Hence, also we will have
S 2%k+2 4k+n-1 ©  T2h42 4k+n-1

L cos(k+1)8[z} Y sm(k+1)6(£j (n=123.4). @D
o (@Gk+n-1! \/ i (@Gk+n-1D! I
Therefore, the functions X, , (x), X, (x) (k=1,2) is found.

It is significant that 0 <6 <, at that the equalityd =0 is possible only if neither of resistance
forces is not considered, i.e. v=y=0.

K? =1?(cosd—isind),

X, (x)= (fj K (n=1,2,3,4,5). (20)

"k -l

K2X,(x)=

Let now select and exclude real and imaginary summands in right part of equations (16)...(19).
Then, for components y(x), @i(x), Mi(x), Oux) (k= 1, 2) we will have:

yk(x>=(—1>k+l[yl(O)Xl,k(xH@1(0)1X2,k(x)—Mlgl’)l Xou(x )—Q‘(‘?’ 4,k(x>j+

,(0)X 54 (%) + 0, (0)IX, 5 4 (x) — ]MZE('(]))Z2 33 (%) — Z ((;)13

F e — 1T )+ (D ()

a3k (X) + (22)

(I+y))El
9,(x) = (- [@X:,Ax)ﬂpl(omk(x)—M}‘E(IO)’ X, (0- 200 3,k(x>j+
220 00X 0 - -2 e @)
‘(- 1)k+lﬁ( Xop (0)+ (19X, ()
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M, (x)= (Dk(yl(O)E] ;,k(x)+wxz,k<x>—MI(O)XI,k(x)—Q1(0>1X2,k<x)j—

_»(0E

22 - 2O X0 M 0K 0+ 0O+ )

Ho L 22 (X3 () + (=1 7X 5, (1)

0,(x) = (Dk(yl(o)“ X3, (0)+ ‘pl(O)E[ X () M(O) :,k(x>—Q1(0)Xl,k(x)j—
2O v - ‘PZ“’)E’ Xy 0+ (O)Xz,a_k(x)+Qz(0)Xl,3_k(x)+ @5)

H-1y ljl; (X (6)+ (1) X1 (00

Results and Discussion. Thus, dynamic parameters of beam are completely defined by formulas
(5)...(8), (22)...(25). The given expressions allow to define forced dynamic oscillations y(x,?), ¢(x,t)

and dynamic internal forces M (x,¢), O(x,t) from the harmonic load ¢(x,?)=¢sin6¢. That reduces

the problem with any possible fixed ends of the beam to the search for unknown constants of integra-
tion, which are represented in the formulas (22)...(25) in the form of real initial parameters (initial
values of the real and imaginary components). There are two possible approaches. The first is based on
implementation of boundary conditions using the formulas (22)...(25) and leads to a system of four
linear inhomogeneous equations with four unknown real initial parameters. The second assumes the
realization of boundary conditions using the formulas (16)...(19) and leads to a system of two
inhomogeneous linear equations with two unknown complex initial parameters. After solving of such
a system, separating the real and imaginary parts in the retrieved complex parameters, we obtain the
four required real initial parameters. The second approach is more straightforward, because solution of
a system of two equations is easy to obtain in an analytical form.

In practice, instead of the formulas (5) ... (8) for research of oscillations it is advisable to use the
equipotent formulas where amplitude functions of their dynamic parameters are explicitly allocated:

Y1) = y(x)sin (0147, (), ¥(x) =7 () + 72, 1, (x) = arctg“;% : (26)

9(x.1) = P()sin (01 +7,()), 9(x) =97 (V) + Q3(¥), 1, (x) = arctg ng; @7)

M (x.0) = M()sin (0 + 7, (x)), M(x) = M7 () + M3 (), 7 (x) =arctg E ; (28)

0(x,0) = 0(¥)sin (81 +10(1)), O(x) =0 + 02, 10(x) = arctg% )
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