Polozhaenko S. A. Published in the journal Electrotechnic and computer systems Ne 11 (87), 2013 150 - 156

Simulation of dynamic systems

UDK 513.675
S. A. Polozhaenko, ScD.

METHODS OF MATHEMATICAL DESIGN AND MACHINE AUTHENTICATION
OF ANOMALOUS DIFFUSIVE PROCESSES

Abstract. For a class of the abnormal diffusive processes which mathematical models are formalized in the form of
variation inequalities in private derivatives, the method of mathematical modeling based on optimizing procedure is
offered. Thus the problem of realization of mathematical models of abnormal diffusive processes is reduced to search of
a maximum of function of Hamilton defined in space of conditions of studied processes. The method of parametrical
identification of mathematical models of abnormal diffusive processes in case of an induction problem definition of re-
search is also offered. The method is reduced to use of optimizing procedure of a method of a projection of a gradient.
Possibility of the solution of a problem of parametrical identification, as for linear, and nonlinear mathematical models
of abnormal diffusive processes is proved.

Keywords: abnormal diffusive process, mathematical model, variation, variation inequality, optimization, princi-
ple of a maximum functionality, gradient, parametrical identification

C. A. IlosioskaeHKo, 1-p TEXH. HAYK

METO/IbI MATEMATUYECKOI'O MOAEJUPOBAHUS U MAILIMHHOM
NIEHTUOUKAIUU AHOMAJIBHBIX TU®®Y3NOHHBIX TPOLHECCOB

Annomauyusn. /[na knacca aHOMAnbHbIX OUGOYIUOHHBIX NPOYECCO8, MamemMamuyeckue Mooeiu Komopvix gopma-
JUBVIOMCS 8 8UOe BaAPUAYUOHHBIX HEPABEHCE 8 YACMHBIX NPOU3BOOHBIX, NPEONIONCEH MEmo0 MAMeMamuiecko20 Mooe-
JUPOBAHUS, OCHOBAHHBIL HA ONMUMU3AYUOHHOU npoyedype. [Ipu smom 3a0aua pearuzayuu MameMamuieckux mooenei
AHOMATLHBIX OUPDDYZUOHHBIX NPOYECCO8 CBOOUMCS K OMBICKAHUIO MAKCUMYMA DYHKyuu I amunbmona, onpedeneHHol 8
npocmpancmee cOCMOosHULL ucciedyemvlx npoyeccos. Taxace npednodicern mMemoo napamempuyeckoll udeHmuguxayuu
Mamemamuyeckux Mooerell aHOMAIbHbIX OUDPYZUOHHBIX NPOYeccos 6 Cyuae UHOYKYUOHHOU NOCMAHOBKU 3a0auu uc-
cnedosanust. Memoo c600umcs K UCNOAb308AHUI0 ORMUMUZAYUOHHOU NPOYedypbl Memoda npoekyuu epaduenma. Oboc-
HOBAHA 8O3MONCHOCb PeueHUs 3a0adll Apamempuieckol uoeHmupurkayuu, Kax O0Js TUHEUHbIX, MAK U HeTUHEHbIX
MAMeMamuyeckux Mooeiell AHOMAalIbHbIX OUPPY3UOHHBIX NPOYECCO8.

Knrwoueewie cnosa:. anomanvhulii Oug@y3uonnsiii npoyecc, Mamemamuyeckas Mooeib, 8apuayust, 6apuayuonHoe
HepAeHCme0, ONMUMUZAYUSL, NPUHYUN MAKCUMYMA QYHKYUOHAT, 2PAOUEHTI, NAPAMEMPUTECKds UOeHMUDUKAYUL

C. A. ITonoxkaeHKo, I-p TEXH. HAYK

METOJIA MATEMATUYHOI'O MOJAEJIOBAHHS TA MAIIIMHHOI IIEHTU®IKAILIILI
AHOMAJIBHUX JU®Y3IMHAX MPOLIECIB

Anomauin. [{na knacy anomansHux OuQysiuHux npoyecie, Mamemamuini Mooeni aKux opmanizyiomecs y eueisioi
sapiayitinux nepigHocmell y 4acmKo8Ux NOXiOHUX,, 3anpONOHOBAHO MEMOO MAMEMAMUYHO20 MOOENIOBANHS, 3ACHOBAHUT
Ha onmumizayiuniu npoyedypi. Ilpu ypvomy 3adaua peanizayii MmameMamuyHux mooeneti AHOMATbHUX OUPY3IIHUX NPO-
yecig 3600umvcs 00 BIOULYKAHHA Makcumymy Qyuxyii Iaminemona, Ky 6U3Ha4eHo y NPOCmopi CmaHy 00Cai0HCY8AHUX
npoyecig. Taxkoxc 3anponoHoeano Memoo napamempudrol i0eHmugikayii MamemamuyHux mooeneti AHOMAIbHUX OuQy-
BIUHUX npoyecie Ha BUNAOOK THOYKYIIHOI NOCMAHOBKU 3a0adi 00CHiOdceHHs. Memoo 3600umuvcs 00 3acmocy8aHHs on-
MUMizayiunoi npoyedypu memody npoexyii epadienma. OOTPYHMOBAHO MOICIUBICIb PO38 A3aHHA 3a0a4i idenmuixa-
Yil, AK O AHIHUX, MAK [ /1 HEeTHIUHUX MAMEeMamMU4HUX Mooeiel AHOMANbHUX OUY3IUHUX NPoyecia.

Knrouosi cnosa: anomanvuuti ougysitinuii npoyec, MameMamuyHa Mooens, sapiayis, eapiayitina HepigHicmy, on-
MUMI3AYis, NPUHYUN MAKCUMYMY, QYHKYIOHAT, 2PAdiEnm, eKCmpemMym, Napamempuyta ioeHmugikayisi

1.Introduction processes. For the description of abnormal dif-

In a number of important applied tasks
technological (or naturally natural) processes
are characterized by deviations from well-
known physical laws. In this regard these proc-
esses received in special literature the name
anomalous (in particular, abnormal diffusive) [1
— 4]. First of all, the rheological processes con-
nected with mining can be an example of such
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fusive processes, as the adequate mathematical
models (MM) it was offered to use the device of
variation inequalities in private derivatives [5 —
8].

As it was shown in work [9], in practical
appendices it is most convenient to use the fol-
lowing formalization of abnormal diffusive
processes.

Let the function w(t,Z), defined on a

bounded open set Q of the space R", n=12,
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with smooth boundary T" and the time interval
(0,t,) for t, <0, Q=Qx(0,t,), Z=Tx(0,t,)
is the solution of the variational inequality

v ekK :[m(z)%’/,v—y/}

+(B(w.V=y)+ (V) - )=
>(fv-y) Vve H(Q), 1)
w(0,2) =y,(2), )
where the operator B(y) specifies a linear
transformation B(y):H'(Q) —» H'(Q) and is
defined by the bilinear form:
where the operator B(y) specifies a linear
transformation B(y):H'(Q) > H'(Q) and is
defined by the bilinear form:
Loy O(V-vy) )| .
BMw.v-y)= 1(257}1& (3)
f — the driving function of the process, for
which the operation (f,v—y) coincides with
the scalar product in L*(Q), i.e.
(fv—y)=[[f@.v-ylda or

Q

(fv—y)=[[f@v-y]dr
r
(hereinafter, for simplicity, restrict ourselves to
the tasks at the border T1); j(*)- convex
functionals defining the kind of physical process
in rheology and which are specified as follows

i0=[o(y,2)- Aly)dr,

i0=[oy.2)-Aw)d . (4

Q
In the relation (4) accept that ¢(-) —is a
continuous function, A() - is continuous

differentiable or not having the properties of
differentiable functions.

Space of admissible functions ¢(-) and
A() are defined as AeL”(Q), AeL”(Q)
where it is assumed that ¢(-), () e L”(Q),
6=§x(o,tk) and the spaces A and Aare Ba-
nach with respect to the norm

o2, =ew.2).. )

2. Method of mathematical modelling of
abnormal diffusive processes
The proposed method for solving variational

151

inequalities of the form (1), (2) is based on the
proof of the following statements.

To find the optimal solution w(t,Z) of the
variational inequality (1), (2) there must exist a
nonzero continuous function p(t,z), so that at
any time tin the interval 0<t<T (T — time of
physical processes) the Hamiltonian function
H in the spatial domain Q (or on its boundary
I') would take the maximum value, where

H =((BO:)W. T —77)+ (@) - () -
-0, 0,7 -¢)-(f,0-w) D).
Carry out a preliminary series of reforms to

simplify the original formulation of the problem.
Introduce the notation

o(t.2)-Aly)=D(y), olt,2)-A(v)=D(v)
and

dy)=]o)dl,  $(v)=]a(v)dr.

In addition, introduce an additional unknown
function 6(w,v), the structure corresponding to
the functionals j(-), such that

Oy, Vv),v-w)>0 VvekK.

Taking into account the executed transfor-
mations introduce the relations (1), (2) in the
form

v eK:

(m(f)%//,v—v/} (B()v—w)+ o) —g(y) -

-0y v)v-y)=(fv-y) weK. (5

w(0,2) =y,(2). (6)

To solve the problem of finding a state func-

tion w(t,Z), use an optimization procedure of

the Pontryagin maximum principle [10], for

which choose the following performance crite-
rion

]
J =min j j v —wldtdr. ©)
ro

The physical meaning of this criterion fol-
lows from the next. The trial function v(t,z) is
some approximation of the unknown function
v (t,Z), reflecting only the essence of physics in
the specific process. Therefore, the adequacy of
physical processes caused by the action of func-
tions v(t,z), and y(t,Z), is provided up to the
accuracy within the difference between these
functions. In this case, the integral difference be-
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tween the trial v(t,Z)and the un-
known (t, ) functions can be regarded as a
quantitative measure or a penalty for the devia-
tion of the actual flow of the process from its true
value.
Obtain the necessary optimality conditions
of the problems (5) (6), (7).
According to [6], introduce a new coordinate
oo
s v-y (8)
Thus, the original problem will be consid-
ered in(n+1)-dimensional space with the equa-
tion of dynamics

|2

zel

vekK:

[m(f)ﬁgl;,\7 —l/7j+(5(7),\7 ~)+ (V) - (W) -

~(0W V)V -y)=(f.V-y) wWeK, (9
where

V=0 w,), T=(0.v,..V,),
with the initial condition

(0,2) =0,y (2)]
Assume that we have found w(t,Z). This
condition corresponds to the relation
T
minJ.J.|\7—z/7|2 dtdrr - J,,, =J".
ro
At t=7(0<7<T) perform a needle-

shaped variation with the duration & . As a result
of the variation performed the value of the func-
tional J (7) changes

j:'[j[|\7—t/7|dtdF>Jmin.
ro

Write down the detailed result of the
variation

N =V -y =e{(BO)W.V-¢)+¢(V) - p) -

-(0W,9).7 —y)~(f.(7-9))]-B( ) w)+
@) - OW)W)-(f.¥).. (10
Express v through the variation and optimal
function of the state
V=y +&V.
Substituting (11) into (9), obtain

veK: [m(i)%,(tﬁ +5‘7)_"7j =

=B, +N)-y)+d( +V)- () -
— (07, (7 + V), (v + &V ) -y )-

(11)
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—(f,+N)-w) WeK (12
For further transformations use the coordi-
nate-wise analog (12)
v, eK:

[m(z)%,(@ +5vi)_¢~ij:

= (B, 7, + ) =7, )+ (7, + ¥, )= p(77,) -
_(9(‘/7i’(‘/7i +5\7i))’ (‘/Z +5\7i)_l/7i)_
_(f’(l/7i +5\7i)_l/7i) W e K,
1=0,1..,n. (13)
Expand (13) in Taylor series and restrict the

consideration with the quantities of 1-th order of
infinitesimality

m(zi)[%+%j=(5(7)‘/7iv‘/7i)+
+o) - (f.7)+
+§a[(B(V)WivWi ).éj\:;qb(‘//.) _(f Wi )]5\7”
i=01..,n. (14)
From (14) it follows that
m(z.)ﬁ:
Y a
O (B wi)+o(r)-( .y .
i=01..,n. (15)

Now turn to t =T . Define a variation of the
functional at t =T

§J . =J-J3_>0
-8l ;=-60, <0.
Introduce the variable p(t,z) so that when
t =T this condition is satisfied
~8 .y ==80(T)=(V, D), .. (16)
Coordinate wise analog (16) is as follows
~8 . ==60(T)=(V,,p;),,, i=01..,nSi
nce 6 o(T) >0, in order to satisfy this relation
there should take place:
p°(T.z)=-1 p;(T,2) =0,

or

where
1=0,1..,n; j=1..,n.

Thus, if the optimal solution is not found,
then -8J <0, and for the optimal solu-
tion —8J =0 is valid, since the variation of func-
tional must be zero for the optimal solution.
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Associate a variable p(t,z) to the dynamic
equation of the process observed through trial
function v(t,Z). Find a variable p(t,z) which
satisfies

(8V(t.2), B(t.2)) =
=(&V(T,2),p(T,2)) ___. =const.

Then we have

%(5\7@,2),5@,2» <é’5~(t 2 5.z )>

+<é’"p—(t’z),5\7(t,2)> -0. (17
d T+e<t<T
Coordinatewise analog (17) is
iznéﬁféit 7) B(t2)+
+25*(t 72 PVit2) (t 7)o,
i= 0,1,..., (18)
Substitute in (18) the value of the derivative
—55\70’2) from (15)
a
m(z, )Z P x
30 (B()7,7)+ 6 ~ (1 g,
i=0 é’Vi
n.o_ 0”5
o, — =0,
+i§ v, 3
i=0,1..,n (19)

Change the order of summation in (19)
m(zi)zn:&?i +
i=0

{Z 5 2E7L7)9)-(L7),

+0"_'F3i}=o, i=0.1,..,n
a
Finally get
Ib_
Fa
N0 B(V)l/711/7i +(Ib(llz)_ f,l/7i =
i=0 i
i=0,1...,n

Note that this equation is the dual of (5),
and the variable p(t,z) is expressed through

the function of phase.
Again turn to the variation of functional (7)
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at t=T
& =(V(t,2), B, 7)), =
Replace the variation &V with the value of

(10), reduce by ¢ and, since 7 can be arbitrary,
obtain

(B )77 ~y7)+9(V)-97) -

—(OW V)V -y)- (1.0 -w))B),_, -
~{(BGw.¥)+ () - (7)), =0.(20)

From (20) it follows that the second sum-
mand in it corresponds to the optimal solution
of the variational inequality (5). In the case
when the optimal solution w(t,z) is found,
variation of functional J will be zero, i.e.

6J =0. Given this, the first summand in (20),
defined by the Hamiltonian function

=((BO)W.V )+ (@) —¢(7) -
—(OW. V)V -y -(f.0-w))p).  (21)
should take the maximum value. Thus, the
above statement is proven. Let’s show the pos-
sibility of determining the maximum value of

Hamiltonian function.
Coordinate wise analog (21) is defined by

H = (B, V. —y7,)+ 9(%) - p(7,) —
_(Q(VZ’A‘.) V/) (f (\Z_&i)))’ﬁi>’
i=01..,n (22)
To maximize the value of the function H ,
it’s necessary to set all the partial derivatives of

this function to zero by a testing variable
v(t, z), that taking into account (22) gives the
system of equations
OH —=0, 1=01..,n
ov,

Coordinate wise analog (22) contains
(n+1) of v, functions, (n+1) of &, functions
and (n+1) of p, functions. Since the equations
(23) are only (n+1), and the unknown are
(3n+3), then the system (23) cannot be solved.
To solve (23) define also the partial derivatives

AH
_:p

(23)

i=01..,n. (24)
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In this case, the solution of (23) can be
obtained.

As a result ofthe reasoning done, the
scheme of the algorithm for solving variational
inequality (5) using the maximum principle can
be represented as follows:

1) the dynamic equation (9), subject to the
additional coordinate o is written down;

2) an auxiliary function (Hamilton) H in
accordance with the expression (22) is com-
piled;

3) a test function v(t,z) that delivers

maximum H functions in accordance with the
expression (23) is determined. For the redefini-
tion of the independent variables & and P the
system (23) is supplemented with equations (24)
and (25);

4) the unknown variable vy (t,z) is deter-
mined by the test variable v(t,Z), which gives

the maximum value of function H .

3. Method of parametrical identification
of abnormal diffusive processes

At statement of an inductive task — (1) - (4),
the method focused on numerical machine reali-
zation can be offered parametrical identification
of MM of a look. The essence of a method con-
sists in the following.

It agrees [11], to MM (1) — (4) (in incre-
ments) it is possible to present in a look

m8 Al// E[Iz_;‘{ ézl |Av|}dz>
zzgj(z)fj, Vyvek, (26)
Ay (0,2) = Ay, (2), (27)

where v =w(t,z) - sought function; v = v(t,z)
— trial function; K - a lot, of that is defined
functions w =w(t,z) and v=v(t,z); f - excit-
ing function; k — number of exciting func-
tions; ¢(z)- Dirac's function; m=m() and
B = B(-) — identified parameters.

As criterion of quality of the solution of a

problem of identification we will accept func-
tionality of a look

3[m().B()]=
- Zk:{_[[w’(t, 2,m,B)—FV (t)]zdt}, (28)

=T
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where y'(t,z,m, B) - exact values sought func-
tions; F/(t) — measured values of the sought

function; T — time of measurements.

Let's show that the accepted criterion of
quality will be differentiable in any point of spa-
tial area Z € Q (including and its border T'), i.e.
an increment (28) equal

AJ =J[m+hm)(B+h?)] - 3(m,B),
represent able in a look
Al = j{[J’(m,B)hm]dz+[J (m, B)h® dz |+
J e

+[Oq L2)+OQ‘hB
where J'(m,B) — some function from L*(Q);

ofjn"[..) and ofn®

hm

L2) — residual members

such, that

tmfola)a)* -0

Let's write down formally a functionality
increment

w=3 (b ) svta)-wr 0] -

~lylt.2mB)-F (0)] joz -
:;Zk;{g[{{[ t,z,m,B)~F (t)] +A"’(t’z")}2 -

Wz, B)-Fr ()] foz)-
Sl

Q
+IAy/2(t,z)}.
Q
Let's transform this expression to a look
(29). For this purpose we will enter into consid-
eration of function p;(t,z)= p,(t,z,mB) as

the solution of the following regional task
m& pu/ :I 4z >

P-v)- 13 8
(31)

zzk:g.(z)fj, VyvekK,

j=1

oo -0

(30)

*

|, =2vt.zmB)-Fr©)p

t=t,
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VzeQ. (32

The first integral in the first composed in
the right part of equality (30) taking into ac-
count (26), (27), (31), (32) it will be trans-
formed so

| = 2l (t,z,m,B)—F¥ (t) Ay (t,2)dz
z

Integrating the last expression in spatial
area, we will receive the following result

DR -

[ (S:s0m8])

=|— B()p, |V | [Awdt. (33
!m(){é ()pu/ v (33)
Here, and further, designation (-) deter-

mines as the linear (from space), and non-
linear (from required function) parameter. The
second integrals in composed in the right part

(30) the members of the look [Omhut) , pre-

sented in (29) and written down for spatial
problem definition define. Let's have in this
case

INE (j} mi()KZ;‘ B(-)p; v ﬂh"/dz + oQ|h||{2 ) (34)

and the step h” determines cooperative value
by steps h™ and h®. As a result we will re-
ceive that the increment of functionality (28)
is represented in the form of expression
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n-[ KZB ﬂh”’dz+0ﬂ|h||":2).

Thus, reqUIred representation (29) for
functionality (28) is received, and the gradient
of this functionality looks like

J[m()B()]=
()KZB |V|ﬂ’ vzeQ tel0t]. (35)

Further, having a gradient (35) and using
procedure of a method of a projection of the
gradient [11], defined by ratios

Q=1a(t):a(t)e L[0.t} a<a(t)<b,vtelot]}

alt). a<q(t)<b,

a, qlt)<a,
b, qt)>h.

For identified functions m(-) and B(-) also

we will receive final ratios on an offered
method of parametrical identification

-wol(Zeom )
e

mwagéﬂlBOMMﬂ>mw

where o, and oy — method parameters, de-

Bu+1(’)=

fined by practical consideration, r — step of
the numerical decision.

4. Conclusion

The conducted numerical researches

showed that the offered methods of mathe-
matical model operation and parametrical
identification of the abnormal diffusion proc-
esses, based on iterative procedures of optimi-
zation possess good convergence (the decision
is reached no more, than for 8 — 10 iterations)
at accuracy of the decision 0,2 % are not
lower.
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